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Abstract

There is clear evidence that the prefrontal cortex is strongly involved in executive processes and 

that dopamine can influence performance on working memory tasks. Although, some studies have 

emphasized the role of striatal dopamine in executive functions, the role played by prefrontal 

dopamine during executive tasks is unknown. In order to investigate cortical dopamine 

transmission during executive function, we used D2-dopamine receptor ligand [11C]FLB 457 PET 

in healthy subjects while performing the Montreal Card Sorting Task (MCST). During the retrieval 

with shift task of the MCST, the subjects had to match each test card to one of the reference cards 

based on a classification rule (color, shape or number) determined by comparing the previously 

viewed cue card and the current test card. A reduction in [11C]FLB 457 binding potential in the 

right dorsal anterior cingulate cortex (ACC) was observed when subjects performed the active task 

compared to the control task. These findings may suggest that right dorsal ACC dopamine 

neurotransmission increases significantly during the performance of certain executive processes, 

e.g., conflict monitoring, in keeping with previous evidence from fMRI studies showing ACC 

activation during similar tasks. These results may provide some insights on the origin of cognitive 

deficits underlying certain neurological disorders associated with dopamine dysfunction, such as 

Parkinson’s disease and schizophrenia.
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Introduction

There is clear evidence that damage to the prefrontal cortex impairs performance on 

executive function tasks (Milner, 1963; Nelson, 1976; Stuss et al., 2000) and functional 

neuroimaging investigations support these observations (Buchsbaum et al., 2005; Konishi et 

al., 2002; Lie et al., 2006; Monchi et al., 2001). In a previous fMRI study, we demonstrated 

that performing the Wisconsin Card Sorting Task activates prefrontal areas including the 

dorsolateral prefrontal cortex (DLPFC), the ventrolateral prefrontal cortex (VLPFC), and the 

anterior cingulate cortex (ACC) (Monchi et al., 2001). More specifically, the DLPFC is most 

engaged during the provision of feedback after each matching response, a fact which is 

consistent with the proposed role of this region in the monitoring of events in working 

memory (Petrides, 2000). VLPFC and ACC are more engaged during negative feedback 

reception and we hypothesized that these activations are related to preparation to shift set 

and monitor conflicts of previous versus current rule of classification, respectively. The 

functional specificity of different prefrontal regions has been further investigated and 

supported by fMRI studies that used the Montreal Card Sorting Task (MCST), a test 

specifically designed for the investigation of the different subcomponents of executive 

function, i.e., retrieval of information and set-shifting (Monchi et al., 2006b; 2007).

While fMRI studies can identify task-specific neuronal correlates with high temporal and 

spatial resolutions, they cannot provide information on the neurochemical bases of a given 

function. Identifying the type of neurotransmission involved in executive function is crucial 

for understanding its underlying mechanism. Since it is known that dopaminergic 

modulation can alleviate or worsen the performance on working memory tasks (Fournet et 

al., 2000; Kimberg et al., 1997; Kimberg and D’Esposito, 2003; Kulisevsky et al., 1996; 

Mehta et al.,1999, 2001), this neurotransmitter has received particular attention.

Changes in [11C]raclopride binding potential (BP) provide a reasonable estimate of synaptic 

dopamine release in the striatum (Farde et al.,1986). This method has been widely used for 

investigating the striatal dopaminergic transmission during various cognitive tasks (Goerendt 

et al., 2003; Ko et al., 2008; Monchi et al., 2006a; Ouchi et al., 2002; Zald et al., 2004). 

However, although [11C]raclopride may offer important insight on striatal dopamine 

neurotransmission during executive functions (Ko et al., 2008; Monchi et al., 2006a), its low 

affinity limits its application to extrastriatal regions such as the prefrontal brain (Goldman-

Rakic et al., 2000).

As revealed by studies in primates, despite a lower density of dopamine receptors relative to 

the striatum, cortical dopamine plays a critical role in executive function (Murphy et al., 

1996; Watanabe et al., 1997). In humans, converging evidence suggests that cortical 

dopamine is involved with high-level cognition. Performing working memory task has been 

shown to increase dopamine release in the frontal cortex (Aalto et al., 2005a; Sawamoto et 

al., 2008) and ACC dopamine receptor density has been shown to be significantly correlated 

with performance level on the Wisconsin Card Sorting Task in normal healthy adults 

(Lumme et al., 2007). To address the role of the prefrontal dopamine during set-shifting 

tasks (e.g. MCST) in healthy human subjects, we used [11C]FLB 457, a chemical compound 
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with a greater affinity (Kd =20 nM) for D2 receptors which allows evaluation of extrastriatal 

dopamine release (Aalto et al., 2005a; Olsson et al., 1999; Sudo et al., 2001). In previous 

reports, Olsson et al. (2004) have shown that [11C]FLB 457 BP calculated by simplified 

reference tissue model (Gunn et al.,1997; Lammertsma and Hume,1996; Sudo et al., 2001) 

may provide a reasonable estimate of receptor densities in different extrastriatal areas (e.g. 

cingulate cortex, frontal cortex, thalamus, temporal cortex) consistent with postmortem 

study with [125I]epidepride (Kessler et al., 1993). Similarly, [11C]FLB 457 has been 

demonstrated to be sensitive in detecting changes in extrastriatal endogenous dopamine 

concentration in non-human primates (Chou et al., 2000) and humans (Aalto et al., 2005a,b; 

Hagelberg et al., 2004; Montgomery et al., 2007). Thus, it appears that [11C]FLB 457 is 

well-suited to capture binding differences in prefrontal areas.

Based on previous anatomical and functional imaging studies with card sorting tasks 

(Buchsbaum et al., 2005; Konishi et al., 2002; Koski and Paus, 2000; Lie et al., 2006; 

Monchi et al., 2001, 2007), we hypothesized that performance of the MCST would be 

associated with increases in dopamine release (decrease BP of [11C]FLB 457) in different 

prefrontal areas such as the DLPFC (BA 9/46) and ACC (BA 32/24).

Method

Subjects and experimental design

Eight healthy young right-handed adults (20–33 years, 4 males) participated in the present 

study after having given written informed consent. They were investigated with [11C]FLB 

457 PET while performing the MCST to measure changes in cortical dopamine release. 

Each subject underwent two [11C]FLB 457 PET scans at the same time on two separate days 

while they performed either the MCST (retrieval with shift) or the control task (Fig. 1) (Ko 

et al., 2008). Scan order was counterbalanced across subjects. The experiments were 

approved by the Research Ethics Committee of the Centre for Addiction and Mental Health.

Cognitive task

The tasks were displayed via a video eyewear (VR920; Vuzix Corporation, New York, USA) 

placed on the plastic thermal mask. Details of the current task have also been described in 

our previous studies (Ko et al., 2008). In the retrieval with shift condition of the MCST (the 

active task, Fig. 1b), four reference cards were displayed in a row at the top of the screen in 

all trials. Each one of them encompasses three kinds of characteristics, i.e., number (one to 

four), shape (triangle, star, cross and circle) and color (red, green, yellow and blue). Their 

position changed pseudo-randomly on every trial. A block of twenty classification trials was 

preceded by the brief presentation of a single cue card. The cue card did not reappear and 

had to be remembered throughout the block. On each classification trial, a new test card was 

presented below the reference cards and the subject had to match the test card to one of the 

four reference cards using one of four buttons with the right dominant hand. Matching each 

test card to one of the reference cards was based on a classification rule (color, shape or 

number) determined by making a comparison between the previously viewed cue card and 

the current test card (Fig. 1b). The test card and the cue card shared only one characteristic 

among number, shape and color. The test cards on consecutive trials never shared the same 
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attribute with the cue card, resulting in a pseudo-random sequence which allowed for a set-

shift on each trial. Each selection of the reference card was followed by a one-second 

positive (white) or negative (dark) feedback. Five blocks of twenty classification trials (total: 

100 trials) were followed by a two-minute break. A different cue card was presented before 

each block. At the end of each block, the subjects were asked if they remembered the cue 

card.

In the control task, the test card was identical to one of the reference cards so that the subject 

simply selected the identical card without having to find an appropriate rule for classification 

as was required in the active task (Fig. 1c).

Subjects underwent a training session of the task before each PET session in order to reduce 

a possible learning effect. Error trials were counted as number of incorrect responses and 

they were averaged for each scan. The reaction time was measured from the presentation of 

new test card to the selection of the reference card. All values are presented as mean±SE.

Positron emission tomography

PET scans were obtained with a high resolution PET CT, Siemens-Biograph HiRez XVI 

(Siemens Molecular Imaging, Knoxville, TN, U.S. A.) operating in 3D mode with an in-

plane resolution of approximately 4.6 mm full width at half-maximum. To minimize 

subject’s head movements in the PET scanner, we used a custom-made thermoplastic 

facemask together with a head-fixation system (Tru-Scan Imaging, Annapolis). Before each 

emission scan, following the acquisition of a scout view for accurate positioning of the 

subject, a low dose (0.2 mSv) CT scan was acquired and used for attenuation correction.

[11C]FLB 457 was injected into the left antecubital vein over 60 s and emission data were 

then acquired over a period of 90 min in 15 one-minute frames and 15 five-minute frames. 

The injected amount was 10.19±0.16 mCi for the active condition and 10.42±0.16 mCi for 

the control condition.

High-resolution MRI (GE Signa 1.5 T, T1-weighted images, 1 mm slice thickness) of each 

subject’s brain was acquired and transformed into standardized stereotaxic space (Talairach 

and Tournoux, 1988) using nonlinear automated feature-matching to the MNI template 

(Collins et al., 1994; Robbins et al., 2004).

PET frames were summed, registered to the corresponding MRI (Woods et al., 1993) and 

transformed into standardized stereotaxic space (Talairach and Tournoux, 1988) using the 

transformation parameters of the individual structural MRIs (Collins et al., 1994; Robbins et 

al., 2004). Voxelwise [11C]FLB 457 BP was calculated using a simplified reference tissue 

(cerebellum) method (Gunn et al., 1997; Lammertsma and Hume, 1996; Sudo et al., 2001) to 

generate statistical parametric images of change in BP (Aston et al., 2000). This method uses 

the residuals of the least-square fit of the compartmental model to the data at each voxel to 

estimate the standard deviation of the BP estimate. Parametric images of [11C]FLB 457 BP 

were smoothed with an isotropic Gaussian of 6 mm full width at half-maximum to 

accommodate for intersubject anatomical variability. A threshold level of t>4.1 was 

considered significant (p<0.05, 2-tailed) corrected for multiple comparisons (Friston,1997; 
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Worsley et al.,1996) for the regions with a priori hypothesis, i.e., DLPFC and ACC and a 

more stringent threshold (t>4.9) when the search was extended to the entire brain. Regions 

within our a priori hypothesis were extracted from bilateral Brodmann areas (BA) 32/24 

(ACC), 9/46 (DLPFC) using the WFU PickAtlas (SPM extension toolbox). The volume of 

interest included 6624 voxels and 52,992 mm3. As stated above, the reason for choosing BA 

32/24 and 9/46 was based on their consistent activations during sorting task in the previous 

fMRI studies conducted by our and other groups (Buchsbaum et al., 2005; Konishi et al., 

2002; Lie et al., 2006; Monchi et al., 2001, 2007). The functional connectivity between these 

regions and their contribution has been well documented in previous anatomical and 

functional imaging studies (for review, see Koski and Paus, 2000).

Results

MCST performance

There was no significant difference in task performance; subjects performed with a mean 

accuracy of 96.68±0.95% in the active task and 98.49±0.53% in the control task (paired 

t(7)=1.76, p>0.1). Depending on individual speed, subjects completed a mean of 1471± 45 

classification trials for the active task and 1429±36 trials for the control task (p>0.05). The 

mean reaction time was 1199±141 ms in the active task and 844±97 ms in the control task 

(p>0.05). Thus, we can safely assume that the observed dopamine release could not be the 

consequence of different motor performances.

PET results

Performing the active task of MCST decreased [11C]FLB 457 BP in the right ACC (X=6, 

Y=26, Z=40) (t=4.3; p<0.05, corrected for multiple comparison) compared to the control 

task (Fig. 2). The mean BP of [11C]FLB 457 extracted from a spherical region of interest 

(r=3 mm) centered at the statistical peak revealed by the parametric map was 0.292±0.042 

during control task and 0.199±0.049 during active task (paired-t test, t(7)=3.85, p=0.006, 

Fig. 3).

While at more stringent threshold, voxel-based analysis did not reveal changes in other 

prefrontal areas defined in our a priori hypothesis, when using a less conservative threshold 

(uncorrected for multiple comparisons) a change in binding was observed in the left DLPFC 

(X=−22, Y=20, Z=44; t=3.7). The mean BP of [11C]FLB 457 extracted from a spherical 

region of interest (r=3 mm) centered at the statistical peak revealed by the parametric map 

was 0.229± 0.037 during the control task and 0.171±0.046 during the active task (paired-t 
test, t(7)=3.16, p=0.016).

When the search was extended to the entire brain, to areas not defined by our a priori 
hypothesis, a significant area of decrease in [11C]FLB 457 binding was identified at the level 

of the left occipital cortex (OCC) (X=−10, Y=−98, Z=−10) (t=5.1; p<0.05, corrected for 

multiple comparison). The mean BP of [11C]FLB 457 in this region was 0.323±0.049 during 

the control task and 0.255±0.046 during the active task (paired-t test, t(7)=2.81, p=0.026).

Correlation analyses did not reveal any relationship between extrastriatal [11C]FLB 457 BP 

and performance measures such as error trials and reaction times.
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Discussion

In the present study, performing the active task of the MCST decreased [11C]FLB 457 BP in 

the right dorsal ACC compared to the control task. This finding confirms our previous 

observation that ACC is functionally involved during performance of the MCST (Monchi et 

al., 2007) and further extends our initial working hypothesis that ACC dopamine may play a 

relevant role during executive functioning.

A distinction there exists in the literature between the functions of the supracallosal (i.e. 

dorsal), rostral and subcallosal regions of the ACC (Devinsky et al., 1995; Koski and Paus, 

2000; Mayberg, 1997; Vogt et al., 1995). It has been proposed that dorsal regions of the 

ACC are involved in cognition while rostral and subcallosal portions of the ACC are 

engaged in emotional behavior (Devinsky et al., 1995; Koski and Paus, 2000).

There is a consensus that dorsal ACC is one of the core components associated with 

executive function, but its precise role is still a matter of debate (Bush et al., 2000). In a 

meta-analysis of neuroimaging studies of executive function, dorsal ACC was activated 

during task-switching, response suppression, and the Wisconsin Card Sorting Task 

(Buchsbaum et al., 2005). Stuss and Alexander (2007) reported that lesions of frontal medial 

cortex that comprise ACC impairs several cognitive task performances including simple and 

choice reaction time, feature integration, verbal fluency and Stroop task (naming color 

patches and incongruent interference) as well as some tasks measuring sustained attention. 

Botvinick et al. (2004) also argued that dorsal ACC is involved in several cognitive tasks that 

engage response override, underdetermined responding and error commission. Other authors 

have emphasized the role of ACC in detecting and processing error signals (Debener et al., 

2005; Luu et al., 2000). The common underlying feature of the aforementioned tasks and our 

MCST is that the subject has to monitor conflicts because previous rule classification and 

current response-rule are different. Our findings suggest that dopamine neurotransmission in 

ACC may play an important role in this type of executive function often described as 

“conflict monitoring” (Botvinick et al., 1999; Carter et al., 1998; MacDonald et al., 2000).

However, while ACC may be involved in detecting and processing error signals (Debener et 

al., 2005; Luu et al., 2000), we did not find a significant correlation between observed 

changes of [11C]FLB 457 BP in the right ACC and error trials on the MCST. This may be 

explained by the functionally distinct anatomy of the ACC. In fact, while the dorsal ACC 

(where our peak is located) is prevalently engaged during conflict monitoring (Kerns et al., 

2004), the more rostral ACC is involved in error-signal processing (Lie et al., 2006; Taylor et 

al., 2006). Therefore, it is likely that the observed dopamine release in the right dorsal ACC 

was triggered when conflict monitoring was required and that it was unrelated to error-signal 

processing.

This interpretation is in keeping with other fMRI studies manipulating error-likelihood and 

conflict level (van Eimeren et al., 2006) which showed an increased right dorsal ACC BOLD 

signal as conflict load increases and error-likelihood decreases. Thus, it is likely that 

dopamine release may be involved during conflict monitoring rather than in error-signal 

processing or prediction of error-likelihood. However, while these observations may find 
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some evidence in previous literature, it is also true and important to keep in mind that we 

cannot exclude the possibility that other aspects of cognitive function of MCST may have 

played a role in the observed dopamine release. In fact, a number of other executive 

functions such as monitoring information held in working memory, rule extraction, 

subsequent rule application and inhibition of response conflict induced by the non-relevant 

stimulus features may have contributed to this dopaminergic changes.

An interesting finding of the present study is the unilateral release of dopamine in the right 

ACC. We and others have observed this in previous fMRI studies. We showed that only the 

right ACC was activated when comparing retrieval with shift (active task in the present 

study) versus continuous shift (Monchi et al., 2007) during the MCST. Similarly, Lutcke and 

Frahm (2008) reported that while the right ACC was activated for correct inhibitions of go–

no go task implicating conflict monitoring, error-related processes activated ACC bilaterally. 

This is also in agreement with MacDonald et al. (2000) who reported that only the right 

ACC was activated during response to the incongruent stimuli of the Stroop task. These 

observations seem to suggest that right ACC may play an important role in this type of 

executive function described as “conflict monitoring”.

The lack of a strong significant effect in other prefrontal areas other than ACC should be 

interpreted carefully since MCST has been previously shown to be involved with other 

lateral prefrontal cortices (Monchi et al., 2007). In fact, while voxel-based analysis corrected 

for multiple comparisons did not reveal significant changes, with a less stringent threshold 

(uncorrected for multiple comparisons) changes in binding could be observed in one the 

areas defined by our a-priori hypothesis, i.e. the DLPFC. The causality of left DLPFC in set-

shifting has been recently confirmed in a transcranial magnetic stimulation–intervention 

study (Ko et al., 2008). A possible explanation on why DLPFC did not survive correction for 

multiple corrections may have multiple explanations. In fact, in demonstrating relationships 

between prefrontal areas, Koski and Paus (2000) have described that increases in activity 

within a particular subdivision of the cingulate occur most often along with increases in 

activity in specific regions of the frontal cortex. In particular, the relationship between 

supracallosal (i.e. dorsal) cingulate and the middle frontal gyrus is significantly stronger 

when the difficulty level of the task is greater. Thus, more difficult tasks may demand the 

joint efforts of both supracallosal cingulate and middle frontal cortex areas. Although our 

subjects during the active task appeared to take more time to respond than in control task 

due to the higher cognitive demand (1199±141 ms versus 844±97 ms), the lack of significant 

difference between these two conditions and the high accuracy of their performance during 

the MCST (active task: 96.68%; control task: 98.49%) suggest that the training session of 

the MCTS (before PET) may have significantly reduced the task challenge for them and 

possibly produced a ceiling effect preventing the detection of reasonable correlations 

between behavior and imaging. In alternative, another possible explanation could be 

methodological and linked to the different density of D2 and D1 receptors in the cortex 

where there are 20-fold more D1 receptors than D2 receptors (Goldman-Rakic et al., 2000). 

This agrees with the fact that in primates, performance on a working memory task has been 

shown to be impaired by D1 receptor antagonist administration to DLPFC, but not by D2 

receptor antagonist (Brozoski et al., 1979; Sawaguchi and Goldman-Rakic, 1991, 1994; 

Seamans et al.,1998). Since [11C]FLB 457 is mainly a D2-receptor antagonist, it is possible 
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that this radiotracer may have not been sensitive enough to pick-up significant dopaminergic 

changes over certain areas of the prefrontal cortex (i.e. DLPFC) that were not significantly 

engaged.

When we extended the search to the entire brain, outside PFC regions, the left OCC (BA 

17/18) also showed a significant increase in dopamine release during the active task. 

Although this region has been consistently reported to present increased activation during 

imaging studies associated with sorting tasks (Buchsbaum et al., 2005) and it is known that 

visual stimulation can induce detectable changes in dopamine activity in the OCC (Muller 

and Huston, 2007), the relationship between dopamine and sorting tasks at the level of this 

occipital region is unclear at the moment. One possible explanation could be a greater 

attentional effect due to the higher task demands.

In conclusion, the present study showed that performing the MCST increased dopamine 

release in selective cortical areas. We propose that the dopaminergic transmission in the right 

ACC may be related to conflict monitoring during set-shifting processes. These results may 

provide some insights on the origin of cognitive deficits underlying certain neurological and 

psychiatric disorders associated with dopamine dysfunction, such as Parkinson’s disease and 

schizophrenia.
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Fig. 1. 
Study design. (a) Each subject underwent two [11C]FLB 457 PET scans at the same time on 

two separate days while performing either the MCST (retrieval with shift) or the control task 

(Fig. 1). Scan order was counterbalanced across subjects. Participants started the MCST 5 

min before the radioligand injection and continued until the end of PET scanning with two-

minute breaks between blocks; (b) active task; (c) control task.
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Fig. 2. 
Active versus control tasks condition. Sagittal (X=6) and coronal (Y=24) section of the 

statistical parametric map of the change in [11C]FLB 456 BP overlaid upon the average MRI 

of all subjects in standardized stereotaxic space. The figure displays the significant area of 

dopamine changes during active task performance compared to the control task at the level 

of dorsal ACC.
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Fig. 3. 
(a) Individual ACC-[11C]FLB 457 BP and (b) mean±SE of ACC-[11C]FLB 457 BP during 

control and active task extracted from a spherical region of interest (r=3 mm) centered at the 

x, y and z coordinates of the statistical peak (X=6, Y=26, Z=40) revealed by the parametric 

map (paired-t test, t(7)=3.85, *p=0.006).
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