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Cell wall storage polysaccharides (CWSPs) are
found as the principal storage compounds in seeds
of many taxonomically important groups of plants.
These groups developed extremely efficient biochem-
ical mechanisms to disassemble cell walls and use the
products of hydrolysis for growth. To accumulate
these storage polymers, developing seeds also contain
relatively high activities of noncellulosic polysaccha-
ride synthases and thus are interesting models to seek
the discovery of genes and enzymes related to poly-
saccharide biosynthesis. CWSP systems offer oppor-
tunities to understand phenomena ranging from
polysaccharide deposition during seed maturation to
the control of source-sink relationship in developing
seedlings. By studying polysaccharide biosynthesis
and degradation and the consequences for cell and
physiological behavior, we can use these models to
develop future biotechnological applications.

CWSPs IN ENDOSPERMS

Galactomannans and the Mannan Family

Several species from various families are known
to have seeds that store mannan, glucomannan, or
galactomannan (Meier and Reid, 1982; Buckeridge
et al., 2000b).
The mannan family comprises pure mannans, gluco-

mannans, and galactomannans. The former is artifi-
cially defined as containing more than 90% of Man in
the polysaccharide. Mannans are formed by mannosyl
residues linked to each other by b-1,4-glycosidic link-
ages. When the main backbone chain also contains Glc,
the polymer is called glucomannan. Both mannans
and glucomannans can be substituted with single
units of Gal linked to the main chain by a-1,6-linkages.

In some species (Orchidaceae and Araceae, e.g. Cat-
tleya and Phylodendron, respectively), mannan and
glucomannan are acetylated and may not contain Gal
(M.A.S. Tiné and M.S. Buckeridge, unpublished data).
There is at least one report of the presence of pure
mannan in pseudobulbs of an orchid, Oncidium (Wang
et al., 2006). However, it is likely that the polymer is
acetylated, as it is soluble upon extraction with hot
water. Substitution with galactosyl residues to form
a galactomannan or a galactoglucomannan and/or
acetylation change hydrodynamic properties of the
polysaccharides, impacting their solubility in water
(McCleary et al., 1981).

This range of chemical structures gives rise to poly-
mers with different biological functions. Mannans
are present, for example, in palm (Phoenix dactylifera)
and coffee (Coffea arabica) seeds, and because they are
insoluble in water and display strong intermolecular
interaction, their biological function is usually as-
sociated with conferring hardness to plant tissues.
Several publications have led to the conclusion that
the mannan present in tomato (Solanum lycopersicum)
seed endosperm has as its primary function, to confer
hardness and control radicle protrusion, rather than
acting as a storage polysaccharide (Toorop et al., 1998).
In tomato and lettuce (Lactuca sativa), the endosperm
functions as controller of radicle protrusion affected by
gibberellin and abscisic acid (ABA; e.g. Groot and
Karssen, 1987, 1992; Dutta et al., 1997).

Endo-b-mannanase is the principal enzyme in-
volved in mannan hydrolysis in tomato and several
genes have been cloned with seed-specific expression
(Bewley et al., 1997; Gong and Bewley, 2007). Nonogaki
et al. (2000) localized transcripts of the genes LeMAN1
and LeMAN2 in the endosperm of tomato seeds.
LeMAN1 was associated with mobilization of mannan
whereas LeMAN2 was detected strictly in the endo-
sperm cap and functions in radicle protrusion.

An exciting new discovery is the fact that endo-b-
mannanase can perform transglycosylation (Schröder
et al., 2004). Schröder et al. (2009) proposed the abbre-
viation MTH (for mannan tranglycosylase hydrolase)
for this enzyme family in analogy with activities and
structures of the xyloglucan transglycosylase hydro-
lase (XTH) family. Transglycosylation by MTH of
CWSP (mannans, galactomannans, and glucoman-
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nans) would bring an interesting novel dimension to
our understanding of how the mobilization system
works: Galactomannan degradation in legumes, for
instance, is thought to occur in nonstop mode, in
contrast with storage xyloglucan disassembly, which
can be halted by transglycosylation depending on
growth rate (see below).

In palm and coffee endosperms, mannans are also
storage compounds. In palms, they are slowly de-
graded and the Man is used for embryo development
(De Mason et al., 1983). While the mannan is a reserve
for the developing embryo, it also provides mechan-
ical resistance such that the embryo is protected from
damage during the long germination of palm seeds.

In legumes, the main function of the endosperm cell
walls appears to be storage, with the yield of galacto-
mannan reaching more than 30% of the seed dry
weight in many species. These walls are thickened
with galactomannan and in certain cases (e.g. fenu-
greek [Trigonella foenum-graecum] and Schyzolobium
parayba) the cytoplasm disappears entirely. In these
cases, the endosperm is nonliving and degradation
is performed by enzymes (a-galactosidase, endo-b-
mannanase, and exo-b-mannosidase) made in the
aleurone layer. However, in many cases, although the
walls are quite thick, they surround a cytoplasm in
which protein bodies and other compounds such as
raffinose and Suc are stored (Reid, 1971; Buckeridge
and Dietrich, 1996; Buckeridge et al., 2000a).

The Leguminosae is one of the main plant families
on Earth, with more than 18,000 species. Although the
sample of species of this family that have been ana-
lyzed to date represents just a small fraction of the
familymembers, about half of the species studied have
an endosperm containing galactomannan. Together
with their occurrence in many other important plant
families, such as Palmae, Solanaceae, Convolvulaceae,
Iridaceae, Araceae, and Orchidaceae, this makes the
mannan family of polysaccharides one of the most
widespread CWSP groups in plants.

The ratio of Man to Gal in legumes (the M:G ratio;
Buckeridge et al., 2000a) varies from fully substituted
polymers (e.g. fenugreek) to an average of ratio of 3:1
or 4:1 (carob [Ceratonia siliqua]). A typical distribution
of M:G ratios in legumes gives a bimodal shaped curve
(Buckeridge et al., 1995, 2000b), associated with the
subfamily to which the species belong. Members of the
subfamily Caesalpinioideae have poorly substituted
galactomannans and it has been demonstrated that the
polysaccharide is edited during deposition in the wall,
presumably by a debranching a-galactosidase (Edwards
et al., 1992). This renders a polymer that is relatively
less water soluble. The subfamily Mimosoideae con-
tains galactomannans that are partially branched with
an average of two Mans per Gal, whereas Faboideae
(or Papilionoideae) tends to have highly substituted
galactomannans (M:G near 1:1) but usually with less
polysaccharide per dry weight.

Because of their viscosity and solubility in water, it
has been proposed that galactomannans can also play

a role as imbibing substances (Reid and Bewley, 1979;
Potomati and Buckeridge, 2002).The protection of the
embryo against pathogens due to the physical barrier
(highly viscous) that surrounds the embryo during
early stages of development is another possible func-
tion. Although such roles can be played by galacto-
mannan, the endosperms end up being degraded and
the products of hydrolysis (monosaccharides) serve as
source of carbon and energy to the growing embryo.

Lisboa et al. (2006) purified the endo-b-mannanase
from Sesbania virgata, a fast-growing legume tree from
the subfamily Faboideae. These authors found relatively
high activity of endo-b-mannanase in the tip of the
radicle. This activity decays as endo-b-mannanase in-
creases in the endosperm. Thus, legumes probably have
a similar mobilization system as tomato in their seeds.

During the 80s and the 90s, studies of galacto-
mannan mobilization focused on the regulation of
enzyme production by hormones and environmental
factors and elucidating mechanisms used for seeds to
control the entrance and loss of water in the endo-
sperm (Reid and Bewley, 1979), the effect of water
stress in slowing down galactomannan mobilization
(Spyropoulos, 1982; Spyropoulos and Reid, 1988), and
the effects of plant hormones on mobilization, espe-
cially ABA (Malek and Bewley, 1991). Dirk et al. (1999)
found a correlation between the production of Gal and
Man from mobilization and an increase in ADP-Glc
pyrophosphorylase in starch-accumulating tissues of
the seed.

ABA has been shown to interfere with the produc-
tion of the galactomannan hydrolases (Reid andMeier,
1972; Seiler, 1977). ABA or endosperm leachate af-
fected the production of enzymes in protoplasts of
endosperm of carob seeds and also in isolated endo-
sperms of fenugreek (Kontos and Spyropoulos, 1995;
Kontos et al., 1996). Tonini et al. (2006) measured the
endogenous levels of ABA in different tissues of seeds
of S. virgata and found that the testa of these seeds have
a relatively high concentration of ABA at the 1st d (16
nmol/g of fresh mass) and that it quickly decreases as
germination proceeds. In the endosperm and embryo,
ABA increases as germination proceeds. The testa has
cells that are metabolically active, with activities of
a-galatosidase and endo-b-mannanase, and so it is
possible that the high concentration of ABA negatively
regulates storage mobilization before the embryo re-
quires the sugars for growth (Tonini et al., 2007).

Experiments performed with the addition of actino-
mycin-D (an inhibitor of transcription) and cyclo-
heximide (an inhibitor of translation) to seeds of
fenugreek, Trifoliumin carnatum, and Medicago sativa
(Reid and Meier, 1972) and also with carob (Seiler,
1977), suggested that hydrolases are synthesized de
novo. However, when seeds of S. virgata were incu-
bated with a-amanitin, actinomycin-D, and cyclo-
hehimide, different results were obtained (Tonini
et al., 2010a), suggesting that the enzymes necessary
for galactomannan degradation are already present,
possibly in protein bodies. As storage protein degra-
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dation occurs, the hydrolases are released to the stor-
age cell wall. The existence of a connection between
storage protein and cell wall polysaccharide mobili-
zation is an attractive idea, since this would synchro-
nize nitrogen and carbon delivery to the growing
embryo. Furthermore, storage mobilization would be
energetically more efficient, since the investment to
produce the enzyme would come from the mother
plant and the seed would not have to spend photo-
assimilates to supply energy for the respiration costs of
enzyme production.
Experiments performed with addition and endoge-

nous measurements of sugars, ABA, and ethylene in-
dicated that galactomannan degradation in endosperms
of S. virgata is controlled by a complex cross-talk mech-
anism involving several biochemical pathways (Tonini
et al., 2010b). In these experiments, ethylene was
shown to induce galactomannan mobilization.
Several species of angiosperms use galactomannans

as storage compounds to feed the developing seedling
until it reaches autotrophy. The use of galactomannan,
as opposed to starch, offers advantages of other func-
tions (e.g. regulation of water entrance and loss, pro-
tection against herbivory).
Remaining questions include how the program of

gene expression is controlled such that enzymes are
sent to the wall in the right proportions and act
synergistically to completely degrade the storage
wall at a rate that the metabolism of the seedling
uses the products. How is the network of gene ex-
pression, enzyme production, and polysaccharide
modification coordinated? What is the impact of this
network organization on the physiological perfor-
mance of the seedling? These questions highlight the
importance that a systems biology approach will have
in the interpretation of the biological function of the
CWSP in plants.

Mannan and Galactomannan Biosynthesis

Grant Reid’s group showed that galactomannans
are synthesized in developing endosperms by a GDP-
Man-dependent mannosyltransferase and an UDP-
Gal-dependent galactosyltransferase (GalT). In certain
species with high degree of Gal substitution, i.e. with
lower M:G ratios such as fenugreek (M:G = 1.1) and
guar (Cyamopsis tetragonolobus; M:G = 1.6), the M:G
ratio is determined at synthesis, whereas in seeds of
Senna occidentalis (M:G = 2.3–3.2) the synthesized
galactomannan is edited in the endosperm by a spe-
cific a-galactosidase.
The genes that encode GalT from fenugreek

(Edwards et al., 1999) and mannosyltransferase from
guar (Dhugga et al., 2004) have been cloned and
characterized. Two enzymes are active in a soluble
form (Sandhu et al., 2009), making them very attractive
for use in biotechnological applications since galacto-
mannans with different degrees of branching can be
used for different purposes in several industrial pro-
cesses such as thickening in food formulations.

CWSPs IN COTYLEDONS

In contrast to the endosperm, arabinogalactan and
xyloglucans are used as reserves in cotyledons. The
cotyledon is an adapted leaf and integration of the
metabolism of these polysaccharides involves differ-
ent signaling mechanisms and other functions besides
storage. As CWSP is degraded, cotyledons develop
vascular bundles to transport the products to the
growing plant parts.

Arabinogalactan

Pectin polymers are also found as CWSPs, notably
arabinogalactan (Crawshaw and Reid, 1984; Parker,
1984; Buckeridge et al., 2000b). In cotyledons of lupin
(Lupinus angustifolius), the chemical structure is a
b-(1,4)-linked D-galactan with branches of a-(1,5)-
Ara (Hirst et al., 1947). An exo-b-(1,4)-galactanase was
purified from cotyledons of lupin that acts specifically
on the galactan (Buckeridge and Reid, 1994). The gene
that encodes lupin exogalactanase has been cloned
(accession no. AJ011047).

The exogalactanase was incubated in vitro with
soluble lupin seed galactan and also with cell walls
isolated from cotyledons of lupin (Buckeridge et al.,
2005). The purified enzyme was shown to release
82% of the galactosyl residues present in the isolated
polysaccharide and 63% of the galactosyl residues pres-
ent in cell wall ghosts as free Gal. Using an enzyme-
gold conjugate of the exogalactanase, Buckeridge et al.
(2005) observed that the degradation pockets previ-
ously described by Parker (1984) do not contain
galactan. The remaining material has a composition of
Rha (11%), Ara (16%), Gal (30%), Glc (20%), Xyl (20%),
plus 35% of the wall as uronic acids, and is not
attacked by enzymes during galactan degradation.

Biosynthesis of Storage Arabinogalactans

Little is known of the biosynthesis of arabinogalact-
ans in storage tissues. The 1,4-b-linked galactan from
lupin seeds is synthesized in microsomal fractions, has
an optimal pH at 6.5, and is dependent on Mg2+. The
substrate of the GalT is UDP-Gal (Brickell and Reid,
1996). b-1,4-linked galactan, as well as the 1,3 to 1,6-b-
linked galactan biosyntheses have also been studied in
nonstorage tissues of flax (Linum usitatissimum; Goubet
and Morvan, 1993) and pea (Pisum sativum; Abdel-
Massih et al., 2003), but no genes of galactan biosyn-
thesis have been characterized yet.

Xyloglucan

The Importance of Fine Structure to Physiology

The basic structure of storage xyloglucans is similar
to the primary wall xyloglucans. They have a backbone
composed of b-(1,4)-linked glucan with regular branch-
ing with a-(1,6)-linked xylosyl residues that can be
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branched further with b-(1,2)-linked galactosyl resi-
dues. However, storage xyloglucan is not fucosylated.

Storage xyloglucans are based on blocks composed
of Glc4Xyl3 and in the proposed nomenclature (Fry
et al., 1993) are composed of XXXG, XLXG, XXLG, and
XLLG in different proportions (Buckeridge et al.,
1992). The only different structure found so far is the
one from seeds of Hymenaea courbaril that is based on
XXXXG and XXXXXG (along with XXXG) and several
galactosylated versions of these oligosaccharides
(Buckeridge et al., 1997; Tiné et al., 2006).

A comparison of the limit digest oligosaccharides
obtained from Copaifera, tamarind (Tamarindus indica),
and Hymenaea xyloglucans by action of Trichoderma
endoglucanse at low concentrations, demonstrated
that, under these conditions, the enzyme produces
fragments with much higher Mr (e.g. up to 35 XXXG
blocks; Tiné et al., 2003). It became clear that Gal
distribution directly interfered with hydrolysis by
endoglucanase, as H. courbaril xyloglucan was hydro-
lyzed faster by endoglucanase than the XXXG-based
Copaifera xyloglucan.

Several of the oligosaccharides and polymer frag-
ments of H. courbaril were purified and analyzed by
mass spectrometry. The fine structure of the other
members of the XXXXG family was reported by Tiné
et al. (2006), allowing definition of the combination of
XXXG and XXXXG oligomers in the same polymer, the
proportions of which in H. courbaril is 2:1, respectively.
To ease interpretation of these structures, Tiné et al.
(2006) named XXXG as T and XXXXG as P. The
combinatorial calculations on the basis of the data
obtained by mass spectrometry suggested that xylo-
glucan fromH. courbaril is composed of motifs of TPPT
with additional T units at the sides. These blocks are
not arranged randomly in the polysaccharide with
implications then for the mechanism of biosynthesis
and perhaps also as a defense strategy from consump-
tion by herbivores.

Hymenaea xyloglucan is hydrolyzed faster than
Copaifera (Tiné et al., 2003), suggesting that the fine
structure makes its backbone more available to the
enzymes. The Hymenaea xyloglucan binds more
strongly to cellulose (Lima and Buckeridge, 2001)
and to itself (Lima et al., 2004). Hymenaea xyloglucan
precipitates from solution much more quickly than
tamarind or Copaifera xyloglucan. The biological con-
sequence of the polymer structure is that proportion-
ally more carbon could be accumulated in the seed
that contained a polymer like the one present in H.
courbaril, because of its ability to adopt higher-order
interactions.

Xyloglucan Degradation

Reis et al. (1987) found that in tamarind, the storage
polymer is deposited between two primary walls that
they termed inner and outer walls. During xyloglucan
mobilization, only the storage wall disappears, leaving
the inner and outer walls intact. This has also been

observed in H. courbaril using CCRC-M1 antibody that
binds to fucosylated xyloglucans (M.A.S. Tiné, M.R.
Braga, G. Freshour, M. Hahn, and M.S. Buckeridge,
unpublished data). Thus, enzymes have to be deliv-
ered to the storage wall by a process that includes
passing through a fucosylated xyloglucan-containing
primary wall without hydrolyzing it. The location of
storage xyloglucans may possibly explain the lack of
action of the exohydrolases on the polymers but only
on oligosaccharides (see below).

Tiné et al. (2000b) found that the storage cell walls of
H. courbaril forms protuberances that make bridges
between cotyledon cells that store xyloglucan. These
bridges seem to hold cells together along with a
middle lamella, but at the same time with intercellular
spaces that are thought to be filled with water during
imbibition.

Four enzyme activities responsible for xyloglucan
degradation were detected, purified, and character-
ized (a-xylosidase, b-galactosidase, b-glucosidase,
and xyloglucan-endo-b-glucanase, later renamed xy-
loglucan endotransglycosylase; Edwards et al., 1985).
Based on the purification and mode of action of
nasturtium (Tropaeolum majus) enzymes, a disassembly
model was proposed in which, after xyloglucan endo-
transglycosylase and b-galactosidase produced oligo-
saccharides, these were attacked first by b-glucosidase
and then by a-xylosidase, culminating in the release of
free monosaccharides (Fanutti et al., 1993).

In cotyledons of Copaifera langsdorffii and H. cour-
baril the b-galactosidases isolated (Alcântara et al.,
1999 and 2006, respectively) are not able to release
galactose from the polymer (unless it is in the terminal
residue), but only from oligosaccharides with an XL
motif on the nonreducing end. Furthermore, C.O. da
Silva and M.S. Buckeridge (unpublished data) found
that the enzyme from Copaifera will only release
galactose from the XL position of a xyloglucan frag-
ment with less than four blocks (TTTT). This ex-
tremely high specificity toward low Mr fragments,
together with the fact that the optimum pH for both
enzymes is at around 3.2 strongly suggest that the
release of Gal is a rate-limiting step in xyloglucan
disassembly. Another difference of the Hymenaea sys-
tem in relation to nasturtium is that the XTH is fully
dependent on the presence of oligosaccharides (Tiné
et al. 2000a), having little or no xyloglucan endo-
glucanase activity. Tiné et al. (2000a) proposed a
model in which the steps of xyloglucan disassembly
(Alcântara et al., 1999; de Alcântara et al., 2006) are (1)
transglycosylation, followed by (2) degalactosylation,
and (3) XXXG/XXXXG disassembly by the a-xylosi-
dase and b-glucosidase.

The consequence of such a finely controlled disas-
sembly process suggests that the storage mobilization
system of xyloglucans may have the capability of
regulating the rate of mobilization by transglycosyla-
tion. Thus, storage polysaccharide mobilization may
be coupled to the growth rate.
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The Physiology of Xyloglucan Mobilization

Santos and Buckeridge (2004) found that approxi-
mately 60% of the carbon present in the cotyledons
ends up in the aerial part of the seedling, whereas 30%
stays in the cotyledon and only 10% goes to the roots. It
has been observed that the pace of storage mobiliza-
tion is directly related to the establishment of photo-
synthesis in the eophylls (first leaves of the seedling),
and that the rate of xyloglucan mobilization is depen-
dent on the growth rate, which indicates that xylo-
glucan catabolism is controlled by the source-sink
relationship during early seedling growth.
Auxin is the principal hormone that controls xylo-

glucan storage mobilization (Hensel et al., 1991; dos
Santos et al., 2004; Brandão et al., 2009). In H. courbaril,
when seedlings were subjected to treatment with napt-
hylphthalamic acid (an inhibitor of auxin transport),
xyloglucan disassembly was arrested (dos Santos
et al., 2004). The authors proposed that light signals
(through source-sink relationship and photosynthesis
or directly on cotyledons) together with auxin, tightly
regulate xyloglucan mobilization. When aerial parts of
the plant were excised, cotyledons halted disassembly
and synthesized starch. This occurred until the lateral
buds started to regenerate new branches, when xylo-
glucan mobilization restarted. These experiments
clearly demonstrate a strong dependency of mobiliza-
tion with growth, showing that the mobilization pro-
cess is completely integrated with the physiology of
the seedling.
More recently, Brandão et al. (2009) partially cloned

the XTH and b-galactosidase as well as two genes of
Suc metabolism (Suc Synthase and Alkaline Inver-
tase). They found that the enzymes are synthesized de
novo in the cotyledons and that this occurs under
control of auxin. Both the expression of these genes
(Brandão et al., 2009), as well as the activities of the
xyloglucan hydrolases, seem to be controlled by the
circadian rhythm (L.V. Amaral, H.P. Santos, and M.S.
Buckeridge, unpublished data).
The discoveries made for H. courbaril suggests that

we should adopt a system approach in the sense of
Hammer et al. (2004) to further investigate it as a
system that interacts through communication systems
(auxin, photosynthesis, sugar sensing) with environ-
mental factors such as temperature and light.

Xyloglucan Biosynthesis

Xyloglucan biosynthesis involves at least four
biosynthetic enzymes, namely a-fucosyltransferase,
b-GalT, a-xylosyltransferase, and b-(1,4)-glucan syn-
thase (Faik et al., 2002).
Although Fuc is missing in storage xyloglucans,

Faik et al. (2000) found that tamarind and nasturtium
storage xyloglucans, as well as oligosaccharides ob-
tained from tamarind, are among the best acceptors
(6- to 7-fold higher than pea xyloglucan) for the
a-fucosyltransferase that these authors isolated from
pea and characterized biochemically.

According to the model proposed by Faik et al.
(1997) the basic system for galactosylation of xyloglu-
can is that the motif XXXX3 is the substrate for GalT,
which galactosylate the middle XXXG forming
XXXGXXLGXXXG.

The discovery of the genes related to xyloglucan
biosynthesis (e.g. Cavalier et al., 2008) and the mech-
anisms by which the proteins interact in the cell, can be
thought of as valuable tools to manipulate plant struc-
ture. Research in storage xyloglucan biosynthesis has
participated decisively in the chain of discoveries that
are leading us to understand these mechanisms. We
then need to understand how the structural diversity
of xyloglucan is produced in nature. It can be hypoth-
esized that, as observed for galactomannans, xyloglu-
can structural diversity is partly a result of a tailoring
process that is responsive to environmental conditions
such as variations in temperature, light, and water
availability (Buckeridge et al., 1992). In this case, XTH,
expansins, and even exoenzymes such as b-galacto-
sidase and a-fucosidase are candidates to be the
editing elements.

CONCLUSION AND PERSPECTIVES

CWSP systems are very efficient in disassembly
of cell wall polysaccharides and metabolism of the
products. By understanding some key biochemical path-
ways such as the mechanism by which xyloglucan-
containing cotyledons metabolize Xyl, it may be
possible to use techniques of synthetic biology to re-
construct these pathways inside microorganisms to
develop more efficient strategies for biomass fermen-
tation to biofuels. Indeed, the way yeast (Saccharomyces
cerevisiae) deals with pentoses is one of the main
bottlenecks in lignocellulosic route of bioethanol pro-
duction. The discovery that xyloglucans have a coding
in their fine structure that has to be interpreted by
hydrolytic enzymes, highlights the fact that we should
not be looking only to enzymes, but also to polysac-
charide fine structures to understand hydrolytic mech-
anisms.

The CWSP are synthesized by precise mechanisms
and subsequently edited by hydrolases (exoenzymes)
and transglycosylases (possibly by XTHs and MTHs
too). This process is directly related to cell differenti-
ation and because storage tissues contain relatively
large proportions of polysaccharides and as a conse-
quence a higher level of the proteins related to these
phenomena, the storage wall model systems could be
of great help to understand some aspects of cell
differentiation.

One of the most interesting opportunities offered by
studying CWSP systems is to understand how cells
control the production of each class of cell wall poly-
saccharides. This is so because the storage walls accu-
mulate proportionally large amounts of one type of
polysaccharide. In most cases, cellulose synthesis is
absent or very low in storage walls. Thus, the storage
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cells of endosperms and cotyledons display altered
genetic programs during seed development that
produce walls with a single polymer. This poses the
challenge of finding what are the conditions that lead
to the assembly of such unique walls. This would help
understanding of important aspects of cell differenti-
ation, carbon partitioning, and may lead to important
biotechnological applications.

Sequence data from this article can be found in the GenBank/EMBL

data libraries under accession numbers AF017144 (LeMAN1), EU370969

(LeMAN2), AF184238 (HcBGAL1), EU370971 (HcXTH1), EU370968 (HcAlkIN1),

and EU370970 (HcSUS1).
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