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Abstract

A number of causes have been proposed to account for the occurrence of gelatinous zooplankton (both jellyfish and
ctenophore) blooms. Jellyfish species have a complex life history involving a benthic asexual phase (polyp) and a pelagic
sexual phase (medusa). Strong environmental control of jellyfish life cycles is suspected, but not fully understood. This study
presents a comprehensive analysis on the physicochemical conditions that control the survival and phase transition of
Cotylorhiza tuberculata; a scyphozoan that generates large outbreaks in the Mediterranean Sea. Laboratory experiments
indicated that the influence of temperature on strobilation and polyp survival was the critical factor controlling the capacity
of this species to proliferate. Early life stages were less sensitive to other factors such as salinity variations or the competitive
advantage provided by zooxanthellae in a context of coastal eutrophication. Coherently with laboratory results, the
presence/absence of outbreaks of this jellyfish in a particular year seems to be driven by temperature. This is the first time
the environmental forcing of the mechanism driving the life cycle of a jellyfish has been disentangled via laboratory
experimentation. Projecting this understanding to a field population under climatological variability results in a pattern
coherent with in situ records.
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Introduction

The wide-ranging environmental and economic impacts of large

accumulations of gelatinous zooplankton have resulted in

extensive recent scientific interest [1–7]. A number of causes have

been proposed to account for the occurrence of gelatinous

zooplankton (both jellyfish and ctenophore) blooms, such as

eutrophication [8], increases in artificial hard substrata for

attachment of polyps [9,10], exotic translocations [11], over-

fishing [12] and climate change [13]. However, no consensus has

been reached, as proposed causes vary depending on the focus of

the study, i.e. global or local [14].

Many jellyfish species have a relatively complex life history

involving a benthic asexual stage (polyp) and a pelagic sexual stage

(medusa). This makes it complicated to determine which phase of

the life cycle is the most affected by varying environmental

conditions, and potentially controls the presence/absence of

jellyfish outbreaks. Polyps (scyphistoma) form when planulae settle

on a benthic surface. Planulae are ciliated planktonic larvae that

result from sexual reproduction of adult medusae. Polyps

reproduce asexually by budding, which eventually can produce

colonies of millions of individuals. The transition of jellyfish from

the benthic to pelagic stages occurs during strobilation. Through

this process, individual polyps metamorphose to form the juvenile

pelagic stage (free-swimming ephyra) that mature into adult

medusae. In some species, strobilation is apparently triggered by

the seasonal warming of the water [15–17]. Depending on the

survival rates of ephyrae, successful strobilation of great numbers

of polyps can generate large jellyfish blooms. Although of less

societal impact, the benthic phase is crucial for the population

dynamics of jellyfish, because polyps usually persist for longer than

the medusae. Though less studied than the pelagic stage, factors

that affect the growth and survival of polyp colonies are critical for

determining the subsequent abundances of medusae [18–22].

Currently there is concern that jellyfish are becoming more

prevalent in a variety of regions around the Mediterranean Sea

[9,23–25]. Cotylorhiza tuberculata, an exotic scyphozoan in the Mar

Menor (western Mediterranean), was selected as a case study for

parameterization of an invasive jellyfish species. The Mar Menor

is the largest coastal lagoon in the western Mediterranean with a

surface area of about 135 km2 and a mean depth of about 3.5 m.

The lagoon is exposed to intensive tourism. There is no mention of

C. tuberculata in the lagoon before its connection with the

Mediterranean was made deeper and wider in the 1970s to

facilitate navigation. Since the early 1990s the high abundance of

C. tuberculata during summer has become an increasing problem for

the recreational use of the lagoon. Local authorities have

implemented programs for the removal of adults by means of

fishing vessels or the use of nets to protect bathing areas from

medusae. Previously these programs have removed over five

thousands tons of C. tuberculata during the most abundant summers

[26].
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To understand the mechanisms driving C. tuberculata blooms in

the hypersaline Mar Menor coastal lagoon, several experiments

were performed to parameterize the physical control of phase

transition and polyp survival. Because of its shallow and enclosed

nature, the physical environment of the Mar Menor lagoon is

more extreme than the open Mediterranean Sea. Thus, we

hypothesise that the resistance of C. tuberculata early life stages to

the range of environmental conditions in the lagoon is the origin of

the inter-annual presence/absence of C. tuberculata outbreaks. The

experiments were performed on successive stages of the life cycle

and the results obtained clearly identify the source of inter-annual

fluctuations in C. tuberculata populations.

Materials and Methods

The Instituto de Ciencias Marinas de Andalucia (ICMAN) of

the Consejo Superior de Investigaciones Cientificas (CSIC)

approved this study.

The life cycle of C. tuberculata follows the general schedule of

metagenesis of scyphozoans. This cycle was replicated in the

laboratory starting with gravid females collected in late September

of 2006, 2008 and October 2009. The mature jellyfish liberated a

large amount of ciliated planktonic larvae (planulae) while in

captivity. These planulae were allocated to different glass flasks

filled with water from Mar Menor for the subsequent development

of the life cycle and its parameterization in terms of vulnerability to

the physical environment. The experiments were performed on

successive stages of the life cycle (Table 1). Those stages were

examined and photographed under a binocular microscope

(Fig. 1).

Planulae appear in late summer and early autumn when adult

females reach maturity. Consequently, planulae survival is linked

to lagoon conditions in that season, when the physical environ-

ment can change abruptly, in association with the passage of low

pressure weather systems across eastern Spain. Average water

temperature in Mar Menor ranges from 10uC in winter to 31uC in

summer whereas salinity is more stable with values between 42

and 47 [27].

Transition from pelagic to benthic phase: planulae
settlement

C. tuberculata planulae attach to the substrate and develop

tentacles to feed on micro-zooplankton. Experiments were

conducted to check planula survival and the sensitivity of this

process (fixing and tentacle developing) to the range of

temperature and salinities measured in the lagoon. Sub-samples

of equal volume were obtained from an agitated container with

planulae, resulting in a set of flasks containing approximately 120

planulae each. Glass slides were used as subtrate for the planulae

to attach. Each of these flasks received a different treatment to test

for sensitivity to temperature and salinity.

Experiment A: Settlement at constant temperatures.

Five treatments with three replicates each, at 4, 12, 20, 24 and

30uC, were conducted to check for the sensitivity of phase

transition to temperature. Salinity was fixed at 47 in all treatments,

which was the salinity of the Mar Menor at the time the planulae

were collected. Temperatures were maintained by water baths

(FRIGITERM of P.Selecta). Polyps with tentacles were counted

for each replicate from the beginning of the experiment, which

lasted 71 days.

Table 1. Summary of the different experiments performed on the life cycle of Cotylorhiza tuberculata.

Process of the
Life-Cycle

Phase/Phase
Transition Test

Code of the
Experiment
[num. of
treatments] Acclimation

Description of the
Treatments

Replicates per
treatment [average
num. of individuals
per replicate]

Planulae
Settlement

pelagic R benthic Temperature Exp. A
[5]

None 4uC, 12uC, 20uC, 24uC and
30uC, all at 47 of salinity

3 [120]

Salinity Exp. B
[4]

None 20, 35, 47 and 53 of salinity,
all at 24uC

3 [120]

Polyp Survival benthic Salinity fluctuations Exp. C
[4]

7-10 days at given
salinity

47-40-35 salinity,
20-35 salinity,
47-35 salinity

3 [20]
3 [20]
4 [20]

Light, nutrients and food
(zooplankton as prey)

Exp. D
[6]

6 months at 17.5uC * light-fed-nutrients,
dark-fed-nutrients,
light-unfed-nutrients,
dark-unfed-nutrients,
light-unfed-nonutrients,
dark-unfed-nonutrients

3 [35]

Low temperatures Exp. E
[4]

4 months at 16uC * 2uC, 4uC, 9uC and 16uC 3 [13]

Strobilation benthic Rpelagic Constant temperatures Exp. F
[4]

35 days at given temp. 17.5uC, 19uC, 20uC and 21uC 1 [42]

Incremental temperatures Exp. G
[5]

5 months at 17.5uC * 18uC, 19uC, 20uC, 21uC and
23uC

3 [50]

Increased temp. and food
availability

Exp. H
[2]

7 months at 17.5uC * fed and unfed, all at 26uC 3 [46]

Temp. fluctuations at
synoptic time scales

Exp. I
[4]

35 days at 20uC 1, 3, 7, and 15 days at 16uC,
then put back at 20uC (45 days)

3 [30]

*Acclimation times resulting of the period since the start of the polyp culture until the beginning of the experiment at regular maintenance in culture conditions:
filtered seawater, fed once a week with rotifers, light photoperiod (12:12).
doi:10.1371/journal.pone.0013793.t001
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Experiment B: Settlement at constant salinities. Four

treatments with three replicates each, at 20, 35, 47 and 53, were

conducted to check for the sensitivity of planulae to a wide range

of salinities. Temperature was fixed at 24uC in all experiments, the

temperature of Mar Menor when mature C. tuberculata were

sampled in late September 2006. The salinity of 53 was chosen to

check for viability of planulae at the maximum salinity that the

lagoon had before the connection to the Mediterranean Sea was

enlarged. The lowest salinity (20) represented values observed near

the main entrance of freshwater (El Albujón) during an extreme

rainy season (which are rather infrequent).

Benthic phase: Polyp survival
The polyp culture was maintained with filtered seawater, in an

incubator (IBERCEX F-4) with light photoperiod (12:12) and fed

once a week with rotifers. After one hour feeding, the water was

replaced with new seawater. The selection of rotifers was

performed based on the small size of the C. tuberculata polyps (calyx

around 0.5 mm). Light intensity was 360 mmol quanta m22 s21.

The light source consisted of four Philips master TL-D 18W/840

fluorescence lamps. The light intensity was measured using a

calibrated Biospherical Instruments (San Diego, CA) QSL2100

sensor.

Experiment C: Polyp survival with salinity fluctuations.

Four treatments with three replicates each were conducted to

analyse polyp survival through possible salinity fluctuations

occurring in the lagoon during the seasonal cycle. The change

of water salinity was performed after feeding the polyps. Each

treatment is detailed in Table 2. In ‘‘Treatment 1’’ polyps

experience a change from 47 to 40, the same polyps were later

changed from 40 to 35 (‘‘Treatment1.2’’). In ‘‘Treatment 2’’ the polyps

experience a direct change from 20 to 35 and ‘‘Treatment 3’’ the

polyps experience a single change from 47 to 35.

Experiment D: Polyp survival at different light, nutrient

and food regimes. In contrast to previous reports for C.

tuberculata [28], zooxanthellae were already present during the

polyp phase in the individuals used in this study. It has been

argued that symbionts contribute to the metabolism of C.

tuberculata and, owing to the recent eutrophication of the lagoon,

there is a direct cause-effect connection between the increased

input of nutrients and the outbreaks of C. tuberculata in Mar Menor

[29]. Considering these arguments, an experiment varying food

and light was used to test their differential effects on the survival of

Table 2. Percentage polyp survival during salinity
fluctuations (Experiment C).

Treatment Salinity 1 Salinity 2 % Survival SD n

1 47 40 93 6 34 3

1.2 40 35 94 6 8 3

2 20 35 68 6 37 3

3 47 35 105 6 30 4

In ‘‘Treatment 3’’ polyps exclusively experienced one change of salinity from 47
to 35, while a previous test checked first a change from 47 to 40 (‘‘Treatment 1’’),
followed by a change from 40 to 35 ‘‘Treatment 1,2’’. In ‘‘Treatment 2’’ polyps
experienced one change of salinity from 20 to 35. SD is the standard deviation.
n is the number of replicates and in each replicate were on average 20 polyps.
doi:10.1371/journal.pone.0013793.t002

Figure 1. Cotylorhiza tuberculata. Various stages of its life history. Pictures obtained during the simulation of Cotylorhiza tuberculata life cycle
in the laboratory. A) Symbiotic zooxanthellae in the tissue of the mature medusae (scale 50 mm); B) Planula (scale 50 mm); C) Detail of scyphistomae
on the leaves of the marine angiosperm Cymodocea nodosa (scale 2 mm); D) Budding scyphistoma (scale 500 mm); E) Scyphistoma initiating
strobilation (scale 500 mm); F) Scyphistoma totally developed and scyphistoma about to liberate an ephyra (scale 500 mm); G) Ephyra (500 mm); H)
Metaephyra (scale1 mm); I) Young medusa (scale 1 mm). Authors of the pictures: C. Lama: A; J.B.Ortiz: B; L.Prieto: C; D.Astorga: D–I.
doi:10.1371/journal.pone.0013793.g001
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C. tuberculata polyps. Three flasks (replicates) containing between

20 and 50 polyps were treated according to different combinations

of light, feeding and nutrients (see Table 1). In a first combination

of treatments, polyps inside all flasks were unfed, and the two fixed

and orthogonal factors tested were absence/presence of light and

absence/presence of nutrients in the water. In a second

combination of treatments, all the flasks had nutrient-rich water,

and the two factors tested were absence/presence of light and fed/

unfed. When the treatment was fed, rotifers were added as food

once a week. After one hour feeding, the water was replaced with

new seawater. In the unfed treatment, the polyps were starved by

not adding any zooplankton food during the experiment; however,

the water was replaced with new seawater as in the feeding

treatment. Illuminated flasks were exposed to a photoperiod

(12:12), whereas dark flasks received no light during the

experiment. Light intensity was 360 mmol quanta m22 s21. The

light source consisted of four Philips master TL-D 18W/840

fluorescence lamps, suitable for zooxanthellae growth as the

wavelength was 300–700 nm [30]. The incubator was an

IBERCEX F-4. To check for the potential effect of nutrient

depletion on the survival of polyps, via nutrient limitation of

symbionts, replicates were grown in artificial seawater without

soluble nitrogen and phosphorous (treatment of absence of

nutrients). Additional flasks were held as control in conditions of

photoperiod, water with nutrients and feeding with rotifers.

Nutrient concentrations were 0.2 mM of dissolved nitrogen

(nitrite, nitrate and ammonium) and 0.7 mM of phosphorous,

which are within the ranges found in the lagoon [31].

Experiment E: Polyp survival at low temperatures. To

check the polyp’s ability to survive under low winter temperatures,

three replicates were maintained at 2, 4, 9 and 16uC for 32 days.

Before the experiment, all the replicates were maintained in

culture at 16uC for 4 months in filtered seawater, fed once a week

and had a light photoperiod (12:12). The change of temperature

was performed in one step and temperatures were maintained by

water baths (FRIGITERM of P.Selecta).

Transition from benthic to pelagic phase: strobilation. C.

tuberculata transition from benthic to pelagic stages occurs through

the strobilation process. In other species, strobilation is apparently

triggered by the seasonal heating of the water [15–17]. Experiments

were conducted to evaluate the influence of temperature and

feeding conditions on this process. Also, a detailed monitoring of

polyps during strobilation was conducted at a temperature of 19uC
with fed polyps, by observing them under steroscope everyday.

Experiment F: Strobilation at constant temperatures. To

check for the effect of temperature, polyps were acclimated to 17.5,

19, 20 and 21uC during more than one month (35 days). Each

treatment in this experiment included 98, 28, 13 and 29 polyps,

respectively. Polyps were held in artificial seawater without iodine

during this period to prevent strobilation. The lack of iodine is

known to inhibit strobilation of scyphozoans like Aurelia aurita [32–

34] or the symbiotic Cassiopea spp. [35]. After adding iodine, the

polyps were kept at the same temperatures of acclimation. During

the experiment, polyps were fed once a week. The addition of iodine

was carried out by replacing the artificial seawater without iodine by

natural filtered seawater after feeding at Day 35.

Experiment G: Strobilation in incremental temperature

increase. To test the effect of temperature change on

strobilation, polyps were acclimated to 17.5uC for 5 months in

filtered natural seawater and fed once a week. The temperature

change treatments were 18, 19, 20, 21, 23uC. The temperature

was changed in one single step and temperatures were maintained

by water baths (FRIGITERM of P.Selecta). Each treatment was

done in triplicate including a minimum of 50 polyps per flask. This

experiment lasted for 70 days and polyps were not fed during that

period. The control treatment was maintained at 17.5uC.

Experiment H: Strobilation with increased temperature

and different feeding conditions. This experiment was

performed to check the effect of feeding on strobilation. Polyps

that were acclimated to 17.5uC for 7 months in filtered natural

seawater and fed once a week were exposed to 26uC to invoke

strobilation and one treatment continued to be fed once a week

whereas the other treatment was unfed. The change of

temperature was performed in one step and temperatures were

maintained by water baths (FRIGITERM of P.Selecta). Each

treatment was done in triplicate with between 40–52 polyps per

flask (a density low enough to avoid potential competition for

food). This duration of the experiment was 70 days; which was

chosen so as to be comparable with the previous experiment.

Experiment I: Strobilation with temperature fluctuations

at synoptic time scales. Experiments G and H in the previous

section, demonstrated how polyps acclimated to low temperatures

for long periods could be stimulated to induce strobilation by an

increase in temperature. Both experiments simulated the spring

heating of the water (occurring only once a year). In nature, polyps

are also exposed to temperature fluctuations at lower time scales

due to synoptic (meteorological) events. Four treatments with three

replicates each were conducted to check the seasonal against the

synoptic effect (meteorological event with a time scale between

days to weeks) of the environment temperature to trigger the

strobilation process. Polyps that were acclimated per 35 days to

20uC were exposed to 16uC for 1, 3, 7 or 15 days (three replicates

per time lag with an average of 30 polyps each), and after that

lower temperature short exposure, they were transferred again to

20uC. Then, the observation of possible strobilation was perfomed

for the following 45 days. Both changes of temperature were

performed in one step and temperatures were maintained by water

baths (FRIGITERM of P.Selecta).

Statistics
Statistical analyses of the data were performed using MatlabTM

software. ANOVA assumptions were tested on data sets prior to

evaluation of variance between treatments. If data failed normality

and equality of variances and homogeneity couldn’t be established

using the respective transformations, non-parametric Kruskal-

Wallis analysis of variance was used.

Results

Transition from pelagic to benthic phase: planulae
settlement

Experiment A: Settlement at constant temperatures. At

4uC very few planulae attached to the substrate and none of them

developed tentacles to complete metamorphosis into a fully

developed polyp. This extreme temperature is never registered

during autumn in Mar Menor, but was nevertheless included to

check for a threshold temperature for survival. Approximately

40% of planulae in the 20, 24 and 30uC treatments settled and

metamorphosed into polyps (H = 5.57, p.0.05, around 50 fully

developed polyps per flask). The time taken for planulae to settle,

however differed depending on temperature (H = 11, p , 0.05). At

30uC planulae settled within 15 days, but at 20uC more than 30

days were required for settlement (Fig. 2). In the case of 12uC, at

Day 71 of experiment, and after 29 days of no change in the

remaining planulae (between days 42–71: F = 1.19, p.0.05), only

an average of 25% settled and metamorphosed into polyps (Fig. 2).

Experiment B: Settlement at constant salinities. Except

for very low values (20 of salinity) the process of polyp formation

Thermal Control on a Jellyfish
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showed little sensitivity to the wide range of salinities tested (from

20 to 53) (Fig. 3: F = 1.47, p.0.05). Consequently, salinity exerts

little control on the process of polyp formation and its role in the

population dynamics within the Mar Menor is small if any.

Benthic phase: Polyp survival
Experiment C: Polyp survival with salinity fluctuations.

Polyps were not affected by salinity changes once fully developed

(Table 2). The percentage of survival was close to 100% (average

91%) and in all cases, independent of whether the drop in salinity

occurred in one or two steps (F = 1.47, p.0.05 see Table 2). Polyp

survival was lower (68%) only in the case of a one step increase of

salinity from 20 to 35.

Experiment D: Polyp survival at different light, nutrient

and food regimes. Manifest decreases in the number of polyps

only occurred for flasks with the starvation treatment but in

presence of both light and nutrients, although a 3-way ANOVA

showed that the different factors analyzed had no effect on the

survival of polyps (Flight = 1.16, Ffood = 1.62, Fnutrients = 2.36,

p.0.05). Interactions between light and/or food or nutrients did

not affect the survival (Flight*food = 0.39, Flight*nutrients = 0.22,

p.0.05). Comparing the control and the no light treatment

Figure 2. Number of planulae that fix and develop tentacles in different incubation temperatures (Experiment A). Filled Circle, empty
circle, triangle and square stand for 30, 24, 20 and 12uC, respectively. An experiment of 4uC was also conducted but no polyps developed tentacles.
Error bars are the standard deviations of the three replicates’.
doi:10.1371/journal.pone.0013793.g002

Figure 3. Number of planulae that fix and develop tentacles under different salinities (Experiment B). Rhomboid, empty square,
triangle and circle stand for 20, 35, 47 and 53 of salinity, respectively. Error bars are the standard deviation of the three replicates’.
doi:10.1371/journal.pone.0013793.g003

Thermal Control on a Jellyfish
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(dark-fed-nutrients), asexual reproduction by budding at a

constant temperature was slightly increased by the absence of

light (i.e. as the total number of polyps increased with time in the

no-light treatment compared to the control), but the differences

were not significant (F = 1.35, p.0.05).

Experiment E: Polyp survival at low temperatures. Sur-

vival was very sensitive to temperatures below 16uC (Fig. 4). The

time to reduce the total population to a half decreased from two

weeks to one day for temperatures between 9 and 2uC, respectively

(time range average: 15.7–1.3 days, F = 31.81, p,0.01).

Transition from benthic to pelagic phase: strobilation
Experiment F: Strobilation at constant temperatures.

Strobilation was inhibited below 19uC (Fig. 5), but 100% of polyps

survived. As temperature increased polyps began to strobilate but

the percentage of polyps that died without strobilating also

increased (Fig. 5). To further understand the role of temperature

change for strobilation, the flask of 17.5uC that showed no

strobilation and no mortality after 15 days of adding iodine was

moved to 20uC. 70% of the polyps strobilated after the

temperature change, therefore resulting in higher strobilation

than at a stable temperature of 20uC. To confirm this result, an

experiment examining the effects of a change in temperature was

performed (Experiment G).

Experiment G: Strobilation in incremental temperature

increase. The proportion of polyps that strobilated increased as

the magnitude of the temperature change increased, i.e. maximum

rates of strobilation occurred when the temperature was changed

from 17.5 to 23uC (F = 15.93, p,0.01; Fig. 6).

On Day 40, when the maximum % of strobilation was reached,

the proportion of polyps that died without strobilating was 16%

(621%) and 8% (618%) for 21uC and 23uC, respectively, and

zero for the remaining temperatures. All these polyps were kept

unfed during the experiment, in contrast with the previous

experiment at a stable temperature. As this no feeding treatment

probably would have an effect on its own, the following

experiment was performed (Experiment H).

Experiment H: Strobilation with increased temperature

and different feeding conditions. Effectively, the proportion

of polyps that died without strobilating increased in the unfed

treatment with an increase of temperature to 26uC compared with

the fed treatment, but the differences were not significant

(F = 1.86, p.0.05; Fig. 7A). Meanwhile, the proportion of

polyps that strobilated in the unfed treatment, reached its

maximum after 35 days of the increase of temperature from

17.5uC to 26uC (Fig. 7B), as occurred in Experiment G. But in the

treatment with zooplankton feeding, the proportion of polyps that

strobilate kept increasing until day 65, when it reached a

maximum of 16% (F = 8.15, p,0.05).

Experiment I: Strobilation with temperature fluctuations

at synoptic time scales. Experiment I, which checked the

drop of temperature from 20uC to 16uC for between 1 and 15

days, showed that no strobilation occurred in any of the treatments

after more than a month back to 20uC.

To fully understand this critical process in the C. tuberculata life

cycle, a detailed monitoring of scyphistomae (observing them

under the stereoscope everyday) was conducted. The time needed

from the beginning of the metagenesis until the liberation of the

ephyra was on average 1463 days (n = 14). From a total of 10

flasks (with an average of 100 polyps in each one), 100% of

mortality of the polyps was recorded in 7 flasks after the liberation

of the ephyrae. From the remaining 3 flasks, 12 polyps that could

be easily photographed under the steresocope, were selected and

monitored every day for a total of 50 days to check the possibility

of surviving after strobilation and repeated strobilation (Fig. 8).

From the 12 polyps, 7 died after strobilation, 5 developed a

complete scyphistoma with 16 tentacles after 2568 days (n = 5),

and only 2 could re-strobilated and liberated a second ephyra after

40 days of the first strobilation. Of the remaining 2 polyps, one

died 9 days after the second strobilation, while the other was

monitored for only two days after strobilation (survival is

unknown). Thus, the mortality of polyps after strobilation was

between 92617% (n = 10, considering the flask as replicates) and

73% (considering the 11 polyps monitored after strobilation).

Figure 4. Polyp survival at low temperatures (Experiment E). Empty rhomboid, square, triangle and circle stand for 16, 9, 4 and 2uC
respectively. Error bars are the standard deviation of the three replicates’. Survival is greater than 100% at 16uC because of budding.
doi:10.1371/journal.pone.0013793.g004
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Discussion

The life history of Cotylorhiza tuberculata in the Bay of Vlyho was

described by Kikinger (1992). His detailed descriptions of the

development of the natural population [28] are supplemented by

observations of the present study, which reveal details of the

control of the environment at different life stages, allowing its

parameterization.

The sensitivity to temperature of planulae settlement and polyp

development seems to be more related to the time needed to

complete the process than the capacity to achieve it. Since the

planula phase of the life cycle is highly resilient, temperature does

not limit the generation of well developed polyps in late summer

and early autumn. When temperatures are high enough, planulae

become polyps within 2 to 4 weeks; lower temperatures simply

extend this period. Thus, the planula is a phase that appears to be

insensitive to the range of physical environment variables in the

lagoon and is unlikely to be the critical step in the environmental

control of the life cycle. Similarly, planulae (and polyps) from

Cyanea capillata showed a high tolerance to low salinity [36],

suggesting C. tuberculata planuale are able to persist until they find

an adequate substrate where to attach and become a polyp.

Once polyps fix to the substrate during late summer and early

autumn they must survive until the next spring when strobilation

occurs. Although medusae are more visible, polyps are the main

stage of C. tuberculata in the lagoon in terms of residence time. Pelagic

stages of C. tuberculata happen from June to September whereas the

benthic phase lasts for the rest of the year. Polyps must survive

winter conditions when light and food are lower than in spring and

summer. In addition, although polyp sensitivity to salinity was very

low, temperature can drop dramatically in a shallow lagoon like

Mar Menor. One example of this control of polyp survival by

Figure 5. Strobilation at constant temperature (Experiment F). Previously, polyps were acclimated to a constant temperature (17.5, 19, 20
and 21uC) for 35 days without iodine in the water. Accumulate strobilation percentage of polyps and proportion of polyps that died without
strobilating after 15 days of adding iodine, keeping the polyps at the same temperature at which they were acclimated. No polyps strobilated or died
at 17.5uC. The total number of polyps at the beginning of the experiment is indicated.
doi:10.1371/journal.pone.0013793.g005

Figure 6. Triggering of strobilation by an increase in temperature (Experiment G). Cumulative percentage of polyp strobilation during a
change of temperature from 17.5uC to 18, 19, 20, 21 and 23uC. Previously polyps were at 17.5uC for 5 months. The x-axis is the time (days) after the
increment of temperature. Error bars are the standard deviation of the three replicates’.
doi:10.1371/journal.pone.0013793.g006
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temperature occurred in 2005, when besides being one of the

warmest months of June in 20 years (mean water temperatures of

23uC) no outbreak of C. tuberculata was detected within the lagoon

[37]. To clarify this exception it is necessary to consider the effect of

temperature not only on strobilation but also on polyp survival.

Analyzing the air temperature and wind velocity at the meteoro-

logical station of the Agencia Estatal de Meteorologı́a (AEMET) of

San Javier airport (0.5 km from the inner shoreline of the lagoon), a

strong cold event with temperatures close to freezing during several

days in January 2005 was apparent. Such a severe and persistent

cold event was not present from 1986 to 2005. In addition, this

event was accompanied by strong winds (.20 km/h), which

facilitate heat loss from this shallow lagoon in a period of very

cold air temperature. Although there are no in situ data for the

winter of 2005, the water temperature during these days must have

dropped below 10uC and the polyps were exposed to severe stress

(as evident from Fig. 4) probably resulting in a reduction of C.

tuberculata’s polyp population in the lagoon. Thus, the high mortality

of polyps at low winter temperatures seems to be a critical factor that

controls polyp population in the Mar Menor. Natural populations of

Aurelia sp. polyps monitored for two years in Tasmania waters also

showed a significant relationship with mean water temperature

[21]. Similarly, a temperature control was observed for the

scyphomedusan Rhopilema nomadica in the Eastern Mediterranean

[38] with temperatures below 13uC resulting in a high mortality of

polyps.

A lack of light and/or nutrients did not affect polyp survival and

the lack of feeding with rotifers could not be compensated by the

photosynthetic activity of zooxanthellae. Consequently, zooxan-

thellae may play a modest role in the metabolism of polyps. Their

presence neither prevented mortality during starvation nor

increased survival when feeding with rotifers. Pitt et al. (2009)

observed that Cassiopea sp. medusae when maintained unfed with

light suitable for photosynthesis for their zooxanthellae, shrink,

suggesting that zooplankton contain nutrients vital for regular

metabolic function [39].

Budding seems to be stimulated by the absence of light in C.

tuberculata. In other species such as Aurelia labiata, the intensity of

low light (always below 10 mmol quanta m22 s21) had no effect on

the number of buds per polyp, although it was different when the

interaction between light and photoperiod were considered [40].

Experiments with light and temperature on tropical Aurelia aurita

showed that the production of buds decreased with warmer

temperature and stronger light intensity [41]. In winter, when the

C. tuberculata polyps phase is present in the lagoon, light levels are

lower, both in duration and intensity, probably favoring the

budding process.

The success of asexual reproduction is dependent on both the

strobilation process and the number of ephyrae released [42]. The

high mortality of the population of C. tuberculata polyps after

strobilation (up to 100%) makes it very unlikely that there is a

second peak of ephyrae in the field, although there is a possibility

that 12% of the population could perform a second liberation after

40 days. Comparing with other species of scyphozoans, Rhopilema

nomadica [43], Mastigias papua [44] and Stomolophus meleagris [45] can

liberate several ephyrae in the same season after multiple

Figure 7. Effect of feeding on the percentage of strobilation during an increase in temperature (Experiment H). A) Proportion of
polyps that died without strobilating during a change of temperature from 17.5uC to 26uC, fed with zooplankton (empty circles) and not fed (filled
circles) during 70 days. B) Cumulative percentage of polyp strobilation in both treatments. Previously those polyps were kept at 17.5uC for 7 months.
X-axis is the time (days) after the increment of temperature. Error bars are the standard deviation of the three replicates’.
doi:10.1371/journal.pone.0013793.g007
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strobilations of the same polyp. Also, scyphozoans such as

Lychnorhiza lucerna [46], Nemopilema nomurai [47] or Rhizostoma pulmo

[48] are polydisk and therefore can produce up to 17 ephyrae per

strobila. As the percentage of polyps of C. tuberculata that died

without strobilation increased at higher temperatures, even when

high food supply occurred (Fig. 7), the only way for the population

to survive to the summer is by means of the medusae stage. Lotan et

al. (1994) also found a decline in strobilation of Rhopilema nomadica

occurred at high temperatures (24 and 26uC [38]) and many polyps

of Aurelia labiata died without strobilating at 30uC [41]. Conse-

quently, C. tuberculata may be considered a jellyfish with an annual

life-span, since a very high proportion of the polyps dies after a

monodisc-type strobilation has occurred and the remaining do not

survive well in warm temperatures (typical of the spring/summer

season). This finding is also corroborated by the C. tuberculata

population in the Bay of Vhylo, with a one year life-span, suggesting

this maybe a general characteristic of the species [28].

As an increase in temperature results in higher strobilation rates

than at stable temperature, and to parametrize this year life span

cycle, Experiment I checked the seasonal against the synoptic

effect (meteorological event with a time scale between days to

weeks) of the environment temperature to trigger the strobilation

process. No strobilation occurred in any of the treatments,

confirming that the increase in temperature required to trigger

strobilation in C. tuberculata needs to be at a seasonal scale, and a

synoptic event (i.e. a storm, a drop of temperatures associated to a

low pressure situation) is not sufficient. Again this fits well with

data on the C. tuberculata population of the Bay of Vhylo, which

was found to have a peak of ephyrae release at seasonal time scale

(mid June) representing an increase in temperature from 20uC to

24uC [28].

In summary, this article provides a reliable, robust example of

how temperature controls the population of a massive-outbreaker

jellyfish. Early life stages of Cotylorhiza tuberculata are not sensitive to

salinity variations or the availability of light or nutrients. However,

temperature critically controls polyp survival and strobilation. Low

temperatures imply reduced polyp survival during the winter.

Abrupt water warming during spring triggers strobilation and,

therefore, the start of the medusa phase of the life cycle. In

coherence with laboratory results, these thermal controls deter-

mine the inter-annual presence/absence of outbreaks of this

jellyfish in the Mar Menor lagoon. Projecting this thermal control

on the life cycle of Cotylorhiza tuberculata within the framework of

future climate scenarios [49], i.e. milder winters and hotter

summers, suggests blooms of this jellyfish will be increasingly

recurrent in the Mediterranean Sea.
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Figure 8. Developmental sequence of strobilating polyps. A) Polyp #1 after 1 day of strobilation, #2 in monodisc strobilation and #3
completely developed. B) Polyp #1 completely developed after 26 days of strobilation, #2 only stalk after liberating the ephyra and #3 in monodisc
strobilation. C) Polyp #1 only stalk after liberating the second ephyra 40 days after liberating the first one, #2 and #3 died and only prints where
pedal discs were attached are observed. All scale bars = 500 mm. Author of the pictures: D. Astorga.
doi:10.1371/journal.pone.0013793.g008
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