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Summary
A series of papers in the last year reported major advances in our understanding of ABA signaling:
the identification of soluble ABA receptors, the elucidation of a core ABA signaling pathway and
structural insights into the mechanism of ABA perception and signaling. Here we summarize these
advances, which have shown in atomic resolution that the ABA receptors PYR1, PYL1 and PYL2
function as allosteric switches that inhibit type 2C protein phosphatases (PP2Cs) in response to
ABA. These receptors function at the apex of a core signaling pathway that regulates ABA
responses by controlling SnRK2 kinase activity and the phosphorylation of downstream target
proteins such as ABFs, which control nuclear responses, and the ion channel SLAC1, which
mediates electrophysiological responses to ABA.

Introduction
Plants synthesize a diverse array of diffusible hormonal signals that work in concert to
integrate growth, development and cellular physiology to environmental cues [1]. A key
abiotic stress signal is the carotenoid derived molecule abscisic acid (ABA). Originally
discovered in the 1960s, physiological, biochemical and genetic analyses have uncovered
roles for ABA in numerous stress and developmental processes. Several reviews of ABA
biosynthesis and signaling have been published recently[2–5]. Since May 2009, an
unprecedented number of advances have occurred, including the discovery of a soluble ABA
receptor family and the assembly of numerous pieces of the ABA signaling puzzle into a
cohesive “core” pathway. We note that the last year also witnessed important advances in
identifying ABA transporters [6**,7**], and the demonstration that ABA catabolism is
coupled to high-humidity stress [8*], neither of which can be covered due to space
limitations.

New ABA Receptors That Regulate PP2C Activity
Several ABA binding proteins have been described and implicated in ABA signaling
including the plasma membrane localized GPCR-type G protein (GTGs) and the chloroplast
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localized Magnesium Cheletase subunit ChlH (For review see [3)]); given the flurry of
activity on soluble receptors, we do not cover these proteins here. The PYR/PYL/RCAR
family of ABA receptors was identified by 4 separate research groups [9**,10**,11**,
12**], and is comprised of a 14-member gene family in Arabidopsis [1–4]; of which at least
13 function in ABA perception [13**]. Three groups independently identified different
members of this new receptor family by virtue of their physical interactions with clade A
PP2Cs in yeast two hybrid [10**,11**] or immunoprecipitation experiments [12**]. The
Arabidopsis genome encodes 76 PP2Cs. One subfamily of 9 “clade A” PP2Cs, which
includes ABA INSENSITIVE 1 (ABI1), ABI2 and HOMOLOG OF ABI1 (HAB1) [14], are
well characterized negative regulators of ABA signaling (reviewed in [3]). Taking a
different approach, we identified pyrabactin, a selective ABA agonist and determined by
genetic analysis that PYRABACTIN RESISTANCE 1 (PYR1) is necessary for pyrabactin
action in vivo [9**]. A quadruple pyr1/pyl1/pyl2/pyl4 mutant shows defects in several ABA
responses, including ABA-induced gene expression, ABA-mediated SnRK2 kinase
activation [9**] and ABA-promoted guard cell closure [12**]. Transgenic plants
overexpressing REGULATORY COMPONENT OF ABA RECEPTOR 1 (RCAR1/PYL9) are
hypersensitive to ABA-promoted guard cell closure [10**] and overexpression of PYR1-
LIKE 5 (PYL5) confers drought tolerance on transgenic Arabidopsis plants [11], which
validates the new receptor family as a target for manipulating abiotic stress tolerance. PYR/
PYL proteins bind ABA directly, and interestingly, their affinity for ABA is stimulated ~10-
fold by the presence of PP2Cs [10**,11**,15**], a point we return to later. The single PYR/
PYL mutants characterized to date do not possess ABA phenotypes [9**]; this redundancy
likely explains why the gene family evaded detection by earlier genetic screens (reviewed in
[16]). The selectivity of pyrabactin, a non-natural agonist, for the receptor PYR1 enabled the
genetic redundancy observed for ABA to be bypassed, which illustrates the power of
synthetic ligands for dissecting plant signaling networks [9**,17,18*].

The physical interactions of PYR1 and its 4 closest relatives (PYL1 – PYL4), with PP2Cs
(ABI1, ABI2 and HAB1) are regulated by ABA, as measured using yeast two hybrid assays
[9]. The interactions between PYLs 5 –12 and PP2Cs occur in the absence of exogenously
added ABA in yeast two hybrid assays [9**,10**,11**], a point that requires further
investigation. Upon binding ABA, PYR/PYL proteins inhibit the phosphatase activity of
multiple clade A PP2Cs, with IC50 values measured in the range of 18 – 390 nM (+)-ABA,
depending on the PYR/PYL-PP2C pair examined [9**,10**,11**,15*]. Since 9 clade A
PP2Cs and 14 PYR/PYL proteins are encoded by the Arabidopsis genome, 126 PYR/PYL-
PP2C combinations could potentially form. While the in vivo significance of this remains to
be demonstrated, reports of differences in ABA sensitivity between different combinations
are suggestive that the combinatorial interactions between receptors and PP2Cs enable a
tunable response to stress signaling [10**,11**,15*].

Structural Insights into Receptor Function
The structures of PYR1, PYL1 and PYL2 in apo, ABA bound and ABI1 or HAB1
complexed forms were reported in late 2009 [19**,20**,21**,22**,23**]; the conclusions
from 5 studies are in general agreement and here we present a consensus view of these
studies. The PYR/PYL receptors are members of the START-domain superfamily of
lipophilic ligand binding proteins [24–26], which exhibit a “helix-grip” structure, in which
N-terminal and C-terminal α helices enclose a seven-stranded β sheet to create a ligand-
binding pocket [24]. In the published PYR/PYL structures, two highly conserved loops flank
the ligand binding pocket: the SGLPA “gate” loop (also called the “cap”, or CL2 loop)
between the β3 and β4 strands and the HRL “latch” loop (also called the lock or CL3 loop)
between the β5 and β6 strands. The gate and latch loops undergo significant conformational
rearrangement upon ABA binding, which is the primary allosteric mechanism that underlies
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information transfer (Figure 1). Two mutations in PYR1’s gate (P88S) and latch (H115A)
abolish ABA-mediated PP2C inhibition without disrupting ABA binding (as measured using
NMR methods) [9**,19**], showing that ABA binding and PP2C inhibition can be
uncoupled.

The binding of ABA to PYR/PYL proteins is mediated by a combination of hydrogen bonds
and hydrophobic interactions, including direct contacts between ABA and residues in the
gate and latch, which stabilizes their closure. A conserved lysine (corresponding to K59 in
PYR1, K86 in PYL1, K64 in PYL2) forms a charge interaction with the acidic head group
of ABA, which explains the critical necessity of a COOH noted in ABA structure activity
relationships (for review see [3,27]). Many of the residues that make contacts to ABA are
highly conserved between receptor proteins; however subtle sequence variation in ABA
contacting residues does exist. Due to space limitations, we cannot cover recently published
structural data for PYR/PYL-pyrabactin complexes [28*,29**,30**,31**], but we note that
sequence variation in pocket-lining residues contributes to differences in ligand sensitivity
between receptor family members [29**,30**].

Molecular modeling predicted[19**] and ternary structures confirmed [19**,22**,23**]
that the altered protein surface created by the motion of gate and latch residues in response
to ABA facilitates PP2C docking on to PYR/PYL receptors. ABA-bound PYR/PYL
receptors are able to bind several clade A PP2Cs and inhibit their phosphatase activity in
vitro [9**,10**,11**]. The gate loop of ABA-bound receptors is positioned with its
centrally located SGLPA serine inserted into the PP2C catalytic site and apparently acts as a
high affinity product mimic to inhibit the enzyme, by blocking normal substrate access
(Figure 2); direct measurements have shown that PYL2 acts as a competitive inhibitor of
HAB1’s phosphatase activity[19**]. Thus, ABA ultimately inhibits PP2C activity by
inducing a conformational change in PYR/PYL proteins that converts them into PP2C
inhibitors. Interestingly, clade A PP2Cs interact with PYR/PYL proteins via a small
recognition loop that contains a conserved tryptophan (W300 in ABI1) that has been called
the “lock” [19**] (Figure 2). This tryptophan inserts between the gate and latch loops [19**,
22**,23**] and its indole NH makes a water-mediated hydrogen bond to ABA’s ketone
group. Mutation of the tryptophan lock residue abolishes ABA-PYR/PYL-mediated PP2C
inhibition [19**,23**]. With the exception of AHG1, the tryptophan lock residue is present
in all clade A PP2Cs (Figure 3) and missing in other plant PP2Cs, suggesting that PYR/PYL
regulation is restricted to clade A PP2Cs.

The tryptophan lock’s interaction with ABA’s ketone and enhancement of ABA binding
affinity by PP2Cs has led to some discussion as to whether PYR/PYL proteins are best
described as co-receptors rather than receptors [2,4,19**]. Since over 20 residues in the
PYR/PYL proteins make direct or water-mediated contacts with ABA, and ABA is buried
within the ligand-binding cavity of PYR/PYL proteins [20**,21**,22**,23**], the
structures imply that the primary site of ABA recognition is by the PYR/PYL receptors.
Based on current structural data, the primary basis for the enhancements in ABA binding
stimulated by PP2Cs occurs by PP2C-mediated stabilization of the closed form of the
receptor [11**,19**,22**,23**], which is expected to lower Kd by lowering the Koff for
ABA. Thus, the structures provide a rationalization for the ~10 fold increases in ABA
affinity provided by PP2Cs and suggest that PYR/PYL proteins participate as the primary
sites for ABA and pyrabactin recognition.

PYR1, PYL1, and PYL2 form homodimers in their ligand-free states, but PYL1 and PYL2
bind PP2Cs at 1:1 stoichiometry in the presence of ABA [19**,22**,23**]. Additionally,
most of the residues that make contact in the PYL2 homodimer are also involved in binding
to the PP2C in the ternary ABA-bound complex [22**], implying that a receptor dimer
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dissociation step occurs prior to PP2C binding [22**]. Importantly, PYR1 has been shown
to form a dimer in vivo [21**], suggesting that dimer breaking in response to ABA is
biologically relevant, at least for PYR1. Both Melcher et al. [19**] and Yin et al. [22**]
have noted that ABA binding reduces the buried surface area between PYL protomers,
which is also supported by small-angle X-ray scattering measurements made in solution
[21**]. Furthermore, Yin et al. have suggested dimer breaking may be initiated by
tryptophan lock of the PP2C inserting between the gate and latch loops of ABA bound PYR/
PYL proteins [22**]. Elucidating the mechanism and functional relevance of dimer breaking
will likely be an important line of future investigation.

Since PP2Cs are conserved throughout eukaryotes and have no known direct protein
regulators (besides PYR/PYL proteins), it is interesting to ask if the structural and functional
insights from plants illuminate mechanisms of PP2C regulation outside of plants? Human
PP2CA aligns very closely with ABI1 (Figure 3) and inspection of the aligned structures
reveals that the human PP2CA does not contain the recognition loop that ABI1 and HAB1
use to dock onto ABA-bound PYL proteins (Figure 3). Thus, the recognition loop and
conserved tryptophan lock appear to be a plant specific innovation exploited in selective
regulation of clade A PP2Cs. However, it will be interesting to determine if PP2C inhibition
by product-mimics unrelated to PYR/PYL proteins is exploited in the regulation of other
PP2Cs.

Elucidation of The Core ABA Response Pathway
The structural studies have revealed how ABA binding to PYR/PYL receptor proteins leads
to PP2C inhibition, but how is this event then conveyed to other outputs? A key clue came
from the observation that SnRK2 kinases are not properly activated by ABA in the pyr1/
pyl1/pyl2/pyl4 quadruple mutant [9**] and this suggested a model for regulation of SnRK2
kinase activity by the PYR/PYL-PP2Cs [9**], which has been validated and greatly
extended by two seminal studies described below [13**,31**].

Members of the plant SnRK2 family were originally identified in wheat as an ABA induced
kinase transcript [32], and in Vicia faba as a rapid ABA-activated kinase activity [33]. The
participation of SnRK2s in ABA signaling has since been established in many species [33–
35] and loss-of-function alleles of OPEN STOMATA 1 (OST1; also known as SnRK2.6 or
SRK2E) demonstrated the key role of the SnRK2s in vivo [36]. The Arabidopsis genome
encodes 10 SnRK2s, of which OST1 and its two closest relatives (SnRK2.2 and 2.3)
participate in ABA signaling. Triple mutants lacking these three kinases are deficient in
almost all ABA responses, demonstrating the centrality of these kinases to ABA signaling
[37*,38*,39*]. Active, phosphorylated OST1 immunoprecipitated from plants can be
dephoshphorylated by recombinant ABI1, which in turn reduces OST1’s kinase activity
[31**]. The mechanism of SnRK2 activation in vivo may be mediated by
autophosphorylation [40], but this point is currently unresolved. In vitro, OST1 can
autophosphorylate on at least 5 sites [40], but it appears that a single residue, Ser-175, is
critical for OST1 kinase activity. Serine 175 is located within the SnRK2 activation loop,
proximal to the kinase catalytic site, and the mutation S175A disrupts OST1 autoactivation
and cannot complement an ost1-1 mutant in planta [40]. LC-MS studies suggest that the
activation loop (and Ser 175 inside this loop) is both phosphorylated in vivo by ABA
stimulation and directly dephosphorylated by ABI1 [31]. Coupled to experiments
documenting dephosphorylation and concomitant deactivation of OST1 kinase activity by
HAB1 in vitro [41*], it is now well established that clade A PP2Cs directly inhibit SnRK2
kinase activity by dephosphorylating them. Thus, ABA pathway activation leads to the
accumulation of active and phosphorylated SnRK2s via PP2C inhibition. Once activated, the
SnRK2s are poised to directly phosphorylate numerous target proteins involved in ABA
responses, including transcription factors that bind to abscisic acid-responsive promoter
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elements (ABREs) called ABFs (for ABRE-binding factors) [42,43]. These bZIP-class
transcription factors are direct substrates of SnRK2 kinases, as documented in several plant
species [44–46].

Two groups [13**,31**] have documented the sufficiency of the core PYR/PYL-PP2C-
SnRK2 pathway for mediating an ABA response. In one set of experiments, recombinant
PYR1, ABI1 and OST1 (immunoprecipitated from ABA stimulated plants) were sufficient
for eliciting ABA-mediated OST1 kinase activation, as measured using phosphorylation of a
histone substrate [31**], or in independent experiments by ABA-mediated phosphorylation
of the ABRE-binding transcription factor ABF2 [13**]. Since the phosphorylation of ABFs
by SnRK2s is critical for their ability to activate ABA-mediated gene transcription [45,47],
the recent reconstitution experiments demonstrate that the core pathway provides a minimal
set of proteins for linking ABA perception to a nuclear output (Figure 4).

What about the diverse non-transcriptional responses triggered by ABA? Key advances in
the last year include the demonstration that OST1 phosphorylates and activates the anion
channel SLAC1 expressed in Xenopus oocytes [48**,49**,50**] and phosphorylates and
deactivates the potassium channel KAT1 when expressed in S. cerevisiae [51*]. These
observations provide an appealing mechanism for ABA-mediated control of guard cell
physiology by the core pathway, which is consistent with observations that the pyr1/pyl1/
pyl2/pyl4 quadruple mutant posses defects in ABA promoted guard cell closure [12**].
Moreover, a recent report has demonstrated OST1-mediated phosphorylation of the
Arabidopsis RESPIRATORY BURST OXIDASE SUBUNIT HOMOLOG F (RbohF) in in
vitro assays [52*], which suggests a mechanism for ABA-mediated ROS production by the
core pathway; however, further work will be needed to investigate the in vivo significance of
these observations.

While the core pathway has impressive explanatory power, much work remains to be done
towards understanding whether and how numerous well-characterized second messengers,
such as Ca++ and NO are integrated with ABA signaling. Towards this, an important paper
has shown that the calcium dependent kinase CPK23 can phosphorylate the N-terminus of
the anion channel SLAC1 in vitro, and that this response is antagonized by ABI1 [53**].
Moreover, in Xenopus oocytes expressing SLAC1, the introduction of CPK23 (and other
CPKs) enhances SLAC1 channel activity [53**]. The addition of ABA to in vitro reactions
containing recombinant PYL9, ABI1 and CPK23 promotes phosphorylation of SLAC1’s N-
terminus [53**]. Furthermore, ABI1 inhibits CPK23 kinase activity in vitro, which suggests
that CPK23 kinase activity is regulated directly by the PYR/PYL-PP2C signaling system.
These results suggest that the core pathway may bifurcate at the PP2Cs to regulate both
SnRKs and CPKs. While exciting these conclusions were drawn largely from in vitro
experiments using recombinant proteins and will benefit from further investigation in
planta.

Conclusions
A burst of activity has led to enormous advances in our understanding of ABA signaling.
Structural data show that ABA binds within the ligand binding pockets of PYR1, PYL1 and
PYL2 and in so doing triggers a conformational change in the gate and latch loops of PYR/
PYL receptors. The ABA bound receptors interact with clade A PP2Cs and inhibit their
activity by docking within the PP2C active site. This in turn allows the accumulation of
active, phosphorylated SnRK2s, and possibly CPKs, which can then phosphorylate and
modulate the activity of downstream factors including ABFs, SLAC1, KAT1 and Rboh1.
The core pathway provides a powerful starting point for developing an integrated picture of
ABA action at the mechanistic level.
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Figure 1. Abscisic acid mediated formation of thePYR/PYL-ABA-PP2C ternary complex
PYR/PYL proteins contain a central hydrophobic pocket that is flanked by two mobile loops
called the “gate” and “latch”, shown in red. ABA binding triggers closure of the gate, this in
turn creates an interaction surface for binding to the PP2Cs, which dock onto the closed
form of PYR/PYL proteins. The site of docking is adjacent to the magnesium ion containing
active site of PP2Cs (shown in magenta). A conserved tryptophan in the PP2Cs, called the
“lock” inserts between the gate and latch and makes a water mediated contact to ABA.
Docking of the PYR/PYL proteins into the PP2C active site inhibits PP2C activity by
occluding access of target proteins. This figure was made using the coordinates for apo-
PYL2, ABA-bound PYL2 and the PYL2-ABA-HAB1 ternary complex (3KAZ, 3KBO
3KB3), described in (**19).
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Figure 2. The SGLPA gate docks into the PP2C active site
Serine of the SGLPA gate loop inserts adjacent to the PP2C active site, acting as a high
affinity product-mimic.
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Figure 3. The tryptophan lock is part of a plant specific recognition loop in clade A PP2Cs
ABI1 and HAB1 dock onto PYR/PYL proteins and insert their conserved tryptophan lock
residues between the gate and latch. This recognition module is absent from human PP2C
structures and therefore a plant specific modulation of PP2C. Eight of the 9 clade A PP2Cs
contain the tryptophan lock residue and it is absent from other plant PP2Cs.
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Figure 4.
The core PYR/PYL —| PP2C —| SnRK2 signaling pathway. In the absence of ABA, PP2C
activity is high, and the PP2Cs prevent accumulation of phosphorylated SnRK2 kinases by
directly dephosphorylating them. In the presence of ABA, PYR/PYL proteins bind to and
inhibit PP2Cs, which leads to the accumulation of phosphorylated and active SnRK2s,
possibly by auto-phosphorylation, however this is not currently clear. Once activated by
phosphorylation, the SnRK2s can then directly phosphorylate downstream targets, such as
the ABFs, SLAC, KAT1, and probably other proteins. Phosphorylation of ABFs is
necessary for their ability to activate transcription. OST1 stimulates SLAC channel activity
in Xenopus experiments and has been hypothesized to inhibit KAT1 channel activity.
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