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Abstract

Recent experimental studies have revealed that bacteria, such as C. crescentus, show a remarkable spatial ordering of their
chromosome. A strong linear correlation has been found between the position of genes on the chromosomal map and their
spatial position in the cellular volume. We show that this correlation can be explained by a purely geometrical model.
Namely, self-avoidance of DNA, specific positioning of one or few DNA loci (such as origin or terminus) together with the
action of DNA compaction proteins (that organize the chromosome into topological domains) are sufficient to get a linear
arrangement of the chromosome along the cell axis. We develop a Monte-Carlo method that allows us to test our model
numerically and to analyze the dependence of the spatial ordering on various physiologically relevant parameters. We show
that the proposed geometrical ordering mechanism is robust and universal (i.e. does not depend on specific bacterial
details). The geometrical mechanism should work in all bacteria that have compacted chromosomes with spatially fixed
regions. We use our model to make specific and experimentally testable predictions about the spatial arrangement of the
chromosome in mutants of C. crescentus and the growth-stage dependent ordering in E. coli.
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Introduction

Eukaryotic cells have an elaborate machinery that organizes

the genome over several length scales. As far as is known,

bacteria do not posses the proteins required for such a

sophisticated organization. On small length scales DNA is a

stiff polymer. This makes DNA organization in small systems

(such as viruses) particularly difficult. The length scale on which

the DNA appears stiff is the persistence length defined as the

decay length of tangent-tangent correlations [for a short

introduction into the basic concepts and notions of polymer

physics see Supplemental Information (SI) text S1]. On length

scales much larger than the persistence length DNA, however,

adapts a random coil conformation, i.e. a conformation where

the monomers are oriented randomly giving rise to a global

shape without specific secondary structures. But nevertheless the

bacterial genome can have a highly regular spatial structure as

has recently been found in C. crescentus [1]. The spatial structure

of the chromosome leads to a strong linear correlation between

the position of a gene on the chromosome and its position in the

subcellular volume. In C. crescentus swarmer cells (that are in the

non-replicating G1 state) this arrangement has the characteristic

feature that origin (ori) and terminus (ter) are positioned at

opposite cell poles. To realize such an arrangement in newborn

swarmer cells ori and ter have to undergo a complex coordinated

movement during replication: after duplication the new ori

moves to the opposite (new) pole while ter relocates to midcell.

This gives rise to a mirror image conformation of the

chromosome once ter is duplicated [2].

It has been demonstrated that ori positioning is realized by

anchoring the chromosome to the pole by the PopZ protein [3,4].

However, the mechanisms that give rise to positioning of ter and to

the linear arrangement of the chromosome in C. crescentus cells

have so far not been revealed. Also the physiological role of the

spatial arrangement of the chromosome is unknown. It has been

speculated that transcriptional processes such as transertion (that

leads to localization of genes that encode for trans-membrane

proteins or proteins that are transported through the membrane)

could influence the chromosomal arrangement [5].

There is evidence that other bacteria also spatially organize

their chromosomes (for a review see Ref. [6]). The most prominent

example is E. coli that exhibits complex chromosomal organization

and dynamics [7]. The current understanding of these phenomena

is incomplete and a consistent picture is only slowly emerging. Part

of the problem is that there are evident contradictions in some of

the reported observations (that might partly be caused by

differences in the way cell cultures are synchronized and

differences in growth conditions). In particular, very different

chromosome arrangements have been reported in the literature.

Some studies report that in newborn cells ori and ter are localized at

opposite poles [8,9]. Upon initiation of replication ori and ter

change their positions and move towards midcell and stay side by

side aligning parallel to the cell axis (i.e. the axis connecting the

poles) [9]. Other studies report that upon initiation of replication

only ori has a well-defined position in midcell and ter is drawn to

midcell only during replication [10,11]. After duplication, the two

E. coli ori move in opposite directions towards the cell poles and the

bulk of the chromosome assumes a left-ori-right-left-ori-right

configuration [10,12,13,14] (where left and right refer to the left

and right chromosome arm, respectively). In this case the newborn

cells have ori placed at midcell with a broadly distributed position

of ter.
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The mechanisms that lead to this complex growth-phase

dependent chromosome movement are unknown. Possibly, many

different and overlapping processes are involved. An important

contribution could come from active migration of chromosomal

domains (where the actin-like MreB protein [15] or the migS

sequence [16] could play a role). Furthermore, the DNA

replication process itself might direct the different chromosome

arms into the designated cell half. In this context it has been

speculated that replication might occur at spatially fixed positions

(‘‘replication factories’’) [17]. Evidence against this has been

reported in Ref. [13] but further studies are required to fully

resolve this question.

Here we demonstrate that confinement of chromosomal

domains to specific cellular positions has a strong influence on

the spatial arrangement of the chromosome in the cell. In

particular, the positioning of ori and ter to opposite cell poles in C.

crescentus gives rise to the striking linear correlation found in Ref.

[1]. For E. coli we make predictions about the growth-stage

dependence of the spatial arrangement of the chromosome.

Results

We theoretically analyze the basis of chromosomal organization

in bacteria. To do so we employed stochastic Monte Carlo

computer simulations to generate ensembles of bacterial DNA

configurations obeying the following constraints: (A) the DNA has

fixed (prescribed) length, (B) the DNA lies inside a prescribed

cellular volume, and (C) ori and ter have fixed positions.

Non-compacted DNA
We started with the simplest model of the bacterial chromosome

where DNA is described as a non-compacted semi-flexible

polymer (for details see SI text S1) confined to the cell. Thus,

effects arising from proteins that compact DNA (such as HU, H-

NS and SMC proteins [18]) are not taken into account. In the

simulations the cellular volume is discretized and represented by a

three-dimensional cubic lattice. The chromosome is represented as

a random walk on this lattice. The step size is given by the Kuhn

length b~2jp, which is twice the persistence length jp of DNA. In

this way it is guaranteed that the random walk and the semi-

flexible polymer it represents have the same statistics. DNA has a

diameter of ,2nm and can cross a b|b|b sized box several

times without intersecting with itself, see Fig. 1. Thus, in the lattice

representation of non-compacted DNA self-avoidance of the

random walk does not have to be taken into account, i.e. the

random walk may cross a lattice site more than once.

In the following, we first present simulation results for C.

crescentus. In the simulations the implemented cells have height

H~2mm and cross section 0:5mm|0:5mm. For simplicity we

focus on C. crescentus swarmer cells where the single chromosome is

in the nonreplicative G1 state [19]. The DNA length is then

1.3mm (4.02Mbp). In those instances where jp is not varied we set

jp~25nm to mimic the in vivo effects of supercoiling and the

reduction in persistence length by DNA binding proteins (that are

not compaction proteins), for details see discussion. For this value

the C. crescentus cells were represented as boxes of dimensions

10b|10b|40b (DNA length = 26000b). In the following, we first

assume that ori and ter have fixed positions at the center of the

lower and upper cell wall (at x~y~5b). As mentioned, ori is

anchored by PopZ, but the molecular mechanism that leads to ter

positioning is still unknown. According to the experimental

findings of Ref. [1] (see also the discussion below) the apparent

distance of ori and ter from the cell walls is quite large and we have

correspondingly set the z-positions for ori and ter respectively to

zori~4b and zter~36b (where the cell axis is chosen to be the z-

axis). For random walks without self-avoidance it is sufficient to

analyze the configuration of only half the chromosome. In the

following we assume that ori is at 6 o’clock and ter at 12 o’clock on

the chromosomal map. Then, it is sufficient to analyze the segment

connecting ori and ter (i.e. the clockwise connection from 6 o’clock

to 12 o’clock). In this way phase space can be fully explored since

this segment has the same statistics as the segment from ter to ori

(i.e. the clockwise connection from 12 o’clock to 6 o’clock).

Random walks of length 13000b were generated in a two-step

process. First, we constructed a single random walk that obeyed

the above constraints (A)–(C). Starting from this initial configura-

tion the phase space was sampled using an algorithm proposed by

Madras, Orlitsky, and Shepp (MOS) [20], for details see Materials

and Methods. In this way we generated 106 random walks of

length equal to half of the genome length of C. crescentus.

To compare the chromosome configurations (that are repre-

sented by the random walks) with the experimental data from Ref.

[1] we analyzed the correlation between the position on the

chromosome and the position along the cell axis. To do so, we

calculated the average z-position as function of contour length of

the chromosome for these 106 random walks, see green curve in

Fig. 2A. Evidently, the strong linear correlation found in the

experimental data (dots in Fig. 2A) is not reproduced by the

simulation, where the average DNA configuration remains for

most of the steps in the middle of the cell (at z~20b). More

precisely, the middle of the cell is already reached after ,2000

steps. However, the DNA is not equally distributed in the cell, as

can be seen by calculating the standard deviation from the mean

position (at s~L=4). The above distribution has a standard

deviation of s&7:5 implying that 68% of the chromosome can be

found in the region between z~12:5b and z~27:5b. For

comparison an equidistribution between 0 and 40 (where the

DNA is uniformly distributed in the cellular volume) has a

standard deviation seq&11:5. Thus, the entropic repulsion of the

DNA from the walls of the confining geometry leads to a stronger

localization of the chromosome in midcell.

Figure 1. Representation of DNA as Random Walk. In the
simulations the DNA configuration (black solid line) is represented by a
random walk on a three-dimensional cubic lattice. The random walk can
be thought of as a discrete set of connected beads. The lattice constant
is given by the Kuhn length b~2jp (which is twice the persistence
length jp). With this step size the directions of two sequential steps are
completely uncorrelated. In the simplest picture the random walk may
intersect itself, since the diameter of DNA is much smaller than the grid
size.
doi:10.1371/journal.pone.0013806.g001
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To analyze the influence of the proximity to the wall on the

statistics we have also implemented a second ensemble with

different z-positions for ori and ter with zori~0 and zter~40b,

respectively. The red curve in Fig. 2A shows the corresponding

statistics of DNA conformations. For this case the statistics of the

random walk only slight improves. Although it takes a few more

steps until the average z-position settles at its mean value, the DNA

is still mainly localized in the middle of the cell.

We have also checked that these findings are a general feature of

the representation of the chromosome by a non self-avoiding walk

and are independent of the precise value of the persistence length, see

Fig. 2B. Indeed, a reduction in jp only leads to a slight increase in the

number of steps it takes to reach the plateau. But still 90% of all steps

have a mean z-position in the middle of the cell. Larger values of the

persistence length make the statistics even worse since the average

random walk reaches the middle earlier and stays there longer.

As mentioned supercoiling of DNA leads to a reduction of

persistence length. It also reduces the radius of gyration (,30%

according to Ref. [21]) of the DNA and thus compacts DNA and

effectively reduces its length L. We therefore checked whether such

a smaller L would have an effect on our results. However, we

found that the average DNA configuration still looked like the ones

shown in Fig. 2. We next analyzed how strong the reduction in L

would need to be in order to obtain the experimentally observed

linear arrangement of the average DNA configuration. To do this

in a systematic way we quantified the deviations of the simulation

results from the DNA configuration that linearly connects ori and

ter by calculating the root mean square deviation

RMS~
1

L

ðL

0

ds ½z(s){zlin(s)�2
� �1=2

ð1Þ

of the average DNA shape from the (idealized) linear configuration

parameterized by

zlin(s)~
zter{zori

L
s: ð2Þ

We calculated the RMS for a wide range of DNA lengths L.

Furthermore, to take into account that the persistence length jp

could also be further reduced by supercoiling we also varied the

size of the confining volumes (which is measured in units of the

Kuhn length b~2jp). To do so, we implemented cell shapes with

the aspect ratio of C. crescentus (given by elongated boxes of size
1

4
H|

1

4
H|H) and varied L = 400…40000 and H = 40…400. In

all cases, ori and ter were located at the centers of the cell walls thus

having also distance H. Interestingly, we find that all RMS

calculated from Eq. [1] for the different combinations of L and H

collapse onto a single curve if plotted as function of L=H2:0, see

Fig. 3. Furthermore, this function increases with increasing

L=H2:0 and one sees that only for very short DNA sequences

the RMS is close to zero indicating a straighter configuration. For

example, for C. crescentus the linear relationship would not even be

obtained if the DNA were 100 times shorter. From the L=H2:0

values at which these configurations occur it becomes clear that

the supercoiling-induced reduction of the radius of gyration

cannot be responsible for this.

Compacted DNA
Fig. 3 shows that linear DNA configurations can only be

expected for small DNA length. Such a reduction in length could

be explained by the actions of proteins that compact DNA and

which are not taken into account in the above model. To

investigate this further we developed a model for compacted DNA

in which DNA is, again, treated as a semi-flexible polymer.

However, here the compaction proteins locally give the DNA the

shape of a sphere with diameter db. In polymer physics such a

spherical arrangement is called a ‘‘blob’’.

In the following we assume that a blob typically contains one

DNA-loop (induced by H-NS, HU, FIS and perhaps TktA [22])

that could be further compacted by supercoiling [21]. In E. coli the

average loop size is ,10kB [23]. The blob radius of such an average

loop is given by the radius of gyration rb~(10000)1=2b=
ffiffiffi
6
p

, where

b~0:34nm is the length of one base. Thus, db~2rb&30nm and for

E. coli the whole genome could be represented by ,400 of these

Figure 2. Average subcellular position of genes as function of their position on the chromosome in C. crescentus as obtained from
numerical simulations of non-compacted DNA. The subcellular position is obtained by averaging the z-positions of 106 different (non self-
avoiding) random walks that represent an ensemble of non-compacted chromosomes of C. crescentus confined to the cell volume represented by a
lattice of size 10|10|40b3 (corresponding to a volume of 0:5mm|0:5mm|2mm for b~50nm). The position on the chromosome is parameterized
by the contour length s (measured in units of DNA length L). (A) Walk of length 26000b representing the genome. Ori and ter lie on the cell axis at
opposite poles. Their distance from the bottom and top cell walls is 0b (red curve) and 4b (green curve). Error bars represent the standard deviations
between the different DNA configurations sampled in the 106 runs. Dots represent the experimental data from Ref. [1]. (B) Same plot as in (A) but for
different Kuhn lengths (b~20nm:::200nm). DNA length and cell volume are kept constant. Here, the standard deviations between the individual
realizations are rescaled and shown as function of the position on the chromosome.
doi:10.1371/journal.pone.0013806.g002
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blobs. However, a significant fraction of loops is smaller than

,10kB [23]. Furthermore, some loops might be less compact and

not all regions of the chromosome necessarily belong to a loop. In

the following we therefore assume that there are ,2000 blobs with

average diameter db~30nm. We assume that C. crescentus’

chromosome is organized in a similar way. As we show below our

findings do not depend on these specific assumptions.

To take these effects into account we represented the compacted

DNA by a chain of blobs each having the diameter db. In order to

simulate this model one has again to use a discretization scheme

where DNA configurations are represented by random walks on a

lattice. However, here each step of the random walk represents a

rather extended piece of DNA (and not only a DNA segment of the

length of the lattice spacing). Therefore, the lattice spacing has to be

chosen accordingly (i.e. the lattice size has to be set to db) and the

self-avoidance of the random walk has to be taken into account.

This makes the numerical investigation much more difficult since an

exact enumeration of self-avoiding walks (SAWs) is only feasible for

chain lengths up to ,20–30 blobs which is insufficient for this

investigation. To generate an ensemble of self-avoiding walk we

therefore had to use an approximation scheme based on the MOS

method [20], for details see Materials and Methods.

Using this method we calculated the average configuration of

self-avoiding walks (representing compacted DNA) for different

blob sizes. Since in our description of compacted DNA size and

number of blobs are unknown parameters we systematically varied

their values and checked for which parameter range our model

gives good agreement with the experimental findings. In doing so,

we considered two different ensembles: ensemble (i) in which the

DNA density per blob is constant and ensemble (ii) in which the

number of blobs is constant. In ensemble (i) we varied the blob

diameter db~13nm:::75nm. DNA content per blob was set to

0:65mm(db=30nm)3 and the length of the simulation box thus

changes from 154 db to 27 db, while the DNA length changes from

24578 blobs to 128 blobs. In ensemble (ii) the number of blobs per

DNA (2000) is assumed to be constant. The blob radius is varied in

the range db~13nm:::42nm. Each blob contains DNA of length

0:65mm, independent of its radius. The physiological differences

between these two ensembles are explained in the discussion

section.

Furthermore, we varied the (fixed) positions of ori and ter (inside

the cellular volume represented by a box of size
1

4
H|

1

4
H|H ) to

minimize the differences between the predictions of the model and

the experimental data from Ref. [1]. Best agreement was found for

zori~0:1H and zter~0:9H . The corresponding (average) DNA

configurations together with the standard deviations obtained for

these parameter values are shown in Fig. 4. As can be seen the

predictions of the theoretical model agree pretty well with the

experimental data. The linear correlation between spatial position

and position on the chromosome is clearly reproduced for a range

of blob diameters db = 24nm to 75nm in ensemble (i) and

db = 13nm to 32nm in ensemble (ii). In particular, linear

correlations are found in both ensembles. However, as one can

see from Fig. 4 in both ensembles a symmetric DNA configuration

is predicted (in which the segment from ter to ori is a mirror image

of the segment from ori to ter) while the experimentally found DNA

configuration is asymmetric (genes with a fixed chromosomal

distance from the origin have a somewhat larger spatial distance

from the ori-pole if they are on the segment from ori to ter). Possible

explanations are discussed below.

To make sure that in ensemble (ii) the results do not depend on

our choice of number of blobs (2000) we have also systematically

varied this quantity (at fixed blob diameter db~30nm). As shown

in Fig. S1 the chromosome configuration is nearly linear for blob

numbers ranging from 200 to 2000. To keep the DNA length fixed

at L = 1.3mm the DNA length per blob has to be adjusted (from

6:5mm/blob to 0:65mm/blob). However, the DNA configurations

do not depend on this density and the results shown in Fig. S1 can

also be interpreted as average chromosome configurations with

lengths ranging from 0.13mm to 1.3mm (and constant DNA

length of 0:65mm/blob). This shows that the proposed mechanism

for DNA arrangement is robust and works in a large range of

parameter values.

As can be seen from Fig. 4, in the average DNA configuration

genes that are located left of the origin (i.e. that are on the segment

from ori to ter) show a positive correlation between position on the

chromosome and position in the cell: the further away from ori a

gene is positioned on the chromosomal map the further away from

the ori-pole at z~0:1H the gene is found in the cellular volume.

Similarly, the genes located right of the origin (i.e. that are on the

segment from ter to ori) show a negative linear correlation. This is a

direct consequence of the fact that two opposite positions on the

chromosome (ori and ter) are kept at fixed opposite positions in the

cell. We were wondering whether it is really necessary to position

both ori and ter at fixed cell positions to get these linear and

symmetric chromosomal configurations. To do so, we analyzed C.

crescentus cells that had only ori fixed to the flagellated pole by

anchoring by PopZ [3,4]. To our surprise, we found even in this

case linear configurations, see Figs. 4C and 4D. The main

difference is that without positioning of ter the chromosomal

arrangement seems to be less robust with respect to variations in

the blob radius.

A comparison of Figs. 4A and 4B with Figs. 4C and 4D reveals

that the position of ter is almost identical in the two situations. This

implies, that even though ter appears in vivo at a specific position

one cannot conclude that this position is fixed by, e.g., anchoring

to the pole. In fact, the positioning of ori together with the steric

repulsion between the topological domains could lead to the

positioning of ter. There is a way to experimentally probe this in a

(fictive) C. crescentus mutant whose terminus has an altered position

Figure 3. Root mean square deviation of the average (non-
compacted) DNA configuration from a strictly linear configu-
ration for different DNA lengths and different sizes of the
confining volume. The figure shows the root mean square deviation
(RMS) from the strictly linear configuration that connects ori and ter by a
line (see Eqs. [1] and [2]) as a function of DNA length L and distance H
between ori and ter for cell shapes with the aspect ratio of C. crescentus.
RMS is a function of L=Hc with c&2:0. The square indicates the data
point for L = 26000, H = 40 corresponding to the parameter values of C.
crescentus.
doi:10.1371/journal.pone.0013806.g003
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on the chromosome (that these regions indeed can be moved on

the chromosome has been shown recently in Ref. [24]). In the

mutant, ori would be located at 6 o’clock and ter at 3 o’clock (as

opposed to 12 o’clock in the standard configuration). Again, ori is

positioned at zori~0:1H . Our model predicts that the chromo-

somal configuration now strongly depends on the spatial

positioning of ter. If there is no direct mechanism that fixes the

position of ter (i.e. if the ter position only depends on the DNA

configuration) then this mutant will show the same average

chromosome configuration as shown above in Fig. 4C and 4D.

However, if ter position is fixed at zter~0:9H then in the mutant

the correlation between the position of the genes on the

chromosome and within the cell is altered: it is still linear but

now 75% of all genes (those on the segment from ori to ter) have a

positive correlation between contour length s (i.e. distance from ori

on the chromosome) and z-position in the cellular volume. Only

25% of all genes have a negative correlation between s and z, see

Fig. 5.

Compacted DNA: E. coli
The above results show that, according to our model, the

ordering of DNA in C. crescentus is solely of geometrical origin: The

strong linear correlation between the position of the genes on the

chromosome and their spatial position is a direct consequence of

the facts that DNA is compacted and that either ori or ori and ter

have fixed positions at opposite poles. But these are rather general

features that are also fulfilled in other bacteria, such as in E. coli. As

mentioned, here the localization patterns are somewhat more

complicated, but ori and ter still have (growth phase-dependent)

fixed positions. We used our model to make predictions about the

DNA configurations that arise from such a growth-phase

dependent positioning of ori and ter in E. coli.

To test these predictions we implemented in the simulations a

confining cell volume of &1mm|1mm|1mm(corresponding to

the cell volume of a newborn E. coli cell with doubling

time.60min [25]) containing a chromosome of 1.5mm length

[corresponding to a genome size of 4.6Mbp (E. coli K12)]. We first

focused on the results of Ref. [9] where in newborn cells ori and ter

are localized at opposite poles. Since no precise data are available

we assumed that both ori and ter have fixed positions at zori~0 and

zter~H (where H denotes the length of the bacterium). However,

from our results for C. crescentus we expect that this choice has only

a (minor) influence on the DNA configuration but not on the

linear correlation (between spatial position and position on the

chromosome) itself. Furthermore, as standard configuration we

used (as estimated above) 2000 blobs of radius db~30nm (with a

Figure 4. Average subcellular position of genes as function of their position on the chromosome in C. crescentus as obtained from
numerical simulations of compacted DNA. The z-position of an average chromosome configuration was calculated from our model in which
compacted DNA is represented by a chain of blobs. The position on the chromosome is parameterized by the contour length s (measured in units of
DNA length L). The configurations shown are for different blob diameters. In Fig. A a constant density of DNA per blob has been assumed, in Fig. B a
constant number (2000) of blobs. The insets show the (rescaled) standard deviations from the mean configurations as function of s. Dots are
experimental data from Ref. [1]. The fixed positions of ori and ter (given by zori~0:1H and zter~0:9H where H is the length of the cell) have been
adjusted to minimize the differences between experimental data and the predictions of the model. Figs. C and D are for the same blob parameters as
A and B, respectively. However, in C and D only ori has a fixed position at zori~0:1H , while ter is free to move. One should note that because of the
additional freedom in moving ter the DNA configuration shows a different dependence on the blob size than with fixed ter.
doi:10.1371/journal.pone.0013806.g004
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density of 0:75mm DNA per blob). The results obtained in

ensemble (i) are shown in Fig. 6A. As one can see, in E. coli there is

only a linear correlation (between position on the chromosome

and position in the cellular volume) for sufficiently large blob

diameters (i.e. not too strong compaction). For small blobs there is

a clear correlation between the position on the chromosome and

in the cell but significant deviations from the linear relation occur.

Similar results are obtained in ensemble (ii), see Fig. S2.

Width and length of E. coli are strain-dependent [26]. In

particular, the cells used in Ref. [9] are more elongated than the

ones used in the simulations above. To see if the cellular

geometry has an influence on our findings we systematically

varied the cell volume at constant DNA length by varying the

length H of the cells. In doing so, we implemented, as observed

experimentally [27], cell shapes of constant cross section but

different length H~33:::165 (blobs), where H = 165 represents

the largest newborn cell with a volume of &1mm|1mm|5mm.

As can be seen from Fig. 6B for a large range of volumes there is a

strong correlation between the position of genes on the

chromosome and inside the cellular volume. In particular, the

chromosomal configuration becomes more linear in more

elongated cells.

The size of E. coli also depends on growth rate. Faster growing

cells are bigger and for doubling times faster than 60 minutes one

has to take into account that they have more DNA. Generally, this

gives rise to a complex chromosomal topology with multiple

replication forks and, depending on growth rate, multiple origins

and termini (whose localization patterns have been observed in

Ref. [28]). As explained in detail in the discussion our current

algorithm is not suitable to analyze this complex scenario.

However, to check if geometrical ordering can also work in cells

that have more than one chromosome, we analyzed the situation

just prior to cell division where the cell has two fully replicated

chromosomes. As shown in Ref. [9] in this case the two ter are in

midcell while the two ori are at opposite cell poles. These two

chromosomes can be represented by a single random walk (that is

twice as long as the random walk representing a single

chromosome) whose midpoints (where the two ter meet) and the

ends (the two ori) have fixed positions. With DNA length we

increased the volume of the cell such that the DNA density

remains constant [29]. As can be seen from Fig. 6C the correlation

now extends over both chromosomes. It is also interesting to note

that the positioning of ori and ter also leads to a significant

demixing of the two chromosomes (see standard deviations of the

average configuration shown in the inset of Fig. 6C).

In deriving these results we have assumed that the length of

compacted DNA per blob (given by 0:75mm DNA per blob) is

independent of the volume. This assumption would, e.g., be

fulfilled if the number of compaction proteins increases during the

cell cycle (and thus increases with volume) or with growth-rate.

However, similar results are found if the number of compaction

proteins is constant. In this case the blob radius increases with

increasing volume due to the lower concentration of compaction

proteins, see Fig. S3. Furthermore, we have checked that also for

E. coli our results do not depend on the number of blobs, see Fig.

S4 that shows that a quasi-linear DNA configuration is found for

blob numbers ranging from 68 to 632.

As mentioned, with the current algorithm we cannot make

theoretical predictions about the chromosomal arrangements if

several replication forks are moving along the DNA. However, we

expect that in this case the presence of additional DNA makes the

linear correlation stronger. An indication that this is true can be

seen from Fig. 6D, that shows the configuration of a chromosome

in presence of a DNA strand whose ends are anchored in the

midplane of the cell mimicking the geometry of the chromosome

after half the replication time (when the replication forks are

located at 3 o’clock and 9 o’clock on the mother chromosome).

The above results on the arrangement of a single chromosome

can only be expected for newborn E. coli cells under the conditions

of Ref. [9], where ori and ter are localized at opposite poles [30]. As

mentioned, upon initiation of replication ori and ter move towards

midcell. This influences the DNA arrangement in the cell. If ori

and ter arrange in the way reported in Ref. [9] (i.e. are fixed at

zori~0:4H and zter~0:6H ) then in the average configuration the

remaining chromosome indeed localizes between ori and ter, see

Fig. 7A. However, as the large standard deviations indicate in the

individual realizations significant deviations from the population

average occur.

The findings of Ref. [31] suggest that compaction of DNA

together with ori and ter positioning might also be important for

chromosome segregation after DNA replication. To test this we

have calculated the average DNA configuration of a chromosome

whose ori is kept close to the cell pole while ter is kept at a fixed

position in the middle of the cell. As one can see from Fig. 7B, the

average DNA configuration is indeed mainly localized in the cell

half that contains ori. This arrangement is found for all relevant

volumes of E. coli.

As explained in the introduction, other studies found a different

positioning pattern of ori and ter. In Refs. [10,11] ori had a well-

defined position in midcell and ter is drawn to midcell only during

replication. We were wondering whether this positioning would

give rise to the observed left-ori-right orientation of the

chromosome [12]. To test this we positioned ori and ter in midcell

at same height (zori~zter~0:5H ) but with different x-positions

(xori~0:1H and xter~0:9H). Thus, in this case the line

connecting ori and ter is perpendicular to the cell axis. As shown

in Fig. 7C the corresponding average DNA configuration stays in

the middle of the cell, implying that the left-ori-right and the right-

ori-left configurations are equally likely. This suggests that

additional mechanisms are required to conserve the orientation

of the chromosome.

Figure 5. Average DNA configuration in a C. crescentus mutant
cell where ori is located at 6 o’clock and ter at 3 o’clock on the
chromosome. In the simulations the chromosome is represented by a
self-avoiding chain of blobs with diameter db~30nm. The chain
consists of 2000 blobs: 1500 blobs for the segment connecting ori
and ter and 500 blobs for the segment connecting ter and ori. Cell size is
16db|16db|66db . The error bars denote standard deviations from
mean position.
doi:10.1371/journal.pone.0013806.g005
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Finally, in a mutant that has ter at 3 o’clock similar DNA

configurations should be experimentally observable as for C.

crescentus provided that ori and ter are fixed to specific positions close

to the cell poles. Fig. S5 shows an example for a newborn E. coli

cell under the conditions of Ref. [9].

Discussion

Our results show that the correlation between the position of a

gene on the chromosome and inside the cellular volume can be

explained by a purely geometrical model. It is a consequence of

the positioning of ori and ter to specific spatial positions and the

elastic properties of DNA.

As mentioned, on small length scales DNA is a stiff polymer,

while on large length scales it adapts a random coil conformation.

These properties make a detailed microscopic theoretical descrip-

tion of DNA difficult. Therefore, to study its conformations one

has to consider coarse-grained models where the structures on

length scales below jp are neglected. One possibility is to model

the DNA as a ‘‘freely jointed chain’’ of independent segments of

length b~2jp (where b is the Kuhn length). Then, the direction of

each segment is completely uncorrelated to its preceding segments.

The chain is also allowed to intersect itself. In absence of external

fields and walls the energy of the chain is zero and all

configurations are equally likely.

Here, we are interested in the statistical properties of DNA

under the constraints that either ori or ori and ter have fixed

positions in the cell. Generally, the incorporation of these

geometrical constraints into a theoretical model for chromosome

configurations is non-trivial. It is simply impossible to analytically

solve the equations that describe the elastic properties of DNA

under these constraints. Therefore, one is limited to numerical

investigations that require using a discretized description. One

possibility is to analyze the DNA configurations on a lattice. To do

Figure 6. Average subcellular position of genes as function of their position on the chromosome in newborn E. coli cells as obtained
from numerical simulations of compacted DNA. The figure shows the z-position of an average chromosome configuration as function of the
contour length s. In our model a chain of blobs represents the compacted DNA. The position on the chromosome is parameterized by s (measured in
units of DNA length L). In figures A, B, and D ori and ter are positioned at the cell poles (zori~0 and zter~H). The configurations shown in figure A are
for a cellular volume of 1mm3 and different blob diameters by assuming a constant density of DNA of 0:75mm per blob. The dependence on the
volume at constant DNA density is shown in figure B. Cell shapes are varied at constant cross section but different length
H~1mm:::5mm(corresponding to H = 33…165 blobs). The largest newborn cell has a volume of &1mm|1mm|5mm. Figure C shows a DNA
configuration in a cell with two chromosomes (shown in different colors) just prior to cell division. The two ori have fixed positions at the cell poles,
the two ter are kept at midcell. The contour length is measured along the path left (chromosome #1)-right (chromosome #2)-left (chromosome #2)-
right (chromosome #1). Data shown are for a volume of &1mm|1mm|2mm and each chromosome is represented by 2000 blobs. In this way the
cellular DNA density remains constant and that the length of compacted DNA per blob (given by 0:75mm DNA per blob) is independent of the
volume. A DNA configuration in these faster growing cells at an earlier stage of the cell cycle is shown in figure D. Here, the cell contains an additional
DNA strand whose ends are anchored in the midplane of the cell mimicking the geometry of the chromosome after half the replication time [when
the replication forks are located at 3 o’clock and 9 o’clock on the mother chromosome (solid lines)]. The presence of additional DNA makes the linear
correlation stronger. For comparison the DNA configurations without daughter DNA are shown (dashed lines). Parameter values are as in figure B.
The insets show the (rescaled) standard deviations from the mean configurations as function of s.
doi:10.1371/journal.pone.0013806.g006
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so, the shape of the DNA is approximated by a random walk on a

three-dimensional cubic lattice with grid spacing b~2jp, see Fig. 1.

Although the angle distribution between neighboring segments is

not continuous (but rather restricted to the directions of the lattice

vectors of the grid) such models have shown to have similar

properties as continuous chains. For example, experimentally

measured force distance relations of stretched polymer molecules

are well reproduced by such models [32].

In the cell DNA interacts with many proteins. Some of them

modulate the structure of DNA and can lead to significant

compaction of the nucleoid. In our model these local structures

(typically extending over a few hundred basepairs) are represented

as ‘blobs’, i.e. spheres containing DNA under the influence of a

single or several compaction proteins. As mentioned above, the

picture we have in mind is that proteins such as H-NS, HU, FIS

etc. bind to certain regions of the chromosome and give it a

compact local structure such that the chromosome consists of a

chain of compact units. For our model we do not need to make

any specific assumptions on how these local structures are

organized and packaged. The detailed molecular mechanisms

are not important here since the goal of our analysis is to see if the

combination of boundary conditions, namely the positioning of ori

and ter, and this local structuring is sufficient to explain the

experimentally observed organization on the global scale. For

example, additional effects such as supercoiling of DNA [21] and

polycation-dependent DNA-DNA interactions might also contrib-

ute to compaction [33]. Additionally, proteins such as structural

maintenance of chromosomes complexes (SMC) can further

modulate the chromosome structure on larger scales [34]. Even

if the blobs emerge randomly by, say, stochastic binding of

compaction proteins, the theoretical predictions are robust with

respect to the associated variations in blob number and average

radius (see discussion below).

First, however, we have analyzed if compaction is necessary at

all to get the correlation between spatial localization and

chromosomal position. As explained above, in the absence of

compaction proteins, DNA can simply be represented as a non

self-avoiding walk on a lattice with lattice constant b~2jp since on

large length scales semiflexible polymers behave effectively as

freely jointed chain with this length [35].

For the analysis of our results the persistence length is a crucial

parameter. In vitro it has a value jp&50nm [36], [37]. In vivo,

supercoiling (together with the binding of non-compaction

proteins) leads to a reduced stiffness jp~24{40nm [38] justifying

our choice of jp&25nm in the analysis of non-compacted DNA.

For compacted DNA where compaction proteins such as HU also

influence jp, Skoko et al. [39] find in vitro that jp&20nm for a HU

concentration close to the intracellular value. Typically one has 1

HU per 300 bp, together with a binding site length of 10–40bp

[40] this corresponds to an occupancy around 10%. For such a

density of proteins on DNA a ,50% reduction of jp is also

expected theoretically [41].

Figure 7. Average subcellular position of genes for different ori and ter positions in E. coli as obtained from numerical simulations of
compacted DNA. The figures show the z-position of an average chromosome configuration as function of the contour length s. Cell length varies
from H~1mm:::5mm, i.e. 33 to 165 blob diameters (with a blob diameter of db~30nm) at constant DNA density, i.e. the number of blobs is kept
constant at 2000. In Fig. A ori and ter are positioned in midcell (zori~0:4H and zter~0:6H), in Fig. B ori is at the cell pole and ter is positioned in
midcell (zori~0:1H and zter~0:5H), and in Fig. C both ori and ter are in midcell (zori~0:5H and zter~0:5H with xori~0:4H and xter~0:6H). The
insets show the (rescaled) standard deviations from the mean configurations as function of s.
doi:10.1371/journal.pone.0013806.g007
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In the absence of compaction proteins the average DNA

configuration (represented by an average non self-avoiding

random walk with step size b~2jp on a lattice) is very different

from that observed for C. crescentus in Ref. [1]. As can be seen from

Fig. 2, the DNA is mainly localized in the middle of the cell. We

have shown that these findings are general features of the model

and do not depend on the specific (fixed) position of ori and ter, the

value of the persistence length, DNA length or the size of the

confining volume (see Fig. 3).

Thus, the main finding of this analysis is that the linear

relationship between positions of the genes on the chromosome

and their spatial location within the cell cannot be explained for

non-compacted chromosomes (represented by non self-avoiding

walks on a lattice). Also, supercoiling does not significantly increase

this correlation neither via reduction of persistence length nor

compaction by reduction of radius of gyration (which is of the

order of ,30% [21]).

The other striking feature of the spatial arrangement of the non-

compacted chromosome is that there are strong variations

between the individual realizations (as indicated by the large

standard deviations from the mean curve, see Fig. 2). If spatial

organization of the chromosome has a physiological role, one

expects a small variance and thus a positioning that only varies

slightly between different realizations. At this point it is important

to mention that in order to show that an ensemble of DNA

configurations has certain properties (such as the strong correla-

tion between position of the genes on the chromosome and within

the cell) a sufficiently large sample of possible configurations has to

be analyzed. Ideally, the sample includes an appropriate

representation of all possible configurations such that the sample

average represents the population average. However, DNA

organization is a stochastic process exhibiting cell-to-cell varia-

tions. Therefore, the statistical analysis then only can show that the

average configuration has the desired properties and that the

variation between the individual realizations are small. The mean

configuration corresponds to the population average and corre-

spondingly this average is measured if the DNA configurations

would be analyzed in many cells simultaneously as done in Ref.

[1]. But nevertheless the individual cells belonging to a population

exhibiting a linear correlation between the position on the

chromosome and the position in the cell volume typically have a

DNA configuration that deviates from the average configuration.

Fig. 8 shows a typical example for a chromosome configuration in

an individual C. crescentus cell. As can be seen the shown structure is

rather ring-like than intertwined.

In our model for compacted DNA the chromosome configu-

ration is represented by a self-avoiding walk. Each step is given by

a spherical blob of diameter db as a local representation of the

compacted structure. Since every step of the random walk now

represents a rather extended part of the DNA self-avoidance of the

walk has to be taken into account. This makes the calculation of

the statistical properties of an ensemble of self-avoiding walks

highly challenging even for the rather small number of steps

needed here to represent the compacted chromosome. An exact

enumeration of walks is impossible and an approximation scheme

has to be used by which an unbiased sample of configurations can

be generated. As explained in Materials and Methods we have

used the MOS algorithm [20] to generate such an ensemble of

random walks.

As mentioned, from measurements in E. coli we expect that

typical blob diameters are of the order db~30nm and that there

are ,2000 blobs per genome. We also assumed that in C. crescentus

these parameters take similar values. However, our findings are

independent of these assumptions indicating that the proposed

mechanism is robust and works for a large range of parameter

values provided that both ori and ter have fixed positions. More

specifically:

(i) As shown in Figs. 4A, 4B and 6A the DNA configurations

predicted by our model show a strong correlation between

spatial and genome localization provided that the blobs are

large enough. Generally, for a given blob size the

correlation is somewhat stronger in C. crescentus than in

slowly growing newborn E. coli cells with a volume of

&1mm|1mm|1mm (and the ori and ter localization

pattern of Ref. [9]), due to the more elongated shape of

C. crescentus. For C. crescentus the relationship is nearly

perfectly linear for db§24nm, for E. coli for db§75nm
(where all blobs have a constant density of DNA)

suggesting that the chromosome is less compacted in

slowly growing E. coli cells. This robustness with respect to

db is important since there is a certain arbitrariness in our

definition of the blob radius (caused by the lack of detailed

information on how DNA is compacted on the molecular

scale). For example, a blob could also contain several DNA

loops and in vivo there is a distribution of blob sizes [23]. In

this sense the above standard blob with diameter

Figure 8. Typical DNA configuration of an individual C.
crescentus cell belonging to a population that has an average
DNA configuration showing the linear correlation between
position of genes on the chromosome and position in the cell.
The DNA configuration was calculated from our model for compacted
DNA. The DNA was represented as a self-avoiding walk on a lattice with
10|10|40 sites (representing a cellular volume of 1mm). The lattice
spacing is equal to the blob diameter (db~30nm). The chromosome
then consists of 2000 blobs. The color coding represents the distance
from ori and ter: gene positions close to ori are shown in red, gene
positions close to ter are shown in blue. Intermediate regions on the ori
to ter and on the ter to ori segment are shown in green.
doi:10.1371/journal.pone.0013806.g008
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db~30nm can be seen as the minimal unit of compacted

DNA.

(ii) The linear correlation also holds for a large range of blob

numbers: for C. crescentus for 200 to 2000 blobs, for E. coli

for 200 to 600 blobs, see Figs. S1 and S4. Robustness with

respect to variations in the number of blobs (and to

variations in the blob radius) is important since (in our

model) these are not regulated quantities but rather the

outcome of stochastic events (such as the unspecific binding

of the compaction proteins to DNA). In this way, ensemble

(ii) (where the number of blobs is constant) describes a

scenario where the number of DNA compaction proteins is

constant but their binding sites show a cell-to-cell variation.

Similarly, in ensemble (i) (where the DNA density per blob

is constant) the number of compaction proteins varies but

their binding sites are fixed. There is not enough

experimental data available to decide whether ensemble

(i) or (ii) better describes the in vivo dependencies.

(iii) Linear DNA configurations are also found in a large range

of cell volumes, see Fig. 6B. This is important for E. coli

that shows a ,10-fold change in volume with growth rate.

(iv) With increasing DNA content the linear arrangement of

the chromosome becomes stronger, as can be seen from

Figs. 6C and 6D. Furthermore, the geometrical ordering

also works for a large range of chromosome lengths

(ranging from L = 1.5mm to 3mm) indicating that our

proposed mechanism is applicable to different bacteria.

By comparing the results of our first model (non-compacted

chromosome represented by a non self-avoiding random walk)

with those of the second model (compacted chromosome

represented by a self-avoiding walk) it becomes clear that

compaction of the chromosome is an essential ingredient to obtain

the observed linear correlation. In fact, self-avoidance only

contributes little to this ordering. More specifically, the linear

correlation could also be obtained from our first model provided

that the chain is short enough. This can be seen from Fig. 3 where

it is shown that the linear correlation becomes stronger as the

length of the chromosome decreases. As we have shown above, the

experimental data cannot be explained by a model that includes

only self-avoidance (that for example could be induced by

electrostatic repulsion between the DNA) but not a mechanism

that effectively reduces the length of the random walk representing

the chromosome. In our second model this reduction of length is

assumed to be the result of the compaction of the chromosome.

The importance of chromosomal compaction for spatial

positioning in E. coli was also demonstrated in Ref. [42]. There,

a ‘fluctuating filament model’ was introduced in which the

chromosome is approximated as a confined elastic filament with

constant DNA packing density. In contrast to our model

fluctuations of the chain are taken into account and it was shown

that the variance in locus positioning is well explained by the

model provided that the packing density is sufficiently high. At this

point it is worth mentioning that compaction should also affect the

mobility of the chromosome. In Ref. [43] it was shown that

fluorescently labeled chromosomal loci diffuse significantly slower

than expected from the Rouse-like behavior of a polymer under

confinement. A contribution to this subdiffusive motion of the

chromosome arises from a pin-and-pivot mechanism (where, at a

given instance, only some of the segments are free to move) [44]

which is the pattern of motion one expects for a confined chain of

blobs.

Although our model is able explain the general linear

correlation between positioning of genes on the chromosome

and their location in the cellular volume there are small differences

between the experimental data and the theoretical predictions in

Fig. 4. We checked that these deviations are not caused by the

curvature of C. crescentus that is not taken into account in our

simulations (data not shown). Thus, the differences are either due

to experimental errors or they indicate that there are additional

mechanisms that influence the ordering. For the latter case, we

speculate in Fig. S6 what kind of chromosomal arrangement

would give better agreement with the experimental data. As

shown, it appears that the segment from ori to ter stays closer to ter

than to ori and that the segment from ter to ori stays closer to ori

than to ter. During replication such an arrangement might be

favorable for the separation of the two segments.

Experimentally, it is quite evident that in C. crescentus ter has a

specific position in the cell. However, the mechanism of this

localization is unknown. For example, it could be caused by the

action of a protein that anchors ter to the cell membrane.

However, in our analysis we also find a linear chromosome

arrangement if only ori has a fixed position. In this case ter is free to

move but its spatial position is confined by the configuration of the

remaining parts of the chromosome, see Figs. 4C and 4D. This

indicates that the experimentally observed fixed position of ter does

not imply that ter is indeed anchored. However, if the position of ter

is not fixed the chromosomal configuration is more sensitive to the

size-distribution of topological domains. At this point it should be

mentioned that in order to get linear chromosomal arrangements

that are in agreement with the experimental data of Ref. [1] it is

necessary to keep the position of at least one DNA locus fixed.

In E. coli the chromosome arrangement strongly depends on the

growth-stage. Newborn cells show (at least under the conditions of

Ref. [9] and sufficiently large topological domain sizes) a linear

configuration similar to that observed in C. crescentus. Under the

same experimental conditions ori and ter then move toward midcell

upon initiation of replication. The results of our simulations

suggest that in this case the positioning of ori and ter leads (on

average) to a more confined arrangement of the chromosome (in

the space between ori and ter), see Fig. 7A. In this way the space

extending from the poles to the positions of ori respectively ter

contains less DNA thus possibly making space for the newly

replicated chromosomal arms. However, because of the large

standard deviations of this configuration the individual realizations

might deviate significantly from the average one leading to a less

confined chromosome.

Once replication is finished, the old ori moves back to the pole,

while ter stays in midcell leading to a chromosome that is mainly

confined to one cell half, see Fig. 7B. In this way ori and ter

positioning might contribute to chromosome segregation. Finally,

our results indicate that the observed conservation of the left-ori-

right orientation of the chromosome is not a consequence from

positioning of ori and ter suggesting that additional mechanisms are

responsible for this.

Our model can, in principle, be generalized to describe

chromosomal configurations in faster growing cells that have

several replication forks. However, from a computational point of

view this is highly challenging since the set of transformations by

which the random walks are generated (for details see Materials

and Methods) have to guarantee that mother and daughter strands

stay connected at the replication fork by preserving the self-

avoidance of the chain. This is a non-trivial task if the site of the

replication fork itself is transformed. Experimentally it has been

seen that under these conditions complicated localization patterns

or ori and ter emerge [28]. It is unknown if tethering of the

additional ori and ter is required to explain the observations.

However, from our above finding that positioning of ori is already
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sufficient to fix the position of ter we do not expect that is

necessarily the case.

Materials and Methods

In our model for compacted DNA the chromosome is

represented by a self-avoiding random walk. Each step represents

a DNA-blob. To construct an ensemble of such walks we start

from a self-avoiding rectangular loop of minimal length passing

through ori and ter. This walk is then elongated by breaking a

randomly chosen bond and replacing it by a hook, see Fig. S7. In

this way two steps are added to the walk. If one of the chosen sites

was already occupied before, the transformation is rejected to

ensure that the walk remains self-avoiding. The procedure is

repeated until the chain has the desired length. The volume

constraint is implemented by allowing only bead positions inside

the volume. Similarly, chromosome configurations with fixed ori

but free ter are realized by requiring that the random walks start

and end at ori.

To get ensembles of self-avoiding walks that have good statistics

one has to appropriately select the set of transformations that

operates on the random walk, for details see SI text S1. We have

used the scheme introduced by Madras, Orlitsky, and Shepp [20]

that include ‘‘bead flips’’ [45] and ‘‘crankshafts’’ [46] moves, see

Figs. S8 and S9. The MOS algorithm produces an ergodic

ensemble of self-avoiding walks of fixed length and with fixed ends

constraints. We compared the results of the MOS scheme with

results obtained from exact enumeration to check that the

approximation scheme produces good statistics, for details see SI

text S1 and Figs. S10, S11 and S12.

Supporting Information

Text S1

Found at: doi:10.1371/journal.pone.0013806.s001 (0.20 MB

DOC)

Figure S1 Dependence of the average DNA configura-
tion in C. crescentus on the number of blobs as obtained
from numerical simulations of compacted DNA. The z-

position of an average chromosome configuration was calculated

from our model in which compacted DNA is represented by a

chain of blobs. The position on the chromosome is parameterized

by the contour length s (measured in units of DNA length L). The

configurations shown are for different number of blobs with

diameter db~30nm. ori and ter have fixed positions at zori~0:1H
and zter~0:9H.

Found at: doi:10.1371/journal.pone.0013806.s002 (0.73 MB TIF)

Figure S2 Average subcellular position of genes as
function of their position on the chromosome in
newborn E. coli cells as obtained from numerical
simulations of compacted DNA. The figure shows the z-

position of an average chromosome configuration as function of

the contour length s. In our model a chain of blobs represents the

compacted DNA. Configurations shown are for different blob

diameters by assuming a constant number (2000) of blobs. ori and

ter are positioned at opposite cell poles (zori~0 and zter~H ). The

insets show the (rescaled) standard deviations from the mean

configurations as function of s.

Found at: doi:10.1371/journal.pone.0013806.s003 (0.74 MB TIF)

Figure S3 Dependence of the average chromosome
configuration in newborn E. coli cells on the cellular
volume. The z-position (as function of the contour length s) of an

average chromosome configuration was calculated from our model

in which compacted DNA is represented by a chain of blobs. In

the figure the volume is varied by changing the length of the cells

(H~1 . . . 5mm) by keeping the aspect ratio of the cross section

fixed. Chromosome length is varied together with the volume such

that the DNA density in the volume remains constant. Further-

more, the number of compaction proteins is assumed to be

growth-rate independent. The chromosome is represented by

2000 blobs with a volume-dependent diameter (db~30:::88nm).

Ori and ter are positioned at opposite cell poles (zori~0 and

zter~H ). The insets show the (rescaled) standard deviations from

the mean configurations as function of s.

Found at: doi:10.1371/journal.pone.0013806.s004 (0.22 MB TIF)

Figure S4 Dependence of the average DNA configura-
tion on the number of blobs for newborn E. coli cells as
obtained from numerical simulations of compacted
DNA. The figure shows the z-position of an average chromosome

configuration as function of the contour length s. The configura-

tions shown are for different number of blobs with diameter

db~30nm. Ori and ter are positioned at opposite cell poles (zori~0
and zter~H ).

Found at: doi:10.1371/journal.pone.0013806.s005 (0.76 MB TIF)

Figure S5 Average DNA configuration in a newborn E.
coli mutant cell where ori is located at 6 o’clock and ter
at 3 o’clock on the chromosome. Both ori and ter are located

at opposite cell poles (zori~0 and zter~H). In the simulations the

chromosome is represented by a self-avoiding chain of blobs with

diameter db~30nm. The chain consists of 2000 blobs: 1500 blobs

for the strand connecting ori and ter and 500 blobs for the strand

connecting ter and ori. Cell size is 33db|33db|33db (correspond-

ing to 1mm3). The error bars denote standard deviations from

mean position.

Found at: doi:10.1371/journal.pone.0013806.s006 (0.69 MB TIF)

Figure S6 Possible DNA configuration in C. crescentus.
Schematic illustration of a DNA configuration that could give rise

to the observed small deviations from the linear correlation

between position on the chromosome and in the cellular volume.

The ori to ter strand preferably stays close to ter, while the ter to ori

strand stays close to ori. The figure on the right shows the

corresponding z-position of the genes as function of their position

on the chromosome (solid curves). The dashed curve represents a

perfect linear correlation. In the experimental data the deviation

from the linear correlation is much smaller than shown here.

Found at: doi:10.1371/journal.pone.0013806.s007 (0.14 MB TIF)

Figure S7 Construction scheme for SAWs. Starting from a

minimal self-avoiding walk that connects ori and ter a randomly

chosen bond is deleted. If the (randomly chosen) neighboring

lattice sites are free (gray) they are incorporated into the random

walk. In this way, the chain is closed again and ori and ter remain at

their original positions.

Found at: doi:10.1371/journal.pone.0013806.s008 (0.65 MB TIF)

Figure S8 Flip- and crankshaft-transformations for
SAWs. A flip of the gray bead converts the random walk 2122

(a) into 2212 (b). In (c) the gray bead is not allowed to flip. This

problem is resolved by a crankshaft move that transforms 212�112
into 2�11212 (d). Here, the random walk is represented by a string of

symbols where, e.g. 1 represents ‘‘up’’, �11 ‘‘down’’, 2 ‘‘right’’, and �22
‘‘left’’.

Found at: doi:10.1371/journal.pone.0013806.s009 (0.70 MB TIF)

Figure S9 3-dimensional crankshaft-transformation.
Three-dimensional crankshaft-transformations introduce new

symbols into the random chain. In the example shown, the
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random walk 221�22 is transformed into �11211, thus replacing a 2,�22
pair by a 1,�11 pair. This is accomplished by the following sequence

of transformations (shown from left to right): a crankshaft move

(221�22?231�33), followed by two bead flips (231�33?321�33?32�331)

and another crankshaft move (32�331?�11211). All moves operate on

the gray beads. The black beads are fixed.

Found at: doi:10.1371/journal.pone.0013806.s010 (0.60 MB TIF)

Figure S10 Direct comparison of the BF and the MOS
method. Starting from a common initial configuration 1000 BF-

and MOS-moves were performed to obtain 50000 different SAWs

of length 2000 confined to a volume of V~32|32|32 steps.

The figure shows the mean z(s) curves obtained by these methods

by averaging over the 50000 samples. The mean standard

deviations are 0.07 (BF) and 0.19 (MOS) showing that the BF

method produces walks that stay much closer to the initial

configuration.

Found at: doi:10.1371/journal.pone.0013806.s011 (1.04 MB

TIF)

Figure S11 Comparison of the MOS algorithm with
exact enumeration by using the radial density of self-
avoiding walks. Figure A shows the density of self-avoiding

loops generated by the MOS algorithm. The length of the random

walks was 10jp for the strand connecting origin and terminus and

10jp for the strand connecting terminus and origin. The distance

between terminus and origin is 2jp (along the z-axis). Figure B

shows the difference between the densities of the random ensemble

and the exact ensemble. The MOS method reproduces the exact

curves quite well except for a small region between ori and ter that

is slightly underrepresented.

Found at: doi:10.1371/journal.pone.0013806.s012 (0.24 MB TIF)

Figure S12 Comparison of the MOS algorithm with
exact enumeration by using the statistics of the z-
positions. The figure shows average z-positions of self-avoiding

random walks as calculated with the MOS algorithm (red curve)

and by systematic enumeration (green curve). Data are for the

same parameter values as Fig. S11.

Found at: doi:10.1371/journal.pone.0013806.s013 (0.68 MB TIF)
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