Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2009 Nov 21;65(Pt 12):o3165. doi: 10.1107/S1600536809046650

N-Cyclo­hexyl-N-propyl­benzene­sulfonamide

Zeeshan Haider a, Islam Ullah Khan a,*, Muhammad Zia-ur-Rehman b, Muhammad Nadeem Arshad a
PMCID: PMC2971915  PMID: 21578881

Abstract

The title compound, C15H23NO2S, synthesized by N-methyl­ation of cyclo­hexyl­amine sulfonamide with propyl iodide, is of inter­est as a precursor to biologically active sulfur-containing heterocyclic compounds. The cyclo­hexyl ring exists in the chair form and the dihedral angle between the ring plane of the benzene ring and that of the cyclo­hexyl ring is 50.13 (9)°.

Related literature

For the synthesis of related mol­ecules, see: Kayser et al. (2004); Zia-ur-Rehman et al. (2006, 2009). For the biological activity of sulfonamides, see: La Roche & Co (1967); Rough et al. (1998); Gennarti et al. (1994). For related structures, see: Arshad et al. (2008); Khan et al. (2009); Gowda et al. (2007a ,b ,c ). For bond-length data, see: Allen et al. (1987).graphic file with name e-65-o3165-scheme1.jpg

Experimental

Crystal data

  • C15H23NO2S

  • M r = 281.40

  • Monoclinic, Inline graphic

  • a = 8.5532 (3) Å

  • b = 11.6877 (4) Å

  • c = 15.4410 (5) Å

  • β = 90.649 (2)°

  • V = 1543.50 (9) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.21 mm−1

  • T = 296 K

  • 0.42 × 0.31 × 0.25 mm

Data collection

  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2007) T min = 0.918, T max = 0.950

  • 17345 measured reflections

  • 3839 independent reflections

  • 2475 reflections with I > 2σ(I)

  • R int = 0.041

Refinement

  • R[F 2 > 2σ(F 2)] = 0.050

  • wR(F 2) = 0.141

  • S = 1.03

  • 3839 reflections

  • 173 parameters

  • H-atom parameters constrained

  • Δρmax = 0.29 e Å−3

  • Δρmin = −0.21 e Å−3

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009) and Mercury (Macrae et al., 2006); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809046650/hg2581sup1.cif

e-65-o3165-sup1.cif (18.8KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809046650/hg2581Isup2.hkl

e-65-o3165-Isup2.hkl (188.2KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors are grateful to the Higher Education Commission of Pakistan for the financial support to purchase the diffractometer.

supplementary crystallographic information

Comment

Sulfonamides are well known for their enormous potential as biologically active molecules (Rough et al., 1998). They are being used as anti-microbial (Kayser et al., 2004), anti-convulsant (Arshad et al., 2008), anti-cancer (La Roche & Co, 1967) agents and for the treatment of inflammatory rheumatic and non-rheumatic processes including onsets and traumatologic lesions (Gennarti et al., 1994). In the present paper, the structure of N-cyclohexyl-N-propyl benzene sulfonamide has been determined as part of a research program involving the synthesis and biological evaluation of sulfur containing heterocyclic compounds (Zia-ur-Rehman et al., 2006, 2009; Khan et al., 2009). In the molecule of (I) (Scheme 1; Fig. 1), bond lengths and bond angles are almost similar to those in the related molecules (Gowda et al., 2007a,b,c) and are within normal ranges (Allen et al., 1987). The benzene ring is essentially planar while cyclohexane ring is in chair form. No significant hydrogen bond interactions are observed in the title molecule. The dihedral angle between the phenyl and cyclohexane rings is 50.13 (9)%.

Experimental

A mixture of N-cyclohexylbenzene sulfonamide (1 g, 0.43 mmol), sodium hydride (0.21 g; 0.88 mmoles) and N, N-dimethylformamide (10.0 ml) was stirred at room temperature for half an hour followed by addition of propyl iodide (0.146 g; 0.86 mmoles). Stirring was continued further for a period of three hours and the contents were poured over crushed ice. Precipitated product was isolated, washed and crystallized from methanol.

Refinement

All hydrogen atoms were refined geometrically and treated as riding on their parent atoms. The following distances were used: Aromatic C–H=0.93Å, methine C–H=0.98Å, methylene C–H=0.97Å and methyl C–H=0.96Å U(H) was set to 1.2Ueq of the parent atoms or 1.5Ueq for methyl group.

Figures

Fig. 1.

Fig. 1.

The molecular structure of (I), with displacement ellipsoids at the 50% probability level.

Crystal data

C15H23NO2S F(000) = 608
Mr = 281.40 Dx = 1.211 Mg m3
Monoclinic, P21/n Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2yn Cell parameters from 4904 reflections
a = 8.5532 (3) Å θ = 2.2–24.1°
b = 11.6877 (4) Å µ = 0.21 mm1
c = 15.4410 (5) Å T = 296 K
β = 90.649 (2)° Needles, colourless
V = 1543.50 (9) Å3 0.42 × 0.31 × 0.25 mm
Z = 4

Data collection

Bruker APEXII CCD area-detector diffractometer 3839 independent reflections
Radiation source: fine-focus sealed tube 2475 reflections with I > 2σ(I)
graphite Rint = 0.041
φ and ω scans θmax = 28.3°, θmin = 2.2°
Absorption correction: multi-scan (SADABS; Bruker, 2007) h = −11→11
Tmin = 0.918, Tmax = 0.950 k = −15→15
17345 measured reflections l = −20→18

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.050 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.141 H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0648P)2 + 0.2752P] where P = (Fo2 + 2Fc2)/3
3839 reflections (Δ/σ)max = 0.001
173 parameters Δρmax = 0.29 e Å3
0 restraints Δρmin = −0.21 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
S1 0.25538 (5) 0.86234 (4) 0.23201 (4) 0.05546 (19)
O1 0.36858 (17) 0.78724 (15) 0.26990 (10) 0.0777 (5)
O2 0.29533 (18) 0.97863 (13) 0.21357 (12) 0.0803 (5)
N1 0.10568 (17) 0.86333 (13) 0.29521 (10) 0.0483 (4)
C1 0.1958 (2) 0.80108 (17) 0.13244 (12) 0.0480 (4)
C2 0.1431 (3) 0.8704 (2) 0.06558 (16) 0.0702 (6)
H2 0.1435 0.9495 0.0718 0.084*
C3 0.0896 (3) 0.8205 (3) −0.01092 (16) 0.0908 (9)
H3 0.0530 0.8666 −0.0559 0.109*
C4 0.0904 (3) 0.7056 (3) −0.02042 (18) 0.0919 (9)
H4 0.0546 0.6731 −0.0719 0.110*
C5 0.1431 (3) 0.6373 (2) 0.04474 (18) 0.0800 (7)
H5 0.1438 0.5584 0.0373 0.096*
C6 0.1956 (2) 0.68386 (18) 0.12180 (14) 0.0579 (5)
H6 0.2307 0.6365 0.1664 0.070*
C7 −0.01977 (19) 0.94843 (16) 0.27965 (11) 0.0458 (4)
H7 0.0252 1.0101 0.2449 0.055*
C8 −0.0737 (2) 1.00139 (17) 0.36414 (12) 0.0535 (5)
H8A −0.1183 0.9425 0.4006 0.064*
H8B 0.0154 1.0342 0.3947 0.064*
C9 −0.1949 (3) 1.09394 (19) 0.34699 (16) 0.0680 (6)
H9A −0.2317 1.1236 0.4018 0.082*
H9B −0.1467 1.1565 0.3157 0.082*
C10 −0.3316 (2) 1.0492 (2) 0.29526 (14) 0.0630 (6)
H10A −0.4030 1.1116 0.2825 0.076*
H10B −0.3871 0.9929 0.3293 0.076*
C11 −0.2801 (3) 0.9953 (2) 0.21182 (14) 0.0703 (6)
H11A −0.2348 1.0533 0.1749 0.084*
H11B −0.3702 0.9632 0.1818 0.084*
C12 −0.1603 (2) 0.9014 (2) 0.22887 (14) 0.0613 (6)
H12A −0.1255 0.8701 0.1742 0.074*
H12B −0.2084 0.8401 0.2615 0.074*
C13 0.0697 (2) 0.75885 (17) 0.34458 (13) 0.0545 (5)
H13A 0.1140 0.6935 0.3149 0.065*
H13B −0.0428 0.7487 0.3456 0.065*
C14 0.1314 (3) 0.7611 (2) 0.43649 (16) 0.0804 (7)
H14A 0.2445 0.7669 0.4357 0.097*
H14B 0.0914 0.8284 0.4655 0.097*
C15 0.0861 (4) 0.6566 (2) 0.48662 (18) 0.0980 (9)
H15A −0.0250 0.6564 0.4950 0.147*
H15B 0.1385 0.6571 0.5419 0.147*
H15C 0.1157 0.5894 0.4551 0.147*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
S1 0.0365 (3) 0.0626 (3) 0.0673 (4) −0.0039 (2) 0.0035 (2) −0.0127 (3)
O1 0.0456 (8) 0.1083 (13) 0.0789 (11) 0.0169 (8) −0.0108 (7) −0.0136 (9)
O2 0.0622 (9) 0.0621 (10) 0.1173 (13) −0.0246 (7) 0.0279 (9) −0.0219 (9)
N1 0.0423 (8) 0.0550 (9) 0.0477 (9) 0.0016 (7) 0.0022 (7) −0.0050 (7)
C1 0.0392 (9) 0.0537 (11) 0.0514 (11) 0.0011 (8) 0.0112 (8) 0.0023 (9)
C2 0.0690 (15) 0.0709 (15) 0.0711 (16) 0.0122 (11) 0.0181 (12) 0.0127 (12)
C3 0.0806 (18) 0.140 (3) 0.0521 (15) 0.0295 (18) 0.0081 (12) 0.0178 (16)
C4 0.0700 (16) 0.142 (3) 0.0642 (17) 0.0134 (18) 0.0044 (13) −0.0290 (18)
C5 0.0737 (17) 0.0819 (17) 0.0847 (19) −0.0037 (13) 0.0127 (14) −0.0285 (15)
C6 0.0567 (12) 0.0565 (12) 0.0607 (13) 0.0038 (9) 0.0086 (10) −0.0045 (10)
C7 0.0402 (9) 0.0529 (11) 0.0444 (10) −0.0004 (8) 0.0011 (7) −0.0036 (8)
C8 0.0516 (11) 0.0602 (12) 0.0485 (11) 0.0030 (9) −0.0064 (8) −0.0130 (9)
C9 0.0713 (15) 0.0626 (13) 0.0702 (14) 0.0163 (11) 0.0034 (11) −0.0114 (11)
C10 0.0527 (12) 0.0780 (14) 0.0584 (13) 0.0185 (10) 0.0022 (10) 0.0054 (11)
C11 0.0524 (12) 0.1059 (19) 0.0525 (12) 0.0112 (12) −0.0068 (10) 0.0014 (12)
C12 0.0464 (11) 0.0857 (15) 0.0518 (12) 0.0056 (10) −0.0062 (9) −0.0209 (11)
C13 0.0507 (11) 0.0565 (12) 0.0564 (12) 0.0007 (9) −0.0040 (9) −0.0079 (9)
C14 0.0900 (18) 0.0855 (17) 0.0652 (15) 0.0007 (14) −0.0233 (13) 0.0073 (13)
C15 0.119 (2) 0.095 (2) 0.0801 (18) 0.0125 (17) 0.0040 (17) 0.0243 (15)

Geometric parameters (Å, °)

S1—O1 1.4274 (16) C8—H8B 0.9700
S1—O2 1.4308 (16) C9—C10 1.502 (3)
S1—N1 1.6187 (15) C9—H9A 0.9700
S1—C1 1.7658 (19) C9—H9B 0.9700
N1—C13 1.474 (2) C10—C11 1.504 (3)
N1—C7 1.481 (2) C10—H10A 0.9700
C1—C6 1.380 (3) C10—H10B 0.9700
C1—C2 1.384 (3) C11—C12 1.522 (3)
C2—C3 1.390 (4) C11—H11A 0.9700
C2—H2 0.9300 C11—H11B 0.9700
C3—C4 1.351 (4) C12—H12A 0.9700
C3—H3 0.9300 C12—H12B 0.9700
C4—C5 1.357 (4) C13—C14 1.509 (3)
C4—H4 0.9300 C13—H13A 0.9700
C5—C6 1.379 (3) C13—H13B 0.9700
C5—H5 0.9300 C14—C15 1.499 (3)
C6—H6 0.9300 C14—H14A 0.9700
C7—C8 1.520 (2) C14—H14B 0.9700
C7—C12 1.530 (2) C15—H15A 0.9600
C7—H7 0.9800 C15—H15B 0.9600
C8—C9 1.520 (3) C15—H15C 0.9600
C8—H8A 0.9700
O1—S1—O2 120.22 (11) C8—C9—H9A 109.3
O1—S1—N1 107.15 (9) C10—C9—H9B 109.3
O2—S1—N1 107.79 (9) C8—C9—H9B 109.3
O1—S1—C1 107.16 (9) H9A—C9—H9B 107.9
O2—S1—C1 106.21 (10) C9—C10—C11 111.57 (18)
N1—S1—C1 107.79 (8) C9—C10—H10A 109.3
C13—N1—C7 119.02 (15) C11—C10—H10A 109.3
C13—N1—S1 118.51 (13) C9—C10—H10B 109.3
C7—N1—S1 118.92 (12) C11—C10—H10B 109.3
C6—C1—C2 119.5 (2) H10A—C10—H10B 108.0
C6—C1—S1 120.41 (15) C10—C11—C12 110.90 (17)
C2—C1—S1 120.04 (17) C10—C11—H11A 109.5
C1—C2—C3 119.4 (2) C12—C11—H11A 109.5
C1—C2—H2 120.3 C10—C11—H11B 109.5
C3—C2—H2 120.3 C12—C11—H11B 109.5
C4—C3—C2 120.5 (3) H11A—C11—H11B 108.0
C4—C3—H3 119.8 C11—C12—C7 110.64 (17)
C2—C3—H3 119.8 C11—C12—H12A 109.5
C3—C4—C5 120.4 (3) C7—C12—H12A 109.5
C3—C4—H4 119.8 C11—C12—H12B 109.5
C5—C4—H4 119.8 C7—C12—H12B 109.5
C4—C5—C6 120.7 (3) H12A—C12—H12B 108.1
C4—C5—H5 119.7 N1—C13—C14 113.53 (17)
C6—C5—H5 119.7 N1—C13—H13A 108.9
C5—C6—C1 119.6 (2) C14—C13—H13A 108.9
C5—C6—H6 120.2 N1—C13—H13B 108.9
C1—C6—H6 120.2 C14—C13—H13B 108.9
N1—C7—C8 111.13 (14) H13A—C13—H13B 107.7
N1—C7—C12 113.91 (15) C15—C14—C13 112.4 (2)
C8—C7—C12 110.00 (15) C15—C14—H14A 109.1
N1—C7—H7 107.2 C13—C14—H14A 109.1
C8—C7—H7 107.2 C15—C14—H14B 109.1
C12—C7—H7 107.2 C13—C14—H14B 109.1
C9—C8—C7 110.68 (16) H14A—C14—H14B 107.8
C9—C8—H8A 109.5 C14—C15—H15A 109.5
C7—C8—H8A 109.5 C14—C15—H15B 109.5
C9—C8—H8B 109.5 H15A—C15—H15B 109.5
C7—C8—H8B 109.5 C14—C15—H15C 109.5
H8A—C8—H8B 108.1 H15A—C15—H15C 109.5
C10—C9—C8 111.73 (18) H15B—C15—H15C 109.5
C10—C9—H9A 109.3
O1—S1—N1—C13 −31.31 (16) C2—C1—C6—C5 0.1 (3)
O2—S1—N1—C13 −162.01 (14) S1—C1—C6—C5 177.52 (16)
C1—S1—N1—C13 83.73 (14) C13—N1—C7—C8 64.7 (2)
O1—S1—N1—C7 170.12 (13) S1—N1—C7—C8 −136.84 (14)
O2—S1—N1—C7 39.42 (16) C13—N1—C7—C12 −60.2 (2)
C1—S1—N1—C7 −74.84 (15) S1—N1—C7—C12 98.24 (17)
O1—S1—C1—C6 30.33 (18) N1—C7—C8—C9 176.37 (16)
O2—S1—C1—C6 160.00 (15) C12—C7—C8—C9 −56.5 (2)
N1—S1—C1—C6 −84.70 (16) C7—C8—C9—C10 55.9 (2)
O1—S1—C1—C2 −152.24 (16) C8—C9—C10—C11 −55.4 (3)
O2—S1—C1—C2 −22.57 (18) C9—C10—C11—C12 55.7 (3)
N1—S1—C1—C2 92.73 (17) C10—C11—C12—C7 −56.7 (3)
C6—C1—C2—C3 0.5 (3) N1—C7—C12—C11 −177.24 (17)
S1—C1—C2—C3 −176.93 (17) C8—C7—C12—C11 57.2 (2)
C1—C2—C3—C4 −0.6 (4) C7—N1—C13—C14 −103.9 (2)
C2—C3—C4—C5 0.1 (4) S1—N1—C13—C14 97.55 (19)
C3—C4—C5—C6 0.5 (4) N1—C13—C14—C15 177.0 (2)
C4—C5—C6—C1 −0.6 (3)

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HG2581).

References

  1. Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  2. Arshad, M. N., Khan, I. U. & Zia-ur-Rehman, M. (2008). Acta Cryst. E64, o2283–o2284. [DOI] [PMC free article] [PubMed]
  3. Bruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.
  5. Gennarti, C., Salom, B., Potenza, D. & Williams, A. (1994). Angew. Chem. Int. Ed. Engl 33, 2067–2069.
  6. Gowda, B. T., Foro, S. & Fuess, H. (2007a). Acta Cryst. E63, o2339.
  7. Gowda, B. T., Foro, S. & Fuess, H. (2007b). Acta Cryst. E63, o2570.
  8. Gowda, B. T., Foro, S. & Fuess, H. (2007c). Acta Cryst. E63, o2597.
  9. Kayser, F. H., Bienz, K. A., Eckert, J. & Zinkernagel, R. M. (2004). Medical Microbiology, pp. 1–20. Berlin: Thieme Medical.
  10. Khan, I. U., Haider, Z., Zia-ur-Rehman, M., Arshad, M. N. & Shafiq, M. (2009). Acta Cryst. E65, o2867. [DOI] [PMC free article] [PubMed]
  11. La Roche, H. & Co, A. G. (1967). Chem. Abstr 67, 73323r.
  12. Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.
  13. Rough, W. R., Gwaltney, S. L., Cheng, J., Scheidt, K. A., Mc Kerrow, J. H. & Hansell, E. (1998). J. Am. Chem. Soc 120, 10994–10995.
  14. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  15. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  16. Zia-ur-Rehman, M. Z., Choudary, J. A., Ahmad, S. & Siddiqui, H. L. (2006). Chem. Pharm. Bull 54, 1175–1178. [DOI] [PubMed]
  17. Zia-ur-Rehman, M., Choudary, J. A., Elsegood, M. R. J., Siddiqui, H. L. & Khan, K. M. (2009). Eur. J. Med. Chem 44, 1311–1316. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809046650/hg2581sup1.cif

e-65-o3165-sup1.cif (18.8KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809046650/hg2581Isup2.hkl

e-65-o3165-Isup2.hkl (188.2KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES