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Abstract
In this review, we explore recent developments in the area of linear and nonlinear generalized
mixed-effects regression models and various alternatives, including generalized estimating
equations for analysis of longitudinal data. Methods are described for continuous and normally
distributed as well as categorical (binary, ordinal, nominal) and count (Poisson) variables.
Extensions of the model to three and four levels of clustering, multivariate outcomes, and
incorporation of design weights are also described. Linear and nonlinear models are illustrated
using an example involving a study of the relationship between mood and smoking.
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OVERVIEW
Since the pioneering work of Laird & Ware (1982), statistical methods for the analysis of
longitudinal data have advanced dramatically. Prior to this time, the standard approach to
analysis of longitudinal data principally involved using the longitudinal data to impute end-
points (e.g., last observation carried forward; LOCF) and then to simply discard the valuable
intermediate time-point data, favoring the simplicity of analyses of change scores from
baseline to study completion (or the last available measurement treated as if it was what
would have been obtained had it been the end of the study), in some cases adjusting for
baseline severity as well. Laird & Ware (1982) showed that generalized mixed-effects
regression models could be used to perform a more complete analysis of all of the available
longitudinal data under much more general assumptions regarding the missing data (i.e.,
missing at random; MAR). The net result was a more powerful set of statistical tools for
analysis of longitudinal data that led to more powerful statistical hypothesis tests, more
precise estimates of rates of change (and differential rates of change between experimental
and control groups), and more general assumptions regarding missing data, for example
because of study dropout. This early work has led to considerable related advances in
statistical methodology for analysis of longitudinal data (for excellent reviews of this
growing literature, see Diggle et al. 2002, Fitzmaurice et al. 2004, Goldstein 1995, Hedeker
& Gibbons 2006, Longford 1993, Raudenbush & Bryk 2002, Singer & Willett 2003, and
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Verbeke & Molenberghs 2000). Notable among these advances and relevant to this review
are generalizations of the original Laird-Ware type model to the nonlinear case (relevant for
analysis of binary, ordinal, nominal, count, and time-to-event outcomes), even more general
forms of missing data (not missing at random; NMAR), higher levels of nesting such as
three-level models (e.g., repeated observations nested within subjects and subjects nested
within hospitals or clinics), alternative distributional assumptions for residual errors of
measurement, correlated residual errors of measurement, multivariate mixed-effects
regression models, and advances in sample size determination in the context of longitudinal
studies. Computational advances in parameter estimation have also been seen, particularly in
the area of nonlinear mixed effects regression models, where numerical evaluation of the
likelihood function is more complex and requires high dimensional numerical integration
(e.g., adaptive quadrature or Monte Carlo–type integration for full Bayes estimation of
model parameters).

In the following sections, we provide a general and nontechnical overview of these recent
advances and then illustrate some of their uses by applying them in analysis of several
example datasets.

PROBLEMS INHERENT IN LONGITUDINAL DATA
Although longitudinal studies provide far more information than their cross-sectional
counterparts and are therefore now in widespread use, they are not without limitations. In
the following sections we review some of the major challenges associated with longitudinal
data analysis.

Heterogeneity
Particularly in the behavioral sciences, individual differences are the norm rather than the
exception. The overall mean response in a sample drawn from a population tells us little
regarding the experience of the individual. In contrast to cross-sectional studies in which it is
reasonable to assume that there are random fluctuations at each measurement occasion,
when the same subjects are repeatedly measured over time, their responses are correlated
over time, and their estimated trend line or curve can be expected to deviate systematically
from the overall mean trend line. For example, behavioral and/or biological subject-level
characteristics can increase the likelihood of a favorable response to a particular
experimental intervention (e.g., a new pharmacologic treatment for depression), leading
subjects with those characteristics to have a trend with higher slope (i.e., rate of change)
than the overall average rate of change for the sample as a whole. In many cases, these
personal characteristics may be unobservable, leading to unexplained heterogeneity in the
population. Modeling this unobserved heterogeneity in terms of variance components that
describe subject-level effects (or alternatively cluster-level effects such as classrooms,
schools, clinics, etc.) is one way to accommodate the correlation of the repeated responses
over time and to better describe individual differences in the statistical characterization of
the observed data. These variance components are often termed “random effects,” leading to
terms like random-effects or mixed-effects regression models.

Correlated Errors of Measurement
In addition to heterogeneity in the population that leads to subject-specific deviations from
the overall temporal response pattern, there is also often short-term correlated errors of
measurement that are produced by the psychological state that a subject is in during
measurement occasions that are close in time. This type of short-term residual correlation
tends to decrease exponentially with the temporal distance between the measurement
occasions. The addition of autocorrelated residuals (Chi & Reinsel 1989, Hedeker 1989) to
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mixed-effects regression models allows for a more parsimonious analysis of the more subtle
features of the longitudinal response process and results in more accurate estimates of
uncertainty in parameter estimates, improved tests of hypotheses, and more accurate interval
estimates.

Missing Data
Perhaps the most dramatic difficulty is the presence of missing data. Stated quite simply, not
all subjects remain in the study for the entire length of the study. Reasons for discontinuing
the study may be differentially related to the treatment. For example, some subjects may
develop side effects to an otherwise effective treatment and must discontinue the study.
Alternatively, some subjects might achieve the full benefit of the study early on and
discontinue the study because they feel that their continued participation will provide no
added benefit. The treatment of missing data in longitudinal studies is itself a vast literature,
with major contributions by Laird (1988), Little (1995), Little & Rubin (2002), and Rubin
(1976), to name a few. The basic problem is that even in a randomized and well-controlled
clinical trial, the subjects who were initially enrolled in the study and randomized to the
various treatment conditions may be quite different from the subjects who are available for
analysis at the end of the trial. If subjects drop out because they already have derived full
benefit from an effective treatment, an analysis that only considers those subjects who
completed the trial may fail to show that the treatment was beneficial relative to the control
condition. This type of analysis is often termed a “completer” analysis. To avoid this type of
obvious bias, investigators often resort to an “intent-to-treat” analysis, in which the last
available measurement is carried forward to the end of the study as if the subject had
actually completed the study. This type of analysis, often termed an “end-point” analysis,
introduces its own set of problems in that (a) all subjects are treated equally regardless of the
actual intensity of their treatment over the course of the study, and (b) the actual response
that would have been observed at the end of the study, if the subject had remained in the
study until its conclusion, may in fact be quite different from the response made at the time
of discontinuation. Returning to our example of the study in which subjects discontinue
when they feel that they have received full treatment benefit, an endpoint analysis might
miss the fact that some of these subjects may have had a relapse had they remained on
treatment. Many other objections have been raised about these two simple approaches of
handling missing data in longitudinal data, which have led to many more modern and far
better motivated approaches to analysis of longitudinal data with missing observations.

Irregularly Spaced Measurement Occasions
It is not at all uncommon in real longitudinal studies, either in the context of designed
experiments or naturalistic cohorts, for individuals to vary in the number of repeated
measurements they contribute and even in the time at which the measurements are obtained.
This may be due to dropout or simply due to different subjects having different schedules of
availability. Although this can be quite problematic for traditional analysis-of-variance-
based approaches (leading to highly unbalanced designs that can produce biased parameter
estimates and tests of hypotheses), more modern statistical approaches to the analysis of
longitudinal data are all but immune to the “unbalancedness” that is produced by having
different times of measurement for different subjects. Indeed, this is one of the most useful
features of the regression approach to this problem, namely the ability to use all of the
available data from each subject, regardless of when it was specifically obtained.

Subjects Clustered in Centers
In addition to correlation produced by repeated measurements with the same individual, the
clustering of individuals within ecological units (schools, classrooms, clinics, hospitals,
counties, etc.) produces an additional source of correlation that violates the independence
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assumption of traditional fixed-effects models. Simultaneous analysis of both clustered and
longitudinal data leads to three-level (and even higher level) versions of the traditional two-
level (repeated measurements nested with subjects) hierarchical or multilevel models.
Although the magnitude of the variance component produced by clustering is typically much
smaller than that produced by sampling repeated measurements within the same individual,
ignoring this important source of variability leads to underestimates of standards errors of
model parameters and tests of hypotheses with elevated Type I error rates (i.e., false positive
rates). Three-level models are capable of simultaneously decomposing the overall variance
into components related to within-subject effects and within-cluster effects. For example, a
simple longitudinal study of patients within clinics may be based on the assumption that the
intercept and slope of the linear time trend vary systematically from subject to subject, and
the means of those time trends vary systematically from clinic to clinic.

STATISTICAL MODELS FOR ANALYSIS OF LONGITUDINAL AND/OR
CLUSTERED DATA

In an attempt to provide a more general treatment of longitudinal data, with more realistic
assumptions regarding the longitudinal response process and associated missing data
mechanisms, statistical researchers have developed a wide variety of more rigorous
approaches to the analysis of longitudinal data. Among these, the most widely used include
mixed-effects regression models (Laird & Ware 1982) and generalized estimating equation
(GEE) models (Zeger & Liang 1986). Variations of these models have been developed for
both discrete and continuous outcomes and for a variety of missing data mechanisms. The
primary distinction between the two general approaches is that mixed-effects models are
full-likelihood methods and GEE models are partial-likelihood methods. The advantage of
statistical models based on partial likelihood is that (a) they are computationally easier than
full-likelihood methods, and (b) they generalize quite easily to a wide variety of outcome
measures with quite different distributional forms. The price of this flexibility, however, is
that partial likelihood methods are more restrictive in their assumptions regarding missing
data than are their full-likelihood counterparts. In addition, full-likelihood methods provide
estimates of person-specific effects (e.g., person-specific trend lines) that are quite useful in
understanding interindividual variability in the longitudinal response process and in
predicting future responses for a given subject or set of subjects from a particular subgroup
(e.g., a county, a hospital, or a community). The distinctions between the various alternative
statistical models for analysis of longitudinal data are fully explored in the following
sections.

Mixed-Effects Regression Models
Generalized mixed-effects regression models are now quite widely used for analysis of
longitudinal data. These models can be applied to both normally distributed continuous
outcomes as well as categorical outcomes and other nonnormally distributed outcomes such
as counts that have a Poisson distribution. Mixed-effects regression models are quite robust
to missing data and irregularly spaced measurement occasions, and can easily handle both
time-invariant and time-varying covariates. As such, they are among the most general of the
methods for analysis of longitudinal data. As previously noted, they are sometimes called
full-likelihood methods because they make full use of all available data from each subject.
The advantage is that missing data are ignorable if the missing responses can be explained
either by covariates in the model or by the available responses from a given subject. The
disadvantage is that full-likelihood methods are more computationally complex than are
quasi-likelihood methods, such as GEE.
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Linear models—Traditional analysis of variance (ANOVA) methods, both univariate
(repeated measures ANOVA) and multivariate (growth curve models), are of limited use
because of restrictive assumptions concerning missing data across time and the variance-
covariance structure of the repeated measures (Hedeker & Gibbons 2006, chapters 2 and 3).
The univariate mixed-model or so-called repeated measures ANOVA assumes that the
variances and covariances of the dependent variable across time are equal (i.e., compound
symmetry). Alternatively, the multivariate analysis of variance for repeated measures only
includes subjects with complete data across time. Also, these procedures focus on estimation
of group mean trends across time and provide little help in understanding how specific
individuals change across time. For these and other reasons, mixed-effects regression
models (MRMs) have increasingly become popular for modeling longitudinal data.

Variants of MRMs have been developed under a variety of names: random-effects models
(Laird & Ware 1982), variance component models (Dempster et al. 1981), multilevel models
(Goldstein 1995), two-stage models (Bock 1989), random coefficient models (de Leeuw &
Kreft 1986), mixed models (Longford 1987, Wolfinger 1993), empirical Bayes models (Hui
& Berger 1983, Strenio et al. 1983), hierarchical linear models (Bryk & Raudenbush 1992),
and random regression models (Bock 1983a,b; Gibbons et al. 1988). A basic characteristic
of these models is the inclusion of random subject effects into the regression model in order
to account for the influence of subjects on their repeated observations. These random subject
effects thus describe each person’s trend across time and explain the correlational structure
of the longitudinal data. Additionally, they indicate the degree of subject variation that exists
in the population of subjects.

Several features make MRMs especially useful in longitudinal research. First, subjects are
not assumed to be measured on the same number of time-points; thus, subjects with
incomplete data across time are included in the analysis. The ability to include subjects with
incomplete data across time is an important advantage relative to procedures that require
complete data across time because (a) by including all data, the analysis has increased
statistical power, and (b) complete-case analysis may suffer from biases to the extent that
subjects with complete data are not representative of the larger population of subjects.
Because time is treated as a continuous variable in MRMs, subjects do not have to be
measured at the same time-points. This is useful for analysis of longitudinal studies where
follow-up times are not uniform across all subjects. Both time-invariant and time-varying
covariates can be included in the model. Thus, changes in the outcome variable may be due
to both stable characteristics of the subject (e.g., their gender or race) and characteristics that
change across time (e.g., life events). Finally, whereas traditional approaches estimate
average change (across time) in a population, MRMs can also estimate change for each
subject. These estimates of individual change across time can be particularly useful in
longitudinal studies where a proportion of subjects exhibit change across time that deviates
from the average trend.

Consider the following simple linear mixed-effects regression model for the measurement y
of individual i (i = 1, 2, … N subjects) on occasion j (j = 1, 2, … n j occasions):

Ignoring subscripts, this model represents the regression of the outcome variable y on the
independent variable time (denoted t). The subscripts keep track of the particulars of the
data, namely whose observation it is (subscript i) and when this observation was made (the
subscript j). The independent variable t gives a value to the level of time and may represent
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time in weeks, months, etc. Since y and t carry both i and j subscripts, both the outcome
variable and the time variable are allowed to vary by individuals and occasions.

In linear regression models, the errors εi j are assumed to be normally and independently
distributed in the population with zero mean and common variance σ2. This independence
assumption makes the typical general linear regression model unreasonable for longitudinal
data. This is because the outcomes y are observed repeatedly from the same individuals, and
so it is much more likely to assume that errors within an individual are correlated to some
degree. Furthermore, the above model posits that the change across time is the same for all
individuals since the model parameters (β0, the intercept or initial level, and β1, the linear
change across time) do not vary by individuals. For both of these reasons, it is useful to add
individual-specific effects into the model that will account for the data dependency and
describe differential time trends for different individuals. This is precisely what MRMs do.
The essential point is that MRMs therefore can be viewed as augmented linear regression
models.

Random Intercept Model
A simple extension of the simple linear regression model is the random intercept model,
which allows each subject to deviate from the overall mean response by a person-specific
constant that applies equally over time:

where υ0i represents the influence of individual i on his/her repeated observations. Notice
that if individuals have no influence on their repeated outcomes, then all of the υ0i terms
would equal 0. However, it is more likely that subjects will have positive or negative
influences on their longitudinal data, and so the υ0i terms will deviate from 0. Since
individuals in a sample are typically thought to be representative of a larger population of
individuals, the individual-specific effects υ0i are treated as random effects. That is, υ0i are
considered to be representative of a distribution of individual effects in the population. The
most common form for this population distribution is the normal distribution with mean 0
and variance . In addition, the model assumes that the errors of measurement are
conditionally independent, which implies that the errors of measurement are independent
conditional on the random individual-specific effects υ0i. Since the errors now have an
influence due to individuals removed from them, this conditional independence assumption
is much more reasonable than the ordinary independence assumption associated with the
general linear model. The random intercept model is depicted graphically in Figure 1.

As mentioned, individuals deviate from the regression of y on t in a parallel manner in this
model (since there is only one subject effect υ0i). Thus, it is sometimes referred to as a
random-intercepts model, with each υ0i indicating how individual i deviates from the
population trend. In this figure, the solid line represents the population average trend, which
is based on β0 and β1. Also depicted are two individual trends, one below and one above the
population (average) trend. For a given sample, there are N such lines, one for each
individual. The variance term  represents the spread of these lines. If  is near zero, then
the individual lines would not deviate much from the population trend. In this case,
individuals do not exhibit much heterogeneity in their change across time. Alternatively, as
individuals differ from the population trend, the lines move away from the population trend
line and  increases. In this case, there is more individual heterogeneity in time trends.
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Random Intercept and Trend Model
For longitudinal data, the random intercept model is often too simplistic for a number of
reasons. First, it is unlikely that the rate of change across time is the same for all individuals.
It is more likely that individuals differ in their time trends; not everyone changes at the same
rate. Furthermore, the compound symmetry assumption of the random intercept model is
usually untenable for most longitudinal data. In general, measurements at points close in
time tend to be more highly correlated than measurements further separated in time. Also, in
many studies, subjects are more similar at baseline and grow at different rates across time.
Thus, it is natural to expect that variability will increase over time.

For these reasons, a more realistic MRM allows both the intercept and time-trend to vary by
individuals:

In this model,

• β0 is the overall population intercept,

• β1 is the overall population slope,

• υ0i is the intercept deviation for subject i, and

• υ1i is the slope deviation for subject i.

As before, εi j is an independent error term distributed normally with mean 0 and variance
σ2.

The assumption regarding the independence of the errors is one of conditional
independence, that is, they are independent conditional on υ0i and υ1i. With two random
individual-specific effects, the population distribution of intercept and slope deviations is
assumed to be bivariate normal N(0, Συ), with the random-effects variance-covariance
matrix given by

This model can be thought of as a personal trend or change model since it represents the
measurements of y as a function of time, both at the individual υ0i and υ1i and population β0
and β1 levels. The intercept parameters indicate the starting point, and the slope parameters
indicate the degree of change over time. The population intercept and slope parameters
represent the overall (population) trend, while the individual parameters express how
subjects deviate from the population trend. Figure 2 represents this model graphically.

The interested reader is referred to Hedeker & Gibbons (2006, chapters 4–7) for a more
detailed coverage of various linear mixed-effects regression models.

Non-linear models—Reflecting the usefulness of mixed-effects modeling and the
importance of categorical outcomes in many areas of research, generalization of mixed-
effects models for categorical outcomes has been an active area of statistical research. For
dichotomous response data, several approaches adopting either a logistic or probit regression
model and various methods for incorporating and estimating the influence of the random
effects have been developed (Conaway 1989, Gibbons 1981, Gibbons & Bock 1987,
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Goldstein 1991, Stiratelli et al. 1984, Wong & Mason 1985). We now describe a mixed-
effects logistic regression model for the analysis of binary data. Extensions of this model for
analysis of ordinal, nominal, and count data are described in detail by Hedeker & Gibbons
(2006).

To formulate the logistic model, let pi represent the probability of a positive outcome (i.e., Yi
= 1) for the ith individual. The probability of a negative outcome (i.e., Yi = 0) is then 1 − pi.
Denote the set of covariates as xi = (1, xi1, …, xi p), where β = (β0, β1, …, βp) is a (p + 1) × 1
vector of corresponding regression coefficients. Then the logistic regression model is written
as:

or

where ψ(.) is the logistic cumulative distribution function (cdf), namely 1

This model can also be represented in terms of the log odds or logit of the probabilities;
namely,

The numerator in the logit is the probability of a 1 response, and the denominator equals the
probability of a 0 response. The ratio of these probabilities is the odds of a 1 response, and
the log of this ratio is the log odds, or logit, of a 1 response. Notice that the log odds is equal
to 0 when the probability of a 1 response equals 0.5 (i.e., equal odds of a response in
category 0 and 1), is negative when the probability is less than 0.5 (i.e., odds favoring a
response in category 0), and is positive when the probability is greater than 0.5 (i.e., odds
favoring a response in category 1).

In logistic regression, the logit is called the link function because it maps the (0,1) range of
probabilities unto the (−∞, ∞) range of linear predictors. The logit is linear in its parameter
vector and so has many of the desirable properties of a linear regression model, albeit in
terms of the logits. Note, however, that the logistic regression model is linear in terms of the
logits and not the probabilities. In terms of the probabilities, the logistic regression model
posits an s-shaped logistic relationship between the values of x and the probabilities as
illustrated in Figure 3.

In contrast, the relationship between x and the logit is linear as shown in Figure 4.
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Since the model is linear in terms of the logits, interpretation of the parameters of the
logistic regression model is in terms of the logits. Thus, the intercept β0 is the log odds of a
positive outcome for an individual with a set of covariates xi = 0, and βp measures the
change in the log odds for a unit change in xp holding all other covariates constant. Often the
regression coefficients in logistic regression models are expressed in exponential form,
namely exp(βp). This transformation yields an odds ratio interpretation for the regressors,
namely the ratio of the odds of a positive response for a unit change in x.

When the binary responses are clustered, for example repeatedly measured within
individuals, or clustered within clinics, schools, or other social or ecological strata, the
fixed-effects logistic regression model fails in its assumptions to accurately characterize the
dependency in the data. Basically, the fixed-effects model assumes that the observations are
independent, which they clearly are not when they are clustered within individuals. As
described previously for the linear mixed-effects regression model, one solution to this
problem is to generalize the model to the case of a combination of fixed (e.g., treatment) and
random (e.g., time-trend coefficients) effects. The random effects allow the correlation
between the clustered (e.g., repeated) measurements to be incorporated into the estimates of
parameters, standard errors, interval estimates, and tests of hypotheses. One can
conceptualize the random effects as representing subject-specific differences in the
propensity to respond over time. Those subjects with higher response propensity will exhibit
an increased probability of a positive response, conditional on their values of the fixed-
effects (e.g., treatment group) included in the model.

To set the notation, let i denote the level-2 units (individuals) and let j denote the level-1
units (nested observations). Assume that there are i = 1, …, N level-2 units and j = 1, …, ni
level-1 units nested within each level-2 unit. The total number of level-1 observations across

level-2 units is given by . Let yi j be the value of the dichotomous outcome
variable, coded 0 or 1, associated with level-1 unit j nested within level-2 unit i. The logistic
regression model is written in terms of the log odds (i.e., the logit) of the probability of a
response, denoted pi j. Considering first a random-intercept model, augmenting the logistic
regression model with a single random effect yields:

where xi j is the (p + 1) × 1 covariate vector (includes a 1 for the intercept), β is the (p + 1)×
1 vector of unknown regression parameters, and υ is the random subject effect (one for each
level-2 subject). These are assumed to be distributed in the population as . For
convenience and computational simplicity, in models for categorical outcomes the random
effects are typically expressed in standardized form. For this, υi = συθi and the model is
given as:

Notice that the random-effects variance term (i.e., the population standard deviation συ is
now explicitly included in the regression model). Thus, it and the regression coefficients are
on the same scale, namely, in terms of the log-odds of a response. In terms of the underlying
latent y, the model is written as:
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This representation helps to explain why the regression coefficients from a mixed-effects
logistic regression model do not typically agree with those obtained from a fixed-effects
logistic regression model, or for that matter from a GEE logistic regression model which has
regression coefficients that agree in scale with the fixed-effects model. In the mixed model,
the conditional variance of the latent y given x equals , whereas in the fixed-effects
model this conditional variance equals only the latter term  (which equals either π2/3 or 1
depending on whether it is a logistic or probit regression model, respectively). As a result,
equating the variances of the latent y under these two scenarios yields:

where βF and βM represent the regression coefficients from the fixed-effects and (random-
intercepts) mixed-effects models, respectively. In practice, Zeger et al. (1988) have found
that (15/16)2π2/3 works better than π2/3 for  in equating results of logistic regression
models.

Several authors have commented on the difference in scale and interpretation of the
regression coefficients in mixed models and marginal models, like the fixed-effects and
GEE models (Neuhaus 1991, Zeger et al. 1988). Regression estimates from the mixed model
have been termed “subject specific” to reinforce the notion that they are conditional
estimates, conditional on the random (subject) effect. Thus, they represent the effect of a
regressor on the outcome controlling for or holding constant the value of the random subject
effect. Alternatively, the estimates from the fixed-effects and GEE models are “marginal” or
“population-averaged” estimates that indicate the effect of a regressor averaging over the
population of subjects. This difference of scale and interpretation only occurs for nonlinear
regression models like the logistic regression model. For the linear model, this difference
does not exist.

The model can be easily extended to include multiple random effects. For this, denote zi j as
the r × 1 vector of random-effect variables (a column of ones is usually included for the
random intercept). The vector of random effects υi is assumed to follow a multivariate
normal distribution with mean vector 0 and variance-covariance matrix Συ. To standardize
the multiple random effects υi = Tθi where TT′ = Συ is the Cholesky decomposition of Συ.
The model is now written as:

As a result of the transformation, the Cholesky factor T is usually estimated instead of the
variance-covariance matrix Συ. As the Cholesky factor is essentially the matrix square-root
of the variance-covariance matrix, this allows more stable estimation of near-zero variance
terms.
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Two-level versus three-level models—Traditionally, mixed-effects regression models,
both linear and nonlinear, are two-level models; for example, subjects repeatedly measured
over time. Gibbons & Hedeker (1997) generalized the two-level mixed-effects logistic
regression model to the case of three-level data (e.g., subjects repeatedly measured over time
and clustered within clinics), and Hedeker & Gibbons (2006) reviewed a wide variety of
linear and nonlinear three-level mixed-effects regression models and their application.

The amount of dependency in the data that is observable due to the clustering of the data is
measured by the intraclass correlation. When the intraclass correlation equals 0, there is no
association among subjects from the same cluster and analysis which ignores the clustering
of the data is valid. For certain variables, however, intraclass correlation levels have been
observed between 5% and 12% for data from spouse pairs and between 0.05% and 0.85%
for data clustered by counties. As the intraclass correlation increases, the amount of
independent information from the data decreases, inflating the Type I error rate of an
analysis that ignores this correlation. Thus, statistical analysis that treats all subjects as
independent observations may yield tests of significance that are too liberal.

The mixed model can be augmented to handle the clustering of data within centers. For this,
consider a three-level model for the measurement y made on occasion k for subject j within
center i. Relative to the previous two-level models, an additional random center effect,
denoted γi, is included. This term indicates the influence that the center is having on the
response of the individual. We assume that the distribution of the center effects is normal

with mean 0 and variance . To the degree that clustering of individuals within centers
influences the individual outcomes, the center effects γi deviate from zero, and the

population variance associated with these effects  increases in value. Conversely, when
the clustering of individuals within centers is having little influence on the individual

outcomes, the center effects γi will all be near zero, and the population variance  will
approach zero. Empirical Bayes estimation can be used for the center effects γi, with

marginal maximum likelihood estimation of the population variance term .

Treatment of the center effects as a random term in the model means that the specific centers
used in the study are considered to be a representative sample from a larger population of
potential centers. Conversely, if interest is only in making inferences about the specific
centers of a dataset (e.g., is there a difference between center A and center B?), the center
could then be regarded as a “fixed” and not a “random” effect in the model. The random-
effects approach is advised when there is interest in assessing the overall effect that any
potential center may have on the data and, thus, in determining the degree of variability that
the center accounts for in the data. This coincides with the manner in which the center is
often conceptualized, that is, the center was drawn from a population of potential centers,
and the 8 or 12 centers used in the study are not the population itself.

In addition to the random center effect, center-level covariates can be included in the model
to assess the influence of, say, center size on the individual responses. Interactions between
center-level, individual-level, and occasion-level covariates can also be included in the
model. For example, the interaction of center size (center level) by treatment group
(individual level) by time (occasion level) can be included in the model to determine
whether, say, treated subjects from small centers improve over time more dramatically than
treated subjects from large centers. In this way, the model provides a useful method for
examining and teasing out potential center-related effects.

Regarding parameter estimates, for continuous and normally distributed outcomes, Hedeker
et al. (1994) noted that the fixed effects estimates are not greatly affected by the choice of
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model. However, the estimates of the standard errors, which determine the significance of
these parameter estimates, are influenced by the choice of model. In general, when a source
of variability is present but ignored by the statistical model, the standard errors will be
underestimated. Underestimation of standard errors results since the statistical model
assumes that, conditional on the terms in the model, the observations are independent.
However, when systematic variance is present but ignored by the model, the observations
are not independent, and the amount of independent information available in parameter
estimation is erroneously inflated.

Finally, when dealing with multilevel data, the number of levels of data must be considered.
Often, pooling higher-order levels is determined prior to the analysis for pragmatic or
conceptual reasons; at other times, the decision can be empirically tested. From the example,
one could empirically argue that three-level analysis is unnecessary since the variance
attributable to nesting of individuals within centers is not significant, so there is justification
for pooling this additional level of the data. From a design perspective, on the other hand,
there may be reason for including the center effect regardless of its statistical significance;
for example, if centers were the unit of assignment in the randomization of treatment levels,
one could argue that the random center term must remain in the model regardless of
significance. When the variance attributable to a higher-order level is observed to be very
small and nonsignificant and the sample is of moderate size, the parameter estimates and
standard errors will not differ greatly whether or not the higher-order level is included in the
model.

In the nonlinear case, the three-level generalization of the traditional two-level model is
conceptually quite similar to that for linear mixed-effects regression models.
Computationally, however, likelihood evaluation is far more complicated because the
number of random effects is increased and therefore the dimensionality of the integration
increases as well. Unlike the linear mixed-model, where the integrals associated with the
random effect distributions do not play a role in performing maximum likelihood estimation
in the marginal distribution, there is no simplification for nonlinear models such as mixed-
effects binary or ordinal logistic regression, mixed-effects multinomial logistic regression,
or mixed-effects Poisson regression. Here we must either evaluate the likelihood
numerically (e.g., adaptive quadrature) or via simulation (Markov Chain Monte Carlo;
MCMC). The interested reader is referred to Hedeker & Gibbons (2006) for detailed
coverage of the technical aspects of linear and nonlinear mixed-effects regression models.

Generalized Estimating Equation Models
During the 1980s, alongside the development of mixed-effects regression models for
incomplete longitudinal data, the generalized estimating equation (GEE) models were
developed (Liang & Zeger 1986 and Zeger & Liang 1986). Essentially, GEE models extend
generalized linear models (GLMs) to the case of correlated data. Thus, this class of models
has become very popular, especially for analysis of categorical and count outcomes,
although they can be used for continuous outcomes as well. One difference between GEE
models and MRMs is that GEE models are based on quasi-likelihood estimation, and so the
full likelihood of the data is not specified. GEE models are termed marginal models, and
they model the regression of y on x and the within-subject dependency (i.e., the association
parameters) separately. The term “marginal” in this context indicates that the model for the
mean response depends only on the covariates of interest and not on any random effects or
previous responses. In terms of missing data, GEE assumes that the missing data are missing
completely at random (MCAR) as opposed to MAR, which is assumed by the models
employing full-likelihood estimation.
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Conceptually, GEE reproduces the marginal means of the observed data, even if some of
those means have limited information because of subject dropout. Standard errors are
adjusted (i.e., inflated) to accommodate the reduced amount of independent information
produced by the correlation of the repeated observations over time (or within clusters). By
contrast, mixed-effects models use the available data from all subjects to model temporal
response patterns that would have been observed had the subjects all been measured to the
end of the study. Because of this, estimated mean responses at the end of the study can be
quite different for GEE versus MRM if the future observations are related to the
measurements that were made during the course of the study. If the available measurements
are not related to the missing measurements (e.g., following dropout), GEE and MRM will
produce quite similar estimates. This is the fundamental difference between GEE and MRM;
that is, the assumption that the missing data are dependent on the observed responses for a
given subject during that subject’s participation in the study. It is hard to imagine that a
subject’s responses that would have been obtained following dropout would be independent
of their observed responses during the study. This leads to a preference for full-likelihood
approaches over quasi- or partial-likelihood approaches, and MRM over GEE, at least for
longitudinal data. There is certainly less of an argument for a preference for data that are
only clustered (e.g., children nested within classrooms), in which case advantages of MAR
over MCAR are more difficult to justify.

A basic feature of GEE models is that the joint distribution of a subject’s response vector yi
does not need to be specified. Instead, it is only the marginal distribution of yij at each time
point that needs to be specified. To clarify this further, suppose that there are two time
points and suppose that we are dealing with a continuous normal outcome. GEE would only
require us to assume that the distribution of yi1 and yi2 are two univariate normals, rather
than assuming that yi1 and yi2 form a (joint) bivariate normal distribution. Thus, GEE avoids
the need for multivariate distributions by only assuming a functional form for the marginal
distribution at each time point.

METHODS TO BE AVOIDED
Unfortunately, despite progress in the use of longitudinal designs in research studies,
analysis of the resulting longitudinal data has not always been commensurate with the
increased value of the data. Several approaches that are of historical interest only remain in
routine practice today, and methods that unnecessarily reduce the longitudinal nature of the
data into a cross-sectional summary unfortunately also remain in use despite enormous
statistical progress in this area.

One of the worst examples of loss of valuable statistical information is “endpoint” analysis.
The idea here is that although high-quality longitudinal data may be available, if they are
used at all, it is only to fill in the blanks left by patients who have discontinued the study.

Completer Analysis
In some cases a “completer analysis” is performed in which only those patients who
completed the study are the focus of the analysis. Of course, in the presence of missing data
produced by patients who discontinue the study, the sample that is randomized may be quite
different from the sample that is analyzed. If patients who complete the study are more
compliant than those who do not, valuable information regarding treatment-related effects
may be obscured. Completer analyses will generally lose the critically important advantages
afforded by randomization.
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Last Observation Carried Forward
A second approach that remains in reasonably widespread use is to impute the measurement
at the end of the study using the last available measurement obtained from the subject during
the study. This approach is termed “last observation carried forward” (LOCF). Here we
assume that once subjects drop out of a study, their level of response would remain
unchanged. Furthermore, no distinction in the analysis is made between those patients who
actually had a valid measurement at the end of the study and those subjects for whom the
study endpoint was imputed based on an earlier available measurement. Although it has
been suggested that the LOCF approach is conservative and that is why it continues to be
used by the U.S. Food and Drug Administration for the approval of new drugs, this is clearly
not the case (Lavori et al. 2008, Molenberghs et al. 2004). As noted by Lavori et al. (2008,
p. 789), “The most serious effect of LOCF is that it lulls the designer into a false sense of
security about the need to resolve complex issues of nonadherence, as well as the
consequences of unrestrained missingness for precision and bias. This ‘moral hazard’ has
led investigators to underdesign studies in the mistaken belief that LOCF cures all.”

Despite enormous progress in the development of new and statistically more rigorous
methods for analysis of longitudinal data, older and far less general methods remain in use.
A historical foundation is presented by Hedeker & Gibbons (2006), who review these
methods in detail.

Repeated Measures ANOVA
The traditional mixed-model ANOVA or so-called repeated-measures ANOVA was
essentially a random intercept model that assumed that subjects could only deviate from the
overall mean response pattern by a constant that was equivalent over time. A more
reasonable view is that the subject-specific deviation is both in terms of the baseline
response (i.e., intercept) and in terms of the rate of change over time (i.e., slope or set of
trend parameters). This more general structure could not be accommodated by the repeated
measures ANOVA. The random intercept model assumption leads to a compound-
symmetric variance-covariance matrix for the repeated measurements in which the variances
and covariances of the repeated measurements are constant over time. In general, we find
that variances increase over time and covariances decrease as time-points become more
separated in time. Finally, based on the use of least-squares estimation, the repeated
measures ANOVA breaks down for unbalanced designs, such as those in which the sample
size decreases over time due to subject discontinuation. Based on these limitations, the
repeated measures ANOVA and related approaches should no longer be used for analysis of
longitudinal data.

Multivariate Growth Curve Models
An improvement over the traditional repeated measures ANOVA was the multivariate
growth curve model (Bock 1975, Potthoff & Roy 1964). The primary advantage of the
multivariate analysis of variance (MANOVA) approach versus the ANOVA approach is that
the MANOVA assumes a general form for the correlation of repeated measurements over
time, whereas the ANOVA assumes the much more restrictive compound-symmetric form.
The disadvantage of the MANOVA model is that it requires complete data. Subjects with
incomplete data must be removed from the analysis, leading to potential bias. In addition,
both MANOVA and ANOVA models focus on comparison of group means and provide no
information regarding subject-specific growth curves. Finally, both ANOVA and MANOVA
models require that the time-points are fixed across subjects (either evenly or unevenly
spaced) and are treated as a classification variable in the ANOVA or MANOVA model. This
precludes analysis of unbalanced designs in which different subjects are measured on
different occasions. Finally, the MANOVA approach precludes use of time-varying
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covariates that are often essential to modeling dynamic relationships between predictors and
outcomes.

SAMPLE SIZE DETERMINATION
Despite the now widespread use of longitudinal designs in behavioral research, surprisingly
little statistical research has been conducted on sample size determination for longitudinal
studies. Hedeker et al. (1999) developed sample size formulas for two-level models, and
more recently, Roy et al. (2007) developed a general approach to sample size determination
for three-level models. All of this work is for linear mixed effects models, though methods
are also emerging for nonlinear mixed models (Dang et al. 2008). Based on the work of Roy
et al. (2007) and Bhaumik et al. (2009), we illustrate some of the interesting features of
sample size determination for three-level mixed effects regression models using a typical
psychiatric application and computed using the RMASS Web-based application
(www.healthstats.org).

Bhaumik et al. (2009) consider three-level data from the now classic National Institute of
Mental Health schizophrenia collaborative study, which was one of the last large-scale
multicenter studies to randomize schizophrenic patients to placebo. The study consisted of
nine centers and seven repeated measurements over the course of six weeks. Bhaumik et al.
(2009) fitted a three-level linear mixed effects regression model to the data from two arms of
the study (placebo and chlorpromazine) and used the estimated model parameters and
random effect variance estimates to determine sample size for a wide variety of future
studies. In the following, we summarize a few of these results of interest.

For subject-level randomization, power of 95%, attrition of 5% per week, and E S = 0.5 SD
units at the end of the study, with six centers, n = 34 subjects per center are required for a
total of 204 subjects. Decreasing power to 80% decreases the number of subjects per center
to n = 19 or a total of 114 subjects. Note that for subject-level randomization, if we double
the number of centers from 6 to 12, one-half of the number of subjects per center are
required (e.g., n = 17 for power of 95%). This result is expected because when using
subject-level randomization, the sample size formula does not involve center-level random
effect variances. This is not true if we were to randomize centers to different interventions.
With cluster randomization, power of 80% is achieved for a study with six centers and n =
47 subjects per center; a total of 282 subjects as compared to 114 subjects for subject-level
randomization. Increasing the number of centers to 12 decreases the number of subjects per
center to n = 14, or a total of only 168 subjects. Under cluster randomization, there is a
substantial tradeoff between number of centers and number of subjects per center, which can
affect the total number of subjects required. If we were to require power of 95%, then a
minimum of eight centers are required. With eight centers, n = 114 subjects per center are
required, or a total of 912 subjects. This is over four times as many subjects as are required
for subject-level randomization (n = 204). However, increasing the number of centers to 12
decreases the number of subjects per center to 35 (420 total), and increasing the number of
centers to 50 decreases the total sample size to n = 250 (i.e., n = 5 per center). As can be
seen, cluster randomization imposes a substantial tradeoff between numbers of centers and
total number of subjects.

Finally, decreasing the ES to 0.3 SD units further increases sample size requirements as
expected. Under subject-level randomization, power of 80% is achieved for any combination
of centers and number of subjects within centers that totals to n = 320, and for 95% power, a
total of n = 560 subjects are required. For cluster randomization, a minimum of 11 centers
are required for power of 80% (n = 290 per center) and a minimum of 19 centers for power
of 95% (n = 355 per center). More conservatively, assuming 25 centers, power of 80% is
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achieved for n = 21 per center, and power of 95% is achieved for n = 73 per center. As such,
cluster-level randomization increases the total number of subjects from 320 for subject-level
randomization to a total of 525 subjects, assuming that 25 centers are available. For the same
25 centers, requiring power of 95% more than triples the total sample size.

Bhaumik and colleagues present the following guidelines:

While it should be clear that sample size determination is study-specific, it is
possible to provide some general guidelines. For example, consider a study
involving 5 measurement occasions (e.g., baseline and 4 weekly measurements
during the active treatment/intervention phase of the study), and a two-group
comparison (e.g., drug versus placebo). For subject-level randomization with no
variation in impact as a function of center, the total number of centers provides a
negligible effect on statistical power and sample size. As such, we can compute the
total number of subjects that are required for a given ES at the final time-point,
under the assumption of a linear time by treatment interaction. For example,
assuming subject-level randomization, five time-points, power of 80%, a Type I
error rate of 5% and no attrition, to detect a one-half standard deviation unit
difference at the end of the study requires a total sample size of 90 subjects or 45
per treatment arm. To detect a one-third standard deviation unit difference at the
end of the study assuming all of the other conditions remained the same, a total of
200 subjects or 100 subjects per treatment arm are required (e.g., 40 subjects in
each of 5 centers or 20 subjects in each of 10 centers). Adding attrition of 5% per
wave increases the required sample size by about 15% and adding attrition of 10%
per wave increases the required sample size by about 30% relative to no attrition.

For cluster-level randomization, the results are more complicated. Assuming the
same conditions as above, and 10 centers, to detect a one-half standard deviation
unit difference at the end of the study would require a total sample size of 200
subjects (20 per center) or 100 per treatment arm. To detect a one-third standard
deviation unit difference at the end of the study assuming all of the other conditions
remained the same, would require a minimum of 14 centers, regardless of the
number of subjects per center. Conservatively, if we increase the number of centers
to 20, a total of 560 subjects (28 per center) or 280 subjects per treatment arm are
required. Similar to subject-level randomization, adding attrition of 5% per wave
increases the required sample size by about 15% and adding attrition of 10% per
wave increases the required sample size by about 30% relative to no attrition.
(Bhaumik et al. 2009, pp. 769–770)

RECENT ADVANCES IN GENERALIZED MIXED-EFFECTS REGRESSION
MODELS

In the following sections, we consider several recent advances in the analysis of linear and
nonlinear mixed-effects regression models. The level of statistical presentation is at a higher
level than in previous sections owing to the increased complexity of these newer
methodologies.

Three-Level Models
In a previous section, we provided a general overview of three-level models. In the
following, we review some of the more specific statistical details corresponding to linear
and nonlinear three-level models.
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Sampling design—Let yi j denote a ni j × 1 vector of outcomes with typical element yi j k,
where i denotes the level-3 units, j denotes the level-2 units nested within the i-th level-3
unit, and k denotes the level-1 units nested within i j. Assume further that there are N level-3
units so that i = 1, 2, …, N. Within a typical level-3 unit there are ni level-2 units, j = 1, 2,
…, ni, and nested within i j there are ni j level-1 units, so that k = 1, 2, …, ni j. There are,

therefore,  level-2 units and  level-1 units.

Linear Models
Let

where β is an (m × 1) vector of regression coefficients, and where vi, ui j, and ei j k denote
level-3, level-2, and level-1 random effects, respectively. We assume that v1, v1, …, vN are
i.i.d. N(0, ψ), independent of u11, u12, …, uNni which are i.i.d. N(0, Φ). We further assume
that the vi and the ui j effects are independent of e111, e112, …, eNnini j which are i.i.d. N(0,
σ2).

The set of regression equations, k = 1, 2, …, ni j can be written as

where yi j k, x′i j k, z′ (3)i j k, z′ (2)i j k and e i j are typical rows of yi j, Xi j, Z(3)i j, Z(2)i j and ei j
and where Xi j, Z(3)i j, and Z(2)i j are the design matrices for the predictors, random level-3,
and random level-2 effects, respectively.

In turn, the set of regression equations is

where
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and

From the distributional assumptions imposed on vi, ui j and ei j k, it follows that

where μi = Xi β (the fixed part of the model) and

where

The unknown parameters are the elements of the vector β of fixed regression coefficient and
the nonduplicated elements of the variance component matrices ψ and Φ and the level-1
error variance σ2. The log-likelihood function of y1, y2, …, yN is

Nonlinear Models
A multilevel model with a nonnormal outcome variable is transformed to a linear model by
using a link function that defines the relationship between the dependent variable ηi j k of the
linear model and the mean μi j k of the distribution selected. More specifically, the linear
model of a multilevel generalized linear model is given by

where xi j k is a p × 1 vector of predictors and z(2)i j k is a q × 1 design vector associated with
the level-2 random effects ui j. Likewise, z(3)i j k is a r × 1 design vector associated with the
level-3 random effects vi. Typically, the elements of z(3)i j k and z(2)i j k are subsets of the
elements of xi j k.
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It is further assumed that the level-3 and level-2 random effect vectors are uncorrelated and
also that vi ~ N(0, ψ) and that ui j ~ N(0, Φ).

Quadrature is a numeric method for evaluating multidimensional integrals. For mixed-effect
models with count and categorical outcomes, the log-likelihood function is expressed as the
sum of the logarithm of integrals, where the summation is over higher-level units, and the
dimensionality of the integrals equals the number of random effects.

Quadrature entails the approximation of the definite integral of a function, usually stated as a
weighted sum of function values at specified points within the domain of integration.
Adaptive quadrature generally requires fewer points and weights to yield estimates of the
model parameters and standard errors that are as accurate as would be obtained with more
points and weights in nonadaptive quadrature. The reason for that is that the adaptive
quadrature procedure uses the empirical Bayes means and covariances, updated at each
iteration to essentially shift and scale the quadrature locations of each higher-level unit in
order to place them under the peak of the corresponding integral.

A brief description of quadrature follows below, assuming a level-2 mixed effects model.
Using the rules for joint and conditional distributions, it follows that

and that the marginal distribution of yi can be obtained as the solution to the
multidimensional integral

Since it is assumed that vi ~ N(0, Φ), it follows, for example, that

In general, a closed-form solution to this integral does not exist. To evaluate integrals of the
type described above, we use a direct implementation of Gauss-Hermite quadrature (see,
e.g., Krommer & Ueberhuber 1994, section 4.2.6, and Stroud & Sechrest 1966, section 1).
With this rule, an integral of the form

is approximated by the sum
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where wu and zu are weights and nodes of the Hermite polynomial of degree Q. A Q-point
adaptive quadrature rule is a quadrature rule constructed to yield an exact result for
polynomials of degree 2Q − 1, by a suitable choice of the n points xi and n weights wi.

Estimates of the variance components of the random effects and estimates of the fixed
parameters are obtained by iteratively solving the equations

where γk is a typical element of the vector γ of unknown parameters φ11, φ21, …, φrr and β1,
β2, …, βp.

Clinic Patient y1 y2 y3 x1 x2

1 1 0 2 1 22 −1

1 2 1 3 −9 30 1

1 3 −9 2 1 26 −1

2 1 0 1 1 23 −1

2 2 0 2 0 29 1

2 3 0 1 1 26 1

2 4 1 2 1 33 −1

To create a data set that can be analyzed within a level-3 linear model framework, dummy
variables are created for each response variable in the data set. For the example above, this
translates to three dummy-coded variables: dk = 1 if yk is measured, k = 1, 2, 3, and 0
otherwise. Using these dummy variables, we construct a new data set, shown below for
clinic number 1, patients 1, 2, and 3.

Clinic Patient y d1 d2 d3 x1*d1 x1*d2 x1*d3 x2*d1 x2*d2 x2*d3

1 1 0 1 0 0 22 0 0 −1 0 0

1 1 2 0 1 0 0 22 0 0 −1 0

1 1 1 0 0 1 0 0 22 0 0 −1

1 2 1 1 0 0 30 0 0 1 0 0

1 2 3 0 1 0 0 30 0 0 1 0

1 3 2 0 1 0 0 26 0 0 −1 0

1 3 1 0 0 1 0 0 26 0 0 −1

Multivariate Mixed Models
In mental health research, researchers often have data sets containing more than one
response variable. A typical example is counts of inpatient (y1), outpatient (y2), and
emergency room (y3) visits for mental health care. There is thus a need to fit multivariate
response variables to a linear mixed-effects model. It turns out that, with the use of dummy
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variables, a multivariate level-2 model can be fitted to the data using a level-3 model with a
single response variable and no level-1 random effects.

For the variables y1, y2, and y3 considered above, the following represents a typical data set,
where x1 = depressive severity and x2 = type of insurance coverage (coded 1 for public and
−1 for private). Missing values are coded −9.

In the level-3 framework, y is the response variable, d1, d2, d3, x1*d1, …., x2*d3 are typical
rows of the fixed-effects design matrix X. The fixed-effects part consists of intercept
coefficients (corresponding to d1, d2, and d3), slope coefficients for depressive severity
(corresponding to x1*d1, x1*d2, and x1*d3), and insurance coverage coefficients
(corresponding to x2*d1, x2*d2, and x2*d3). Alternatively, one can use depression and
insurance as level-2 covariates, in which case the data set (shown for Clinic 1, Patient 1
only) has the form:

Clinic Patient y d1 d2 d3 x1 x2

1 1 0 1 0 0 22 −1

1 1 2 1 1 0 22 −1

1 1 1 1 0 1 22 −1

The difference between the two approaches is that in the first approach, different slopes are
assumed for the three service utilization outcome variables, whereas we assume equal slopes
for depression and equal slopes for insurance type in the second approach.

Four-Level Models
Consider a clinical study designed to measure the impact of hormone therapy on memory
and cognition in elderly women. Suppose that 50 hospitals (level-4 units) participated in the
study. For each of the hospitals, data are available for five types of hormone treatments
(level-3 units) obtained from the female patients (level-2 units) who were tested twice a year
for a period of up to six years (level-1 units).

Let yi j kl denote a cognition score at occasion l for patient k on treatment j at hospital i.

A typical mixed-effects model for data of this type is

where wi denotes a level-4 (hospital-level) variance component; vi j, a level-3 (treatment-
level) variance component; ui j k, a level-2 (patient-level) variance component; and e i j kl, the
level-1 measurement error. It is further assumed that there are r covariates x1, x2, …, xr
(such as age, weight, and percentage fat) that may influence the cognition score.

The set of regression equations can be rewritten as

where
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We note that, except for column 1 of the design matrix Z(3), the remaining columns
correspond to dummy variables T 1, T 2, …, T 5, where Tj = 1 if treatment number is j and 0
otherwise. If only treatments 2, 3, and 5 are available at hospital i, the design matrices Xikl,
Z(3)ikl, and Z(2)ikl are defined as above, but with rows 1 and 4 removed. For example,

For the level-3 model to be equivalent to the level-4 model, the following patterned
covariance specifications are required:

The advantage of this presentation is that one can allow for cross-level correlation(s). For
example, if there is reason to believe that there are differences in the way patients react to
the treatments due to some hospital effect, then we may want to assume that cov(wi, vi j) ≠ 0.
These covariance terms may be included in the model by using the following covariance
pattern:
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Design Weights
Under the assumption that the sampling weights at a specific level are independent of the
random effects at that level, Pfeffermann et al. (1998) adopted the following procedure.
Consider the case of a two-level model. Denote by wi the weight attached to the i-th level-2
unit and by w j|i the weight attached to the j-th level-1 unit within the i-th level-2 unit such
that

where I is the total number of level-2 units and N = Σi ni the total number of level-1 units.
That is, the lower-level weights within each immediate higher-level unit are scaled to have a
mean of unity, and likewise for higher levels. For each level-1 unit, we now form the final,
or composite, weight

Denote by zu and ze, respectively, the sets of explanatory variables defining the level-2 and
level-1 random coefficients and form

We now carry out a standard estimation, but using  and  as the random coefficient
explanatory variables. For a three-level model, with an obvious extension to notation, we
have the following
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Goldstein (1995) also pointed out that in survey work, analysts often have access only to the
final level-1 weights w j i. In this case, say for a two-level model, we can obtain the wi by

computing , Wi = (Σj wji)/ni. For a three-level model, the procedure is carried
out for each level-3 unit, and the resulting  are transformed analogously.

Examples
Subjects—The data are drawn from a natural history study of adolescent smoking.
Participants included in this study were in either ninth or tenth grade at baseline and reported
on a screening questionnaire 6–8 weeks prior to baseline that they had smoked at least one
cigarette in their lifetimes. The majority (57.6%) had smoked at least one cigarette in the
past month at baseline. A total of 461 students completed the baseline measurement wave.

The study utilized a multimethod approach to assess adolescents, including self-report
questionnaires, a week-long time/event sampling method via hand-held computers
(ecological momentary assessment; EMA), and detailed surveys. Adolescents carried the
hand-held computers with them at all times during a data collection period of seven
consecutive days and were trained both to respond to random prompts from the computers
and to event record (initiate a data collection interview) in conjunction with smoking
episodes. Random prompts and the self-initiated smoking records were mutually exclusive;
no smoking occurred during random prompts. Questions concerned place, activity,
companionship, mood, and other subjective variables. The hand-held computers dated and
time-stamped each entry. Following the baseline EMA assessment period, subjects also
completed similar week-long EMA assessments at 6- and 15-month follow-ups.

A question of interest concerned comparing mood from random prompts and smoking
events, and the degree to which this varied was examined across the three measurement
waves. For this, subjects who had at least one smoking event at two or more measurement
waves were selected for analysis. In all, there were 165 such subjects with data from a total
of 14,540 random prompts and smoking events; 81 of these subjects were measured at all
three waves, and the remaining 84 were measured at two waves. The numbers of subjects at
each wave were 152, 141, and 118, respectively. Across the waves, the average number of
random prompts per subject was approximately 30 (median = 30, range = 8 to 71), 28
(median = 29, range = 4 to 47), and 28 (median = 28, range = 5 to 48), respectively.
Similarly, the average number of smoking events per subject was about 6 (median = 3.5,
range = 1 to 42), 5 (median = 3, range = 1 to 32), and 8 (median = 4, range = 1 to 43),
respectively, across the three waves. The Spearman correlation between the number of
random prompts and number of smoking events was not significant at any wave (r = −0.16,
−0.07, and −0.05, respectively).

Dependent Measures
Negative and positive affect—Two mood outcomes were considered: measures of the
subject’s negative and positive affect (denoted NA and PA, respectively) at each random
prompt and at each smoking episode. Both of these measures consisted of the average of
several individual mood items, each rated from 1 to 10, that were identified via factor
analysis. Specifically, PA consisted of the following items that reflected subjects’
assessments of their positive mood just before the prompt signal: I felt happy, I felt relaxed,
I felt cheerful, I felt confident, and I felt accepted by others. Similarly, NA consisted of the
following items assessing pre-prompt negative mood: I felt sad, I felt stressed, I felt angry, I
felt frustrated, and I felt irritable. Subjects rated each item on a 1–10 Likert-type scale, with
10 representing very high levels of the attribute. For the smoking events, participants rated
their mood right after smoking. Over all prompts and events, both random and smoking, and
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ignoring the clustering of the data within subjects, the mean of PA was 6.70 (sd = 1.96),
6.75 (sd = 1.92), and 6.86 (sd = 1.88) across the three waves. Similarly, for NA, the means
were 3.57 (sd = 2.33), 3.43 (sd = 2.27), and 3.31 (sd = 2.18). Thus, overall, positive affect
increased and negative affect decreased over time.

Inspection of the marginal distributions of these two variables indicated approximate
normality for PA, but not for NA, which had a large proportion of responses with values of
1. Thus, we will describe analysis using a linear mixed-effects regression model for PA and
an ordinal logistic mixed-effects regression model for NA. These models were estimated
using the software program SuperMix (Hedeker et al. 2008)

Three-Level Linear Mixed-Effects Regression Model for Changes in PA Associated with
Smoking Events Across Waves

Consider the following linear mixed model for the PA mood measurement y of individual i
(i = 1, 2, …, N level-3 subjects) at wave j (j = 1, 2, …, ni level-2 waves), and occasion k (k =
1, 2, …, ni j level-1 prompts and events). Let Wave denote the measurement wave (coded 0,
1, and 2.5; each unit represents a six-month time interval), and SmkE represent a variable
indicating whether the occasion is from a random prompt (= 0) or a smoking event (= 1):

In this model, there are three random subject effects to allow subjects to vary in their
intercept (v0i), time trend (v1i), and effect of smoking (v2i) on their mood. Also, a random
effect for measurement wave within subjects (u0i j) is included to account for additional
within-wave mood correlation of the subject responses. Note that these random effects are
all deviations relative to the model fixed effects. In terms of the fixed effects, the model
includes effects of wave (β1), smoke event (β2), and the interaction of smoke event by wave
(β3). This latter term indicates the degree to which the mood effect of smoking varies across
waves. Finally, the model also includes εi j k, which is an independent (level-1) error term
distributed normally with mean 0 and variance .

The level-1 errors are independent conditional on the random effects (v0i, v1i, and v2i at the
subject level, and u0i j at the wave level). With three random subject effects, the population
distribution of intercept and slope deviations is assumed to be a trivariate normal N(0, Σv),
where Σv is the 3 × 3 variance-covariance matrix given as:

These variances indicate the heterogeneity in the population of subjects in terms of
intercepts, and effects of time and smoking on mood. Likewise, the covariances represent
association of these subject-specific random effects in the population of subjects. The

additional level-2 variance  represents between-wave (and within-subjects) variation,
over and above the random subject effects.

Three-Level Ordinal Logistic Mixed-Effects Regression Models for Changes in Negative
Affect Associated with Smoking Events Across Waves

As indicated above, the distribution of the mood outcome for negative affect was not
approximately normally distributed, and so we present an analysis treating the outcome as
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an ordinal variable. Three-level models for ordinal outcomes are described in Raman &
Hedeker (2005) and Liu & Hedeker (2006), building upon the development of the three-
level model for binary outcomes in Gibbons & Hedeker (1997). Here, the ordinal outcome
Yi j k can take on values c = 1, 2, …, C, and the model is written in terms of the cumulative
logit, namely:

with C − 1 strictly increasing model thresholds γc (i.e., γ1 < γ2 · · · < γC−1). These thresholds
reflect the marginal frequencies in the C categories of the ordinal outcome. For
identification, either one of the thresholds or the model intercept must be fixed to zero. In
the above, we have specified the latter. Otherwise, the model for NA includes the fixed and
random effects as in the analysis of the continuous outcome PA. The interpretation for the
covariates and random effects is in terms of the logit scale. Note that none of these carry the
category subscript c, and so their effects are constant across the cumulative logits.
McCullagh (1980) calls this assumption of identical odds ratios across the C − 1 cut-offs the
proportional odds assumption.

We should note that for both PA and NA, we also investigated the decomposition of the
effect of the occasion-varying SmkE on mood, as described in Begg & Parides (2003), by
including the subject’s mean  at each wave as an additional covariate. Notice that
because SmkEijk is simply a binary variable, taking on values of 0 or 1,  simply
equals the proportion of occasions (i.e., both random prompts and smoking events) at a wave
that were smoking events for a subject. By so doing, the effect of SmkE indicates how a
person’s mood differs between a random prompt and smoking event controlling for the
proportion of smoking events that the person has at the given wave. Inclusion of this
additional covariate (as well as its interaction with wave) had minimal effect and did not
alter the conclusions. Thus, for simplicity we leave this out in the results described below.

Results
Results for both (continuous) positive and (ordinal) negative affect are listed in Table 1.

Despite the different scales and models of these two variables, the results are relatively
consistent for the two mood outcomes, albeit in opposite directions in terms of the mean. In
terms of time, the effect of Wave on mood indicates that PA increases and NA decreases
across the study waves. The effect of smoking on mood is such that positive mood is
significantly increased and negative mood significantly decreased for smoking events,
relative to random prompts. Thus, subjects’ moods are significantly different, and in the
more desired direction, just after smoking, relative to their random prompts. The interaction
indicates that the positive mood benefit associated with smoking events decreases
significantly across time, whereas the beneficial effect on NA does not vary across time. The
decrease in positive mood boost over time may reflect the development of tolerance, as
smoking also increases in these adolescents. The continued reduction in NA, relative to
random times, following smoking may reflect relief from nicotine withdrawal, which may
also be increasing as these adolescents continue to develop higher levels of nicotine
dependency.

In terms of the variance parameters, there is considerable subject heterogeneity for both PA
and NA in terms of their intercepts and slopes for Wave and SmkE. Thus, the effects of time
and smoking on mood vary considerably across subjects. Also, there is significant between-
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wave mood variation, both for PA and NA, in addition to the variation at the subject level.
The covariances are in the same direction for PA and NA, albeit none of the covariances for
the ordinal NA reach statistical significance. The negative covariance of the intercept and
SmkE effect is particularly interesting. For PA, it suggests that subjects with higher random
PA have less PA benefit (i.e., lower PA scores) associated with a smoking event. For NA,
this negative covariance suggests that subjects with higher random NA have greater NA
benefit (i.e., lower NA scores) for smoking events. Although these could be due to ceiling
and floor effects of measurement, respectively, these negative covariances are consistent
with previously reported results (Hedeker et al. 2009).

EXAMPLE APPLICATIONS IN THE BEHAVIORAL SCIENCES
Applications of mixed-effects regression models are steadily increasing and can be found in
many different fields, including studies on alcohol (Curran et al. 1997), smoking (Niaura et
al. 2002), HIV/AIDS (Gallagher et al. 1997), drug abuse (Carroll et al. 1994, Halikas et al.
1997), psychiatry (Elkin et al. 1995, Serretti et al. 2000), and child development (Campbell
& Hedeker 2001, Huttenlocher et al. 1991), to name a few. Not only do these articles
illustrate the wide applicability of mixed-effects regression models, they also give a sense of
how mixed-effects regression model results are typically reported in the various literatures.
Thus, they can be very useful for investigators who are new to mixed-effects regression
models and their usage.

SUMMARY
In summary, generalized mixed-effects regression models have fundamentally changed the
way we conceptualize the analysis of longitudinal data. The ability to model and compare
longitudinal response patterns for continuous and categorical outcomes using a unified
family of statistical models and to be able to estimate person-specific trends are major
strengths of this general methodology. Robustness to missing data both under default MAR
assumptions and extensions for NMAR further enhance the utility of these full likelihood
procedures. Current limitations are largely related to the number of random effects that can
be included in nonlinear models, where an explicit representation of the high dimensional
integral must be obtained. Full Bayesian approaches provide one possible solution to this
problem, and this should be an area of further statistical research.

Generalized mixed-effects regression models extend beyond analysis of longitudinal data
and have been widely used for analysis of non-longitudinal clustered data as well. More
recently, these models have even been applied to large-scale spontaneous reporting system
data as tools to evaluate the safety of pharmaceuticals (Gibbons et al. 2008).

SUMMARY POINTS

1. Generalized mixed-effects regression models (MRMs) are ideally suited to
analysis of longitudinal data.

2. MRMs are available for continuous, binary, ordinal, nominal, count, and time-
to-event data.

3. Linear MRMs are less computationally intensive than nonlinear MRMs because
the integrals corresponding to the random effects are not a part of the estimation.

4. Full likelihood methods such as MRM are more robust to the presence of
missing data than are partial likelihood methods such as generalized estimating
equations.
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5. Extensions of the general MRM include three and four levels of clustering,
multivariate extensions, and the inclusion of design weights.

6. New computer software such as SuperMix is now available for routine
estimation of two-level and three-level linear (continuous normal) and nonlinear
(binary, ordinal, nominal, count, and time-to-event) models.
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Glossary

LOCF last observation carried forward

MAR missing at random

NMAR not missing at random

GEE generalized estimating equations

ANOVA analysis of variance

MRMs mixed-effects regression models

MCMC Markov Chain Monte Carlo

GLMs generalized linear models

MCAR missing completely at random

MANOVA multivariate analysis of variance

NA negative affect

PA positive affect
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Figure 1.
Random intercept model.
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Figure 2.
Random intercept and trend model.
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Figure 3.
Logistic relationship between x and the response probability.
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Figure 4.
Linear relationship between x and the logit.
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