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Canada, 7Department of Social Medicine, University of Bristol, Bristol, UK, 8Department of Epidemiology and Community
Medicine, University of Ottawa, Ottawa, Ontario, 9Department de Médecine Sociale et Préventive, Université de Montréal,
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Background Contemporary bioscience sometimes demands vast sample sizes and
there is often then no choice but to synthesize data across several
studies and to undertake an appropriate pooled analysis. This same
need is also faced in health-services and socio-economic research.
When a pooled analysis is required, analytic efficiency and flexibil-
ity are often best served by combining the individual-level data
from all sources and analysing them as a single large data set.
But ethico-legal constraints, including the wording of consent
forms and privacy legislation, often prohibit or discourage the shar-
ing of individual-level data, particularly across national or other
jurisdictional boundaries. This leads to a fundamental conflict in
competing public goods: individual-level analysis is desirable from
a scientific perspective, but is prevented by ethico-legal consider-
ations that are entirely valid.

Methods Data aggregation through anonymous summary-statistics from
harmonized individual-level databases (DataSHIELD), provides a
simple approach to analysing pooled data that circumvents this
conflict. This is achieved via parallelized analysis and modern dis-
tributed computing and, in one key setting, takes advantage of the
properties of the updating algorithm for generalized linear models
(GLMs).

Results The conceptual use of DataSHIELD is illustrated in two different
settings.
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Conclusions As the study of the aetiological architecture of chronic diseases
advances to encompass more complex causal pathways—e.g. to in-
clude the joint effects of genes, lifestyle and environment—sample
size requirements will increase further and the analysis of pooled
individual-level data will become ever more important. An aim of
this conceptual article is to encourage others to address the chal-
lenges and opportunities that DataSHIELD presents, and to explore
potential extensions, for example to its use when different data
sources hold different data on the same individuals.

Keywords Pooling, analysis, meta-analysis, individual-level, study-level,
generalized linear model, GLM, ethico-legal, ELSI, identification,
disclosure, distributed computing, bioinformatics, information
technology, IT

Introduction
Most known associations between genetic variants
and chronic diseases reflect weak effects with typical
allelic odds ratios in the range 1.1–1.4.1–3 The reliable
identification of such effects demands vast data
sets.1–5 Case–control studies including thousands of
cases are required even when interest focuses on the
simplest situation: the detection of the direct effects
of single nucleotide polymorphism (SNP) variants.1–3

Furthermore, when, as is likely, scientific emphasis
starts to focus on the study of gene–environment
and gene–gene interactions and the exploration of
causal pathways more comprehensively, tens of thou-
sands of cases will often be required.1 Tens of thou-
sands of subjects can also be required to study a
quantitative phenotype (e.g. measured blood pres-
sure), because allelic effect sizes may be as small as
one-tenth of a standard deviation, or even less.6–8

To achieve sample sizes as large as this, it is often
necessary to pool data across multiple studies, and
large collaborative consortia have been responsible
for much of the recent progress in human population
genomics.6,8–16 Large-scale data pooling is equally im-
portant in other settings too: in mainstream epidemi-
ology17—particularly in the analysis of formal
networks of studies18,19—in public health and
health-services research, and in comparative interna-
tional analysis in the social sciences, including coor-
dinated economic surveillance.20,21 Such pooling not
only supports the attainment of large sample sizes but
can also be used to reduce bias arising from access to
a restricted subset of data. But, regardless of its pur-
pose, the sharing of data always raises important
ethico-legal issues even when the analysis is mutually
agreed. Data privacy, for example, is a hot topic in
genomic epidemiology,22,23 as well as being a concern
for government, industry,24,25 the media and even the
general public.26 Biomedical science has responded
cautiously to these concerns, ensuring that all
ethico-legal stipulations are met and that new issues
are dealt with carefully, as and when they arise.23,27

Given this caution, it is perhaps surprising that there
has been such striking recent progress in detecting
genetic associations with complex diseases:3,28 ‘in
the past three years genome-wide association studies
(GWAS). . .. have reproducibly identified hundreds of
associations of common genetic variants with over
80 diseases and traits (http://www.genome.gov/
gwastudies)’.9 But, in one sense, genomic epidemi-
ology has been fortunate. The class of pooled analysis
that has underpinned many of the recent suc-
cesses,6,8–16 just happens to be consistent with the
ethico-legal frameworks that large-scale bioclinical
studies have had in place over many years. That is,
most such studies are permitted to take part in col-
laborative GWAS based on study-level meta-analysis
(SLMA).29,30 Here, investigators from each study per-
form a separate GWAS, and then share the associ-
ation statistics for each SNP with a designated
analysis centre (AC); but the raw data encoding
SNP and disease status are not shared.6,7,11 The AC
then performs a meta-analysis to estimate the genetic
associations across the consortium as a whole. But,
bioscience will inevitably move on from its current
focus on simple associations between genetic variants
and disease-related traits, to explore causal pathways
more thoroughly: e.g. by incorporating gene–environ-
ment interactions. This will increase sample size
requirements further,1 making data pooling yet more
essential. In addition, data analysis will become
increasingly unpredictable and, therefore, exploratory.
For example, in a conventional meta-analysis-
based GWAS it is clear a priori that each study
must generate summary statistics to reflect the
association of the disease of interest with each of a
large number of designated SNPs (e.g. 1 million).
This is onerous but it can be pre-specified ahead of
time. The required set of summary statistics is
far more difficult to predefine if the analysis is to
involve gene–environment interactions; environ-
mental and lifestyle factors may be parameterized
in many different ways, and identification of the
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appropriate parameterization often demands initial
exploratory analysis.

Analytic and ethico-legal considerations
Large-scale statistical pooling is typically achieved in
one of two ways.29,30 First, the individual level data
from each of the original data sources can be aggre-
gated to produce one combined data set. This is
then analysed as if it were generated by a single
study, though study-to-study heterogeneity may ne-
cessitate the inclusion of study-specific model terms.
This approach may be called individual-level meta-
analysis (ILMA). Secondly, appropriate summary stat-
istics can be generated from separate analyses carried
out on each independent study, and these then pooled
in an SLMA. SLMA is quick and convenient when
based on summary statistics that already exist or
can be easily derived de novo. It is therefore the ap-
proach to meta-analysis that is often adopted in
public health research, the meta-analysis of rando-
mized controlled trials and, recently, in the pooling
of GWAS studies.6–8,29–31 But, it has important limi-
tations. First, although it is very convenient to use
summary statistics that are already in the public
domain, it is important to recognize that they can
be biased by selective reporting dependent on find-
ings. In the field of genomic epidemiology this can
be particularly problematic.32 Secondly, even when
summary statistics are derived de novo, SLMA can be
restrictive.30 The analysis of all but the simplest of
biomedical problems demands a significant element
of exploration, but analysis in a conventional SLMA
is unavoidably restricted to questions that can be ad-
dressed using the particular set of summary statistics
that was initially requested.30 If an important new
question arises, it can only be answered if the inves-
tigators are all prepared to produce the new summary
statistics that are required. This can cause serious
delays.

In consequence, ILMA would often be preferred to
SLMA. But, ILMA raises major ethico-legal chal-
lenges. Most notably the sharing of individual level
data, sometimes termed ‘microdata’,24 may be pro-
hibited in law. In many jurisdictions, individual-
level data are treated as being fundamentally different
to aggregate data, and some individual-level data
cannot cross certain national boundaries.33 Even
when sharing is legal, it may be proscribed by the
consents and ethical approvals under which the data
were initially collected.34 And, even when—in
principle—microdata can be shared, that sharing can
demand protracted applications for access via scien-
tific oversight committees and ethical review
boards.35,36 But these barriers are there for a good
reason; the relevant ethico-legal considerations reflect
important values held by many societies. Individual-
level data can disclose identity,24 they may be highly
sensitive24 and they may yield unexpected scientific
knowledge of great practical or theoretical value,

which the original investigators, funders, national
governments and even study participants might feel
wary about passing on to a third party.23 The funda-
mental importance of these issues is indicated by the
fact that they are addressed by the ethico-legal and
governance provisions of almost all major bioclinical
studies. To illustrate, Box 1 provides exemplar lan-
guage37 from the ethico-legal documentation of a
number of international biobanks and cohort studies,
and from the Model Consent Form prepared by the
Public Population Project in Genomics (P3G).38 The
quotes are not ascribed to particular studies because
anonymity was guaranteed as part of the formal
agreement under which this ethico-legal documenta-
tion was originally shared with P3G.

Resolving a real conflict between
‘competing public goods’
Although ILMA offers many advantages in terms
of analytic flexibility,29,30 it is therefore clear that
ethico-legal restrictions on the transfer of individual-
level data to third parties mean that a conventional
ILMA approach is often impractical. Since this conflict
in ‘competing public goods’ was identified, it has been
discussed extensively by the international bio-
banking community; for example, in forums provided
by P3G, Promoting Harmonization of Epidemiological
Biobanks in Europe (PHOEBE) and Biobanking and
Bio-molecular Resources Research Infrastructure
(BBMRI). These discussions have led to the rapid evo-
lution of a novel approach to analysis that could, in
theory, circumvent the conflict identified. The pro-
posed approach is named DataSHIELD (Data aggrega-
tion through anonymous summary-statistics from
harmonized individual level databases). This concep-
tual article describes the approach proposed, demon-
strates that it works in theory, explores its potential
uses and extensions, and discusses some of the
challenges to be faced in implementing it. It is
our hope that by sharing the concept with the
broader research community, we will encourage
others to work with us in undertaking a pilot
implementation.

Methods
The conceptual underpinning of DataSHIELD is
straightforward. Modern distributed computing is
used to realize the full benefits of ILMA without
physically sharing any individual-level data. All data
remain on the local computers at their studies of
origin and the role of the AC is to coordinate a par-
allelized analysis of the individual-level data on all of
those local computers simultaneously. Critically, the
parallelized analysis is so framed that the only infor-
mation passing back and forth between computers
consists of short blocks of computer code specifying
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the next analysis required, and low-dimensional
summary statistics used in estimating the mathemat-
ical parameters of the model (e.g. means or regres-
sion coefficients). These items disclose neither the
identity, nor the characteristics, of individual study
participants.

Figure 1 provides a schematic representation of the
class of analytic problems that DataSHIELD is aimed
at addressing; here, data are distributed across six
sources. The aim is to estimate the statistical param-
eters that characterize the relationship between an
outcome variable Y and one or more explanatory vari-
ables X. Here the data are horizontally partitioned:25

i.e. each data set includes all of the variables (X and
Y) but on different sets of individuals. A classical
ILMA would involve stacking the data matrices
from each study to produce one large data matrix
(Figure 1a). Under DataSHIELD (Figure 1b), on the
other hand, a series of parallel analyses are underta-
ken simultaneously—using Xj and Yj in the jth
study—and these analyses are synthesized in an ap-
propriate manner to generate estimates pertaining to
all six studies simultaneously.

Figure 2 provides a schematic representation of the
type of IT infrastructure that might typically be

Box 1 Examples of language used in relevant ethico-legal documentation including consent forms and
information leaflets

Examples of language used in the ethico-legal documentation of selected international biobanks
and cohort studies

(1) Language restricting the scope of data sharing

Use of data restricted to researchers participating in the original study

(a) ‘All research data are confidential. . . they will only be used in medical research and [will] remain
in the sole use of the participating researchers.’

Use of data restricted to researchers in one country

(b) ‘Blood and DNA samples may. . .be distributed to laboratories. . .around [country] for further
research.’

(c) ‘Research using the anonymous samples will be done by [researchers] . . .throughout [country].’

(2) Language ensuring data de-identification

(a) ‘[Project] will give researchers restricted access to. . . anonymous samples to conduct [research]. . .’
(b) ‘Researchers authorised by [Project] will have access to . . . coded information. . .’
(c) ‘[Project] researchers or their collaborators at other research institutions. . . may be allowed access

to your DNA sample and medical information, but they will not get. . . links to your identity.’

Examples of language used in the P3G ’Model Consent form’

(1) The need to obtain both scientific and ethical approval

(a) ‘The [Project] gives approved researchers access to data and samples. . . All researchers will only
have access to coded data or samples, in order to protect your privacy. They also have to obtain
prior scientific and ethical approval as described above, and their research must fit the purpose of
the resource/biobank.’

(b) ‘The [Project] expects to receive requests and, if approved, provide access to data’.

Figure 1 Schematic representation of structure of scientific
problems that DataSHIELD is designed to address. (a) One
file: all individual-level data pooled together in one large
data file. (b) Partitioned: individual-level data held in six
separate data files, one for each study
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required to undertake a DataSHIELD analysis. The
computers on which the individual-level data reside
at each of the six centres are depicted as lightly
shaded circles. One centre is designated the AC and
it is a computer (the heavily shaded circle) at that
centre that is used to coordinate and execute the
analysis. Often, the AC will be one of the studies
that are contributing data to the analysis. The analysis
software/middleware in DataSHIELD will require two
primary components: (i) a master process (MP) that
resides on the coordinating computer at the AC; and
(ii) a series of slave processes (SPs), each residing on
the local data computers. This structure will enable
analytic subroutines to be written by the AC, and
then transmitted and activated in a suitable software
environment (e.g. in ‘R’39) on each of the data com-
puters. As an analytic session proceeds, the analysis
will evolve and the algorithm that is active on each SP
will therefore change. It is the MP at the AC that will
control which algorithms are running on which com-
puters at which point in time.

Example 1
Using DataSHIELD to enhance the
flexibility of SLMA
Perhaps the simplest application of DataSHIELD
might entail the replication of a conventional SLMA.
To illustrate this setting, data have been simulated
for six hypothetical studies (for details see Supple-
mentary Data: S1 available at IJE online) that have
assessed peripheral systolic blood pressure (SBP in
mmHg�1) as a quantitative outcome variable and
two explanatory covariates: AGE (years, centralized
by subtracting the mean of 60 years); and an SNP
(coded 0, 1 or 2, to reflect the number of copies of
a minor allele). An illustrative analysis might involve
fitting a multiple linear regression model to estimate a
regression intercept (bintercept) and regression coeffi-
cients bAGE and bSNP associated with the two covari-
ates. Scientific interest might focus on bSNP to provide
an age-adjusted estimate of the increase in SBP asso-
ciated with each additional copy of the minor allele.

Figure 2 Schematic representation of the structure of DataSHIELD. The computer controlling analysis (heavily shaded
circle) is sited at the analysis centre (MP: master process). The data computers (lightly shaded circles) are each sited at one
of the study centres involved in the collaborative analysis (SP: slave process). The arrows indicate the flow of analytic
instructions and summary statistics. All potentially disclosive individual-level data are secured on the local data computers
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If the parallelized analyses are to be undertaken in
‘R’,39 the statistician at the AC might type the two
lines of code at the top of Box 2. Using an appropriate
scripting language such as Perl40 this code could be
packaged and transmitted to each of the SPs where it
could be piped to R to fit the required regression
model on the local data set. This will generate a
results matrix (three rows, two columns) comprising
an estimate and standard error for each regression
coefficient (bottom of Box 2). Additional scripting
instructions will then command each study to trans-
mit its results matrix back to the AC. There, the
study-specific results can be pooled using an appro-
priate form of SLMA, to produce parameter estimates
and standard errors for all six studies combined. This
analysis is detailed in Supplementary Data: S1 (avail-
able at IJE online).

This DataSHIELD analysis, as outlined, is mathem-
atically equivalent to a conventional SLMA, and all
individual-level data remain secure on their com-
puters of origin. But, the first stage (estimation of
regression coefficients and standard errors) is con-
trolled remotely by the AC, rather than being carried
out by the investigators at each study independently,
at the request of the AC. This difference is crucial,
because it means that once the initial regression
model (Box 2) has been fitted, it is easy to fit a dif-
ferent model that may contain terms for which sum-
mary statistics might not, originally, have been
requested; for example, one containing an interaction
between the AGE and SNP covariates. This would be
impossible in a conventional SLMA unless this sup-
plementary analysis had explicitly been pre-specified.
This demonstrates that, in principle, DataSHIELD
permits SLMA to be undertaken more flexibly. But
it offers far more than this. Perhaps most crucially,
it allows researchers to make efficient use of an im-
portant and versatile class of mathematical models
in a manner that is mathematically identical to a
full ILMA.

Example 2
Using DataSHIELD to undertake ILMA
without sharing the data
Many important analyses in contemporary bio-
population science can be framed as generalized
linear models (GLMs).41 This broad class of models
incorporates many forms of regression—e.g. multiple
linear regression, logistic regression, Poisson regres-
sion and many types of survival analysis. It also sub-
sumes numerous other analytic procedures including
t-tests, analysis of variance and estimation based on
contingency tables.41 GLMs are usually fitted itera-
tively using the iteratively reweighted least squares
(IRLS) algorithm.42 An initial guess at the required
regression coefficients is progressively refined, over a
number of iterations, until maximum likelihood esti-
mates are obtained. Conveniently, in the present con-
text, updating the coefficient estimates at any given
iteration depends solely on an information matrix
and a score vector, both of which can be obtained
by fitting a single iteration of the same GLM to the
individual-level data from each of the collaborating
studies one at a time, and by summing them in the
AC. The two sums may then be used to update the
regression coefficients at that iteration42 (for details
see Box 3 and Supplementary Data: S2, available at
IJE online). The regression coefficients and standard
errors that are obtained in this manner are identical to
those that would be obtained by fitting the same GLM
to the pooled individual data from all studies com-
bined, but the AC never has access to the
individual-level data.

Results
The mathematics underpinning the IRLS algorithm
guarantee that the DataSHIELD approach, as imple-
mented in Example 2, will produce the same results
as fitting the equivalent GLM to the individual-level
data from all studies combined (for details, see
Supplementary Data S2 and S4 at IJE online). Box 3
provides a concrete example to confirm this claim. It
outlines the analysis of a second simulated data set
consisting of six hypothetical studies set up to inves-
tigate the relationship between the risk of acute myo-
cardial infarction, body mass index (BMI) and an
SNP. Full details of the simulation, analysis, computer
code and results are provided in Supplementary Data:
S3–S6 at IJE online). In contrast to the simple model
used in Example 1, this GLM incorporates an inter-
action term to reflect heterogeneity in the magnitude
of the increase in risk of myocardial infarction for a
given increase in BMI.

As proof of principle, the estimated regression coef-
ficients and standard errors reported at the bottom of
Box 3 are precisely the same, rounding error aside, as
those derived from a conventional logistic regression
model fitted to a single data set comprising the

Box 2 Exemplar code and output for Scenario 1

The statistician types:

regression.model<-lm(SBP�AGEþSNP)

results.matrix<-summary(regression.model)$coefficients[,1:2]

Thereby producing a results matrix for each studya:
for example,

Estimate Std. Errorb

(Intercept) 125.130 0.2629

AGE 0.203 0.0373

SNP 0.254 0.3907

aHere, the results shown are for simulated study 6
bStandard Error
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Box 3 Simulated data example
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individual level data from all six studies combined
(Box 4). But (see Box 3 and Supplementary Data:
S3–S5 at IJE online), information flow between the
data sources and the AC is restricted to: (i) repeated
instructions from the AC to the data computers to
execute each new iteration of the GLM; (ii)
non-disclosive summary statistics (one matrix and
one vector) passed back from each data computer to
the AC at the end of each iteration; (iii) the updated
vector of regression coefficients—again
non-disclosive—passed from the AC to the data com-
puters at the start of each new iteration. None of
these items is disclosive of identity or of sensitive
information.

Discussion
This article demonstrates that if all ethico-legal and
informatics challenges can be overcome then, in prin-
ciple, DataSHIELD should enable a full pooled ana-
lysis of individual-level data from multiple sources to
be undertaken, even when ethico-legal considerations
might otherwise obstruct the physical sharing of that
individual-level data. At present, DataSHIELD is no
more than a concept and there is a quantum leap
between proving that the mathematics work and
actually implementing the approach in practice. The
principal challenges are in developing the IT systems
required, in determining whether ethical review com-
mittees agree that there is a real problem to be solved
and that DataSHIELD provides a workable solution
to that problem, and in implementing the local infra-
structures at individual biobanks and cohort studies
(staff and equipment) to enable its use. These chal-
lenges are substantive and it might be argued that
publication should await successful implementation.
The European Union has recently awarded funding
under Framework 7 (the BioSHARE-EU project) to
enable preliminary work to develop and pilot the
required IT systems and to explore the relevant
ethico-legal and social issues. Given that the imple-
mentation work will now definitely take place, it is
critical to enrol studies, as pilot sites, to work with us
in implementing and trialling the method.

Furthermore, the preliminary work will include
exploring the fundamental problem with research
ethics committees and determining whether they
view DataSHIELD as a viable solution. We hope this
article will assist studies, biobanks and research ethics
committees to determine whether they wish to con-
tribute to such a project.

Development to date has been undertaken by an
international group that includes leading bioinforma-
ticians and ethico-legal experts. On the basis of active
discourse between these experts and the broader
international biobanking community (via P3G and
BBMRI), the prevailing viewpoint seems to be that
there is a real problem to be overcome and that the
fundamental challenges both in the IT and
ethico-legal domains can, in principle, be overcome.
For example, there is a broad consensus amongst
ethico-legal experts that the physical sharing of indi-
vidual level data between research groups must be
subject to appropriate governance and that it is an
inescapable fact that the formal documentation and
oversight systems in certain studies (see Box 1) pro-
scribes or discourages such sharing. The real chal-
lenge, therefore, is to explore whether DataSHIELD
provides a workable solution. Bioinformaticians
believe that the IT interface should be set up in a
manner that actively prevents the AC from tunnelling
into the local systems to extract data or other infor-
mation and/or from fitting models that reveal iden-
tifying or sensitive data either directly or by logical
deduction. It is therefore commonly argued that the
DataSHIELD interface should parse all incoming and
outgoing messages and then block and record any
request, or series of requests,43 that might, by acci-
dent or design, lead to the transmission of inappro-
priate information. Encouragingly, it seems to be the
view of most IT experts that an interface with these
characteristics can, in principle, be constructed, and
will be feasible to use in practice. This optimistic
viewpoint is supported by the fact that secure
single-site interfaces already exist allowing external
users to specify analyses and then to extract re-
sults—but, crucially, no more than results. For ex-
ample, such an interface is at the heart of the UK’s
Economic and Social Research Council Secure Data
Service.44 Provided this optimism proves to be well
founded, the majority view amongst ethico-legal and
biobanking experts with whom DataSHIELD has been
discussed seems to be that DataSHIELD might then
be seen as being equivalent to conventional SLMA.
This is because, in both settings, information flow
between data providers and the AC is restricted en-
tirely to analytic instructions and non-identifying
summary statistics. If research ethics committees
hold the same viewpoint, any study that is currently
able to contribute to a conventional SLMA-based
meta-analysis (including GWASs) should, in prin-
ciple, be permitted to make use of DataSHIELD, and
the formal ethical and governance requirements

Box 4 A conventional logistic regression analysis
[glm() in ‘R’] on pooled data from all six studies
combined

Estimate SE z-value Pr(4|z|)

Coefficients:

(Intercept) �0.32956 0.02838 �11.612 <2e-16

BMI 0.023 0.00621 3.703 0.000213

BMI.456 0.04126 0.0114 3.62 0.000295

SNP 0.55173 0.03295 16.746 <2e-16

DATASHIELD 1379



should be equivalent. Ultimately, however, the only
definitive proof that DataSHIELD will work and will
be accepted by ethics review boards is to implement it
for real—the publication of this conceptual article is
an important step towards that aim.

The mathematics underpinning DataSHIELD is
neither novel, nor difficult to implement.29,30,41,42

For example, the fitting of a GLM requires no more
than a partitioned modification of the conventional
IRLS algorithm41,42 (see Supplementary Data: S2–S5
at IJE online). Rather, the originality of the method
lies in the basic concept itself. Interestingly, a similar
idea has previously been floated in the technometrics
literature,25 and although this means that we cannot
claim precedence, it strengthens the academic foun-
dation of the proposal. Critically, the approach seems
not to have been noted by statisticians, bioinformati-
cians or ethicists working in the field of biomedical
research and it has neither been promoted nor applied
in this important domain. From a technical perspec-
tive, our implementation via GLMs might be viewed
as a special case of what the technometrics paper
refers to as ‘secure maximum likelihood estimation’.25

But, the maximum likelihood case is considered
only in broad generality in that paper, and there is
no specific focus on generalized linear models.25

Furthermore, our implementation via GLMs circum-
vents some of the ‘complications’ that the techno-
metrics authors note could arise in the more general
case.25 Our article therefore brings an exciting and
potentially important new concept to the attention
of the biomedical research community, and illustrates
the practical implementation of that approach via a
broad class of models (GLMs) that already has a wide
range of applications in bioscience.

The extensive discussion of DataSHIELD since its
initial proposal has resulted in a number of important
extensions to the concept. The first is to expand the
remit of the approach to work with data sets that are
vertically25 rather than horizontally partitioned. In
contrast to horizontal partitioning (Figure 1), under
vertical partitioning the different data sources contain
different data items on the same primary set of indi-
viduals. Such a scenario occurs commonly when a
major cohort study, such as ALSPAC (Avon
Longitudinal Study of Parents and Children), links
to secondary (often governmental) data sources to
enrich the information that are available for ana-
lysis.45 Critically, the data in such secondary sources
are often sensitive and can be protected against
misuse by prohibiting their physical release. This
same problem arises regularly in cross-jurisdictional
analyses being undertaken or overseen by, national
statistics agencies such as Statistics Canada or
Statistics UK. The mathematics underpinning the
solution to the problem of vertical partitioning is
‘substantially more complex’25 than that for horizontal
partitioning but, in principle, a solution does exist
in the form of an approach known as ‘secure matrix

products’.25 If this approach can successfully be imple-
mented, this will markedly enhance the utility of the
proposed DataSHIELD approach. The second exten-
sion that has been proposed is to take advantage of
the approach to help bioscience deal with the pooled
individual level analysis of data sets that cannot phys-
ically be shared, because of their vast physical size.
As illustrative examples, such sources may include
full genome sequence data or medical images on
large numbers of subjects. Finally, we note that
DataSHIELD can prove helpful in any meta-analytic
setting where analysis at the level of individual pa-
tient records would be scientifically desirable, but
ethico-legal considerations discourage ILMA. For
example, a reviewer has noted that ILMA permits
subgroups of subjects in a given study to be added
or removed, which might be valuable when exploring
the implications of an intention-to-treat analysis.
Although care would have to be taken to ensure
that such subgroups were not identified in a poten-
tially disclosive manner, DataSHIELD could address
this issue if the subgroups were appropriately flagged.

As an important aside, the genomics world is
still grappling with the implications of the work of
Homer et al.23 A question that is regularly asked of
DataSHIELD is whether it would protect against the
form of inferential disclosure24 described and explored
by Homer et al. The simple answer is ‘no’, because dis-
closure under Homer et al. is based on summary statis-
tics reflecting study-wide genotype distributions at
each of many SNPs and is therefore totally unrelated
to the third party release of individual-level data. This
implies that the specific concerns raised by Homer
et al.23 cannot be invoked as being part of the rationale
for controlling third party release of individual level
data and, as a corollary, that these problems cannot
be prevented by using DataSHIELD. But, this does
raise an obvious follow-up question: ‘Are there other
circumstances where summary parameters can become
identifying?’. This is relevant, because DataSHIELD
relies on the transmission of summary statistics that
are assumed to be non-disclosive. One recognized
form of inferential disclosure is termed residual disclos-
ure.43 Here, the differences between a series of closely
related summary statistics—that are themselves
non-disclosive—permit precise inferences to be drawn
about identity and attribute. It is therefore clear that
other scenarios do exist in which summary data can
become identifying and some of these may be, as yet,
unknown. This emphasises the importance of introdu-
cing DataSHIELD cautiously. Because the particular set
of summary statistics to be transmitted will vary from
one class of problem to another, the potential risk of
disclosure will require thorough investigation when-
ever a new class of models is introduced. Some types
of model, such as GLMs,41,42 are unlikely to be disclo-
sive, not least because they are of low dimension: they
typically have few parameters relative to the number of
study participants. But the same may not be true of
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other models, such as those containing large arrays of
random effects.46 This latter might restrict the fitting
of generalized linear mixed models46 (for example by
excluding models where there is a random effect for
any single subject). On the other hand, it may prove
possible to hold the random effects on the local data
computers, while transmitting non-disclosive param-
eters such as the local variance of the random effects.
This requires extensive methodological work, but is an
area that we believe would be of considerable theoret-
ical interest to many biostatistics research groups.

Regardless of how data pooling is to be approached,
two absolute criteria must always be fulfilled. First,
all ethico-legal stipulations must be met. This implies
that if it is unclear whether the governance rules of a
particular study permit DataSHIELD to be used, that
uncertainty must be resolved before DataSHIELD is
implemented on that study. Secondly, the data to be
amalgamated across studies must be sufficiently simi-
lar to allow them to be pooled. Two data sets may be
said to be harmonized for a given set of variables in a
particular scientific setting, if it is valid and feasible to
pool them in that setting. DataSHIELD should not be
used unless the studies to be pooled are harmonized.
This requires a formal judgement to be made, and
methods and tools exist to help scientists make this
judgement in relation to pre-existing studies: these
include the DataSHaPER (http://www.datashaper.
org) in population genomics and epidemiology, and
the methods advocated by the Luxembourg Income
Study (http://www.lisproject.org) in economics. In
addition, it is critical that IT systems are set up so
data can be worked on using DataSHIELD.

To finish, we reiterate that our aim in placing
DataSHIELD into the public domain at this juncture
is to further stimulate active discussion amongst
ethico-legal experts, bioscientists, epidemiologists,
biostatisticians, health services researchers, social sci-
entists, national statistical offices and IT profession-
als. It is our hope that interest generated by this
article will encourage others to work alongside us in
exploring the opportunities presented by this remark-
ably simple idea. If the key challenges can be identi-
fied and met—and there is no reason to believe that
they cannot—DataSHIELD can provide an invaluable
addition to the growing toolkit (http://www.P3G.org)
that is facilitating the large-scale pooled analyses that
are fundamental to current and future progress in
contemporary biomedical and social science.

Supplementary Data
Supplementary data are available at IJE online.

Funding
This work was supported as a core element of the
research programs of the Public Population Project

in Genomics (P3G) funded by Genome Canada
and Genome Quebec, and Promoting Harmonization
of Epidemiological Biobanks in Europe (PHOEBE)
funded under European Framework 6 (LSHG-CT-
2006-518418). The methodological programme at the
University of Leicester focusing on genetic statistics
and large-scale data harmonization and pooling is
also supported by Medical Research Council Project
Grant (G0601625), Wellcome Trust Supplementary
Grant (086160/Z/08/A), Leverhulme Research
Fellowship (RF/9/RFG/2009/0062) and the Leicester
Biomedical Research Unit in Cardiovascular Science
(National Institute for Health Research). M.W. is
Canada Research Chair in Population Health Model-
ing/Populomics. N.M. is funded by a British Heart
Foundation Studentship (FS/06/040), J.L. is a Canada
Research Chair in Human Genome Epidemiology.

Conflict of interest: None declared.

References
1 Burton PR, Hansell AL, Fortier I et al. Size matters: just

how big is BIG?: Quantifying realistic sample size require-
ments for human genome epidemiology. Int J Epidemiol
2009;38:263–73.

2 Zondervan KT, Cardon LR. Designing candidate gene
and genome-wide case-control association studies. Nat
Protocols 2007;2:2492–501.

3 Spencer CC, Su Z, Donnelly P, Marchini J. Designing
genome-wide association studies: sample size, power,
imputation, and the choice of genotyping chip. PLoS
Genet 2009;5:e1000477.

4 Collins FS. The case for a US prospective cohort study of
genes and environment. Nature 2004;429:475–77.

5 Khoury MJ. The case for a global human genome epide-
miology initiative. Nat Genet 2004;36:1027–28.

6 Newton-Cheh C, Eijgelsheim M, Rice KM et al. Common
variants at ten loci influence QT interval duration in the
QTGEN Study. Nat Genet 2009;41:399–406.

7 Newton-Cheh C, Johnson T, Gateva V et al. Eight blood
pressure loci identified by genomewide association study
of 34,433 people of European ancestry. Nat Genet 2009;41:
666–76.

8 Repapi E, Sayers I, Wain LV et al. Genome-wide associa-
tion study identifies five loci associated with lung func-
tion. Nat Genet 2009;42:36–44.

9 Hindorff LA, Sethupathy P, Junkins HA et al. Potential
etiologic and functional implications of genome-wide
association loci for human diseases and traits. Proc Natl
Acad Sci 2009;106:9362–67.

10 Burton PR, Clayton DG, Cardon LR et al. Association scan
of 14,500 nonsynonymous SNPs in four diseases identi-
fies autoimmunity variants. Nat Genet 2007;39:1329–37.

11 Zeggini E, Weedon MN, Lindgren CM et al. Replication of
genome-wide association signals in U.K. Samples reveals
risk loci for type 2 diabetes. Science 2007;316:1336–39.

12 Frayling TM, Timpson NJ, Weedon MN et al. A Common
Variant in the FTO Gene is Associated with Body Mass Index
and Predisposes to Childhood and Adult Obesity, Science 2007;
316:889–94.

DATASHIELD 1381



13 Easton DF, Pooley KA, Dunning AM et al. Genome-wide
association study identifies novel breast cancer suscept-
ibility loci. Nature 2007;447:1087–93.

14 Scott LJ, Mohlke KL, Bonnycastle LL et al. A genome-
wide association study of type 2 diabetes in Finns detects
multiple susceptibility variants. Science 2007;316:1341–45.

15 Stacey SN, Manolescu A, Sulem P et al. Common variants
on chromosomes 2q35 and 16q12 confer susceptibility to
estrogen receptor-positive breast cancer. Nat Genet 2007;
39:865–69.

16 Saxena R, Voight BF, Lyssenko V et al. Genome-wide
association analysis identifies loci for type 2 diabetes
and triglyceride levels. Science 2007;316:1331–36.

17 Friedenreich CM. Methods for pooled analyses of epide-
miologic studies. Epidemiology 1993;4:295–302.

18 Slimani N, Deharveng G, Charrondière RU et al. Structure
of the standardized computerized 24-h diet recall inter-
view used as reference method in the 22 centers partici-
pating in the EPIC project. Comp Meth Programs Biomed
1999;58:251–66.

19 Harris JR, Willemsen G, Aitlahti T et al. Ethical issues and
GenomEUtwin. Twin Res 2003;6:455–63.

20 Lynch J, Davey Smith G, Harper S et al. Is income
inequality a determinant of population health? Part 1.
A systematic review? Milbank Quart 2004;82:5–99.

21 Backlund E, Rowe G, Lynch J, Wolfson M, Kaplan G,
Sorlie P. Income inequality and mortality: a multi-level
prospective study of 521, 248 individuals in 50 US States.
Int J Epidemiol 2007;36:590–96.

22 Sankararaman S, Obozinski G, Jordan MI, Halperin E.
Genomic privacy and limits of individual detection in a
pool. Nat Genet 2009;41:965–67.

23 Homer N, Szelinger S, Redman M et al. Resolving indivi-
duals contributing trace amounts of DNA to highly
complex mixtures using high-density SNP genotyping
microarrays. PLoS Genet 2008;4:e1000167.

24 Gomatam S, Karr A, Reiter J, Sanil A. Data dissemination
and disclosure limitation in world without microdata:
a risk-utility framework for remote access analysis ser-
vers. Statistical Science 2005;20:163–77.

25 Karr A, Fulp W, Vera F, Young S, Lin X, Reiter J. Secure,
privacy-preserving analysis of distributed databases.
Technometrics 2007;49:335–45.

26 GCNews. Health Beats MoD on Equipment Losses,
2008. http://www.smarthealthcare.com/equipment-losses
(12 October 2009, date last accessed).

27 P3G_Consortium, Church G, Heeney C, et al. Public
access to genome-wide data: five views on balancing
research with privacy and protection. PLoS Genet
2009;5:e1000665.

28 Manolio TA, Brooks LD, Collins FS. A HapMap harvest
of insights into the genetics of common disease. J Clin
Investigat 2008;118:1590–605.

29 Sutton AJ, Kendrick D, Coupland CA. Meta-analysis of
individual- and aggregate-level data. Stat Med 2008;27:
651–69.

30 Petitti DB. Meta-Analysis, Decision Analysis, and Cost-
Effectiveness Analysis: Methods for Quantitative Synthesis in
Medicine. 2nd edn. New York: Oxford University Press,
2000.

31 Khoury MJ, Little J, Gwinn M, Ioannidis JP. On the
synthesis and interpretation of consistent but weak
gene-disease associations in the era of genome-wide asso-
ciation studies. Int J Epidemiol 2007;36:439–45.

32 Hattersley AT, McCarthy MI. What makes a good genetic
association study? Lancet 2005;366:1315–23.

33 Kaye J. Do we need a uniform regulatory system for
biobanks across Europe? Eur J Hum Genet 2006;14:
245–48.

34 Zink A, Silman AJ. Ethical and legal constraints on data
sharing between countries in multinational epidemiologi-
cal studies in Europe report from a joint workshop of the
European League Against Rheumatism standing commit-
tee on epidemiology with the ‘‘AutoCure’’ project. Ann
Rheum Dis 2008;67:1041–43.

35 Malfroy M, Llewelyn CA, Johnson T, Williamson LM.
Using patient-identifiable data for epidemiological
research. Transf Med 2004;14:275–79.

36 Infectious Diseases Society of America. Grinding to a halt:
the effects of the increasing regulatory burden on
research and quality improvement efforts. Clin Infectious
Dis 2009;49:328–35.

37 Wallace S, Lazor S, Knoppers BM. Consent and popula-
tion genomics: the creation of generic tools. IRB: Ethics &
Human Research 2009;31:15–20.

38 Knoppers BM, Fortier I, Legault D, Burton P. The public
population project in genomics (P3G): a proof of concept?
Eur J Hum Genet 2008;16:664–65.

39 R Development Core Team. R: A Language and Environment
for Statistical Computing. Vienna, Austria: R Foundation for
Statistical Computing, 2008.

40 Wall L, Christensen T, Orwant J. Programming Perl.
3rd edn. Sebastopol: O’Reilly Media Inc., 2000.

41 McCullagh P, Nelder J. Generalized Linear Models. London:
Chapman and Hall, 1989.

42 Aitkin M, Anderson D, Francis B, Hinde J. Statistical
Modelling in GLIM. Oxford: Clarendon Press, 1989.

43 Statistics Netherlands, Statistics Canada, Germany FSO,
University of Manchester. Glossary of Statistical Disclosure
Control, Incorporated in Paper Presented at Joint UNECE/
Eurostat Work Session on Statistical Data Confidentiality.
Geneva: UNECE/EUROSTAT, 2005.

44 ESRC_Secure_Data_Service. http://www.esrc.ac.uk/ESRC
InfoCentre/research/resources/SDS.aspx. 2009 (21 June
2010, date last accessed).

45 Ford DV, Jones KH, Verplancke JP et al. The SAIL
Databank: building a national architecture for e-health
research and evaluation. BMC Health Serv Res 2009;9:157.

46 Breslow N, Clayton D. Approximate inference in
generalized linear mixed models. J Am Stat Assoc 1993;
88:9–25.

1382 INTERNATIONAL JOURNAL OF EPIDEMIOLOGY


