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Abstract
Purpose of review—Following the evidence that T cell responses are crucial in the control of
HIV-1 infection, vaccines targeting T cell responses were tested in recent clinical trials. However
these vaccines showed a lack of efficacy. This review attempts to define the qualitative and
quantitative features that are desirable for T cell induced responses by vaccines. We also describe
strategies that could lead to achievement of this goal.

Recent findings—Using the yellow fever vaccine as a benchmark of an efficient vaccine, recent
studies identified factors of immune protection and more importantly innate immune pathways
needed for the establishment of long-term protective adaptive immunity.

Summary—To prevent or control HIV-1 infection, a vaccine must induce efficient and persistent
Ag-specific T cells endowed with mucosal homing capacity. Such cells should have the capability
to counteract HIV-1 diversity and its rapid spread from the initial site of infection. To achieve this
goal, the activation of a diversified innate immune response is critical. New systems biology
approaches will provide more precise correlates of immune protection that will pave the way for new
approaches in T cell based vaccines.
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Introduction
The HIV-1 pandemic is one of the leading causes of death worldwide and remains a serious
challenge to global public health [1]. Although antiretroviral drugs can control HIV/AIDS
progression in many patients, they only succeed in reducing viral loads without completely
eliminating the virus [2,3]. The development of an effective HIV-1 vaccine represents the
optimal solution for control of the HIV-1 pandemic. While this is a clearly agreed upon goal,
its implementation has been a difficult task [4–6]. HIV-1 vaccine studies have led to
disappointing results, likely a consequence of the difficulty in generating broadly cross-
neutralizing antibodies [7–9]. Recently the focus has shifted towards vaccines that control viral
load after infection, thereby reducing secondary transmission [10]. In individuals exposed to
HIV-1 yet remaining uninfected, CD8 T cell-mediated immunity was shown to be critical for
the resistance to HIV-1 acquisition [11–15]. In non-human primates (NHP), the magnitude and
kinetics in the establishment of effector CD8 T cell responses upon exposure to SIV were
correlated with the control of acute infection [16–19]. In humans, the initial peak of T cell
responses was shown to be temporally associated with a decrease in viremia [20,21].
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Furthermore, the immune selective pressure exerted by T cell responses induced an
accumulation of viral mutations concentrated within T cell epitopes [22–25]. These
observations that T cell responses are critical in controlling HIV-1 acquisition and infection
have led to the development of vaccine strategies targeting T cells that showed promising
results when tested in NHP [26–29].

Several candidate HIV-1 vaccines have been tested; however only four of them have reached
phase IIb/III (efficacy) clinical trials [30]. The Step and Phambili trials, using as vaccine a
replication-incompetent recombinant adenovirus 5 (Ad5) expressing HIV-1 clade B gag, pol
and nef, were stopped before completion [6,31–33]. Protective immunity was not observed in
highly exposed individuals despite the induction of HIV-specific T cell responses in 80% of
the vaccinees. Moreover, the incidence of HIV-1 infection was increased in subgroups of Ad5-
preimmunized and uncircumcised male vaccinees [6,34,35]. The more recent RV144 clinical
trial in Thailand, based on priming with a canarypox vaccine ALVAC HIV vCP1521 (env,
gag, pol) and a boost with the HIV-1 gp120 AIDSVAX B/E recombinant protein, showed
encouraging results with an overall reduction in HIV-1 acquisition of 31.2% compared to
placebo [36,37]. Ag-specific CD4 T cell proliferative responses were measured in 60% of the
vaccinees and Ag-specific CD8 T cell responses were detectable in around 20% of the
vaccinees by IFN-γ ELISPOT and cytotoxic assays. However, the vaccination had no effect
on the CD4 T cell count or viral load in subjects subsequently diagnosed with HIV-1 infection
[36]. Despite its low efficacy, this vaccine strategy provides hope that protective immunity
against HIV-1 acquisition may be achieved.

A successful vaccine against HIV-1 must overcome several obstacles including the diversity
of the virus and the early establishment of latent viral reservoirs [38,39]. The characteristics
of HIV-1 and its immunopathology represent a major challenge for immunologists. Moreover,
fundamental correlates of immune protection still need to be defined and validated for the
design of novel vaccine strategies. In this review, we will examine the T cell immune responses
to HIV-1 infection and those elicited by efficient vaccines with the aim of defining desirable
T cell characteristics that should be targeted to prevent or control HIV-1 infection. We will
focus on vaccine strategies that engage the innate immune compartment due to its crucial role
in shaping an efficient T cell response.

How to counter HIV-1 antigenic diversity?
The diversity of circulating viral strains and the rapid generation of viral variants during
infection constitute a major obstacle in the development of an HIV-1 vaccine [25,38,40–42].
The antigenic diversity must be represented in the vaccine components to provide broad T cell
responses. Indeed, in SIV infection, T cell correlates of protection have been associated with
a broader epitope-specific repertoire prior to heterologous SIV challenge [43]. It was shown
that HIV-1 infected individuals whose CD8 T cell responses are dominantly and broadly
directed against the gag protein exhibit lower plasma viral load [44]. To date, only 1 to 3 HIV-1
strain sequences were used in vaccine design and the lack of representation of these actual
sequences in the infecting virus isolates could be one of the reasons behind the inefficacy of
such vaccines [6,30,33,45]. New strategies were recently developed to improve
“immunological coverage” by consensus and optimized mosaic Ags, which assemble
synthetically designed antigenic sequences within several clades to generate full-length mosaic
HIV-1 proteins (Table 1 and Figure 1) [46]. Studies in NHP showed that T cell responses
induced by these mosaic Ags increased the breadth of the response, as Ag-specific T cells were
cross-reactive to multiple HIV epitopes and variants [47–49]. However, the specificity of T
cells against natural epitopes and the protective effect induced by such vaccines against HIV-1
infection still need to be demonstrated [50–52].
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What characterizes an efficient HIV-specific T cell response ?
Live attenuated viruses such as Yellow Fever 17D (YF-17D) or vaccinia virus (VV) are
amongst the most efficient vaccines and studying immune responses to these vaccines should
reveal correlates of immune protection. YF-17D mimics an acute viral infection and induces
innate and adaptive immune responses, with a balanced Th1/Th2 response, leading to a long-
term (10 to 60 years) efficient immune protection [53–55]. In HIV-1 infection, the maintenance
of proliferative CD4 T cell responses has been associated to the long-term control of HIV-1
infection [56]. However, the role of CD4 T cells in the disease control is still unclear, as the
induction of HIV-specific CD4 T cells has also been suggested to enhance HIV-1 infection by
providing an activated pool of target cells for viral replication [39,57,58]. Therefore, as the
correlates of immune protection against HIV-1 disease progression are mostly demonstrated
for CD8 T cell responses, HIV vaccine strategies mainly focused on the induction of strong
CD8 T cells responses have been employed and should be pursue (Figure 1) [59–61].

Vaccination by vaccinia virus (Dryvax) or modified vaccinia virus Ankara (MVA) was shown
to be particularly efficient in eliciting Ag-specific CD8 T cells with a high degree of
polyfunctionality [62]. Following vaccination with YF-17D, Miller et al. showed that more
than 10% of total circulating CD8 T cells are activated within 2 weeks [63]. In contrast to
persistent viruses as HIV-1 that lead to chronic infection and T cell exhaustion, YF-17D and
VV vaccines elicit a rapid expansion of highly specific and polyfunctional Ag-specific CD8 T
cell expressing only transient levels of inhibitory receptors including PD-1 and CTLA-4 (Table
1) [62–68]. Importantly, it appears that T cell mediated immune protection is more likely related
to the quality than the quantity of Ag-specific T cell responses. Indeed, high levels of HIV-1
responding CD8 T cells could be seen both in progressors and in long term non progressors
(LTNPs) [69–73]. During HIV-1 infection, the proportion of polyfunctional CD8 T cells, as
evidenced by their capacity to produce several cytokines (IFN-γ, MIP1-β, TNF-α, IL-2), was
shown to inversely correlate with viral load [69]. Similarly, the response to HIV-2, which
displays a slower disease progression, was characterized by the generation of polyfunctional
CD8 and CD4 Ag-specific T cells [74]. Nevertheless, the polyfunctional T cell responses
demonstrated in the Step trial was not sufficient to confer any protection [75]. Indeed, if the
correlation between T cell polyfunctionality and HIV-1 disease control is now well established,
it is still unclear if this feature is sufficient to provide T cell immune protection [51,76–78].
Other parameters such as proliferative capacity and functional sensitivity have also been
associated with the efficiency of Ag-specific CD8 T cells to suppress HIV-1 replication [79]
(Table 1 and Figure 1). For inducing an efficient CD8 T cell response and a balanced Th1/Th2
response, several critical parameters should be considered as the Ag dose or the vaccine
regimen (e.g. heterologous prime-boost strategies) [80–82]. Importantly, valuable correlates
of immune protection still need to be defined and will be elucidated by systems biology
approaches.

How to induce long-term immune protection?
The generation of a specific immunological memory that can protect individuals throughout
their lifespan, represents one of the major features that determines the success of vaccines and
strongly depends on the efficiency of the primary effector response [83–85]. Long-lasting
immunological memory is based on heterogeneous CD4 and CD8 T cell sub-populations
classically divided into the long-lived central memory T cells (TCM) and the effector memory
T cells (TEM) [86,87]. YF-17D and VV vaccination result in the rapid and massive expansion
of effector CD8 T cells that gradually differentiate into a memory pool providing immune
protection for more than 10 years [63]. Furthermore, a progressive downregulation in activation
and proliferation markers and effector functions (HLA-DR, CD62L, CD38, Ki-67, Granzyme
B) is observed as well as the acquisition of memory markers (CD127 and Bcl-2) [63,67]. While
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protective immune responses are generally attributed to central memory T cells, the YF-17D
specific memory CD8 T cells have a particular phenotype of effector memory T cells (CD45RA
+, CD27+, CCR7−), which are able to maintain a proliferative capacity. Moreover, a recent
study by Vezys et al. showed that, upon heterologous prime-boost immunization in mice, CD8
TEM cells exhibit an extensive expansion capacity in response to new infection by
Lymphocytic Choriomeningitis Virus (LCMV) compared to TCM [88]. Prolonged Ag
presentation might be required to increase the size of the effector memory T cell pool and to
elicit a protective immune response as was recently demonstrated for the malaria vaccine in
mice [89]. Indeed, the most successful vaccine strategies have been obtained using modified
viral vectors (MVA and LCMV) that permit the persistence of Ags [27,29,62,90–93]. Vaccine
strategies should promote primarily CD8 persisting TEM. However, the induction of a long-
term immune protection by a vaccine might also need the establishment of a central memory
T cell pool (Table 1 and Figure 1) [94,95].

How to block HIV-1 dissemination from mucosal tissues?
To counteract HIV-1 infection, a vaccine must induce a robust immune response before the
establishment of chronic infection and prior to its sequestration into the latent viral reservoir
[2,23]. Defects in CD8 T cell function and survival have been shown to occur within the first
few weeks of SIV infection [96,97]. As HIV-1 transmission occurs most commonly through
sexual transmission and the first immunopathologic events take place at mucosal sites, vaccine-
induced HIV-specific T cell responses that can be recruited rapidly to those sites is critical
[12,18,57]. The magnitude and quality of effector CD8 T cells at mucosal sites has been
correlated with viral load [18]. Although TCM are considered as the stem cells for the memory
pool this subset undergoes expansion only 3 days after re-exposure to their cognate Ag [98].
Moreover, in contrast to TEM, the TCM subset is poorly represented among intraepithelial
lymphocytes and in gut associated lymphoid tissue and is mostly localized in the lymph nodes
(LN) as dictated by the expression of the LN homing receptor CCR7 [51,99,100]. Therefore,
vaccines inducing TEM would promote a rapid response at mucosal sites upon HIV-1 exposure
(Table 1 and Figure 1). Masopust et al. recently demonstrated the induction of the transient
expression of α4β7 integrin on early specific effector T cells and on memory T cells shortly
after their activation by systemic re-stimulation with LCMV in mice, allowing their homing
to intestinal and epithelial tissues [99]. Furthermore, a study using SIV mac239(delta)nef
immunized animals showed that lung CD8 T cells, unlike peripheral CD8 T cells, suppressed
viral replication by up to 80% in vitro [101]. These results suggest that this effective vaccine
was eliciting functional immunity at mucosal sites with a distinct behavior from circulating
cells. The Rhesus CMV, used as a vector for SIV gag, rev, tat, nef and env when injected
subcutaneously, successfully induced multifunctional CD4 and CD8 effector memory T cells
in mucosal tissues and provided protection of NHP against repeated low-dose SIV intrarectal
challenge [27]. The route of immunization might be of particular importance for early
prevention and inhibition of viral dissemination. Few studies have addressed this parameter
and its impact is still debated [102].

How to shape HIV-specific T cell responses?
Innate immune cells are needed to generate an efficient adaptive immune response. Dendritic
cells (DCs) are known to activate naíve T cells to generate effector and memory T cells.
Therefore, the types of signals DCs provide to T cells could result in different fates of the
subsequent adaptive immune response [103,104]. However, the exact molecules and
mechanisms involved in the priming of T cells and in the generation of memory are still
unknown. The SIV mac239(delta)nef is the most successful vaccine tested in macaques [105,
106]. The deletion of nef avoids the inhibitory effect of this protein on MHC class I presentation
and other negative regulatory mechanisms. Likewise, early activation of innate immunity might
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have a major role in modulating the efficacy of the vaccine. YF-17D was shown to infect and
activate multiple DC subsets via TLRs 2, 7, 8, and 9, enhancing the presentation of vaccine
Ags and the production of pro-inflammatory cytokines [53,54,107]. TLR ligands have been
used to increase the frequency of CMV and HIV-specific CD8 T cell responses in vitro and
also to modulate T cell responses in vivo [108–110]. Immunization with gag protein conjugated
to a TLR7/8 agonist in mice or NHP enhanced the magnitude and quality of gag-specific Th1
and CD8 T cell responses [111]. Likewise, the same authors studied the use of different TLR
ligands to influence Th1 and CD8 T cell responses in NHP in a prime boost immunization
regimen [112]. Longhi et al. demonstrated that TLR3 agonist strongly induces type I IFN
production that promotes maturation of DCs and generates CD4 Th1 immunity [113]. Type I
interferons have also been shown to dictate clonal expansion, attrition and memory formation
of CD8 T cells [114,115]. The fate of CD8 T cells is also dictated by other mechanisms. For
example, IL-15 trans-presentation by DCs has been shown to promote effector CD8 T cell
survival, while on the other hand, CD137 signaling in DCs could lead to T cell activation
induced cell death [116,117]. Deciphering DC signals that dictate the features of T cells is
needed for the development of new vaccines. Targeting DCs during vaccination would increase
the magnitude but also the quality of the immune response.

The most efficient vectors for HIV-1 vaccine are those that infect and activate DCs such as the
Canarypox virus (ALVAC vaccine), the LCMV or MVA [62,91,93,118]. Other viral vectors,
virus like particles (VLP) or recombinant viral proteins should be used in combination of
costimulatory molecules and TLR ligands to activate DCs and stimulate an efficient immune
response (Figure 1). These strategies have already been tested in different models and have
shown promising results; for example the incorporation of CD40 ligand into simian-HIV VLP
enhanced DC activation and boosted immune responses against HIV-1 [119]. Moreover, the
use of an anti-DCs (DEC-205) HIV gag fusion antibody vaccine led to an intensified and
protective CD4 T cell immunity in mice [120]. Nevertheless, the mechanisms that are used to
activate DCs need to be clearly defined and understood as activation of a DC-T cell axis by
Ad5 immune complexes has been shown to create an improved environment for replication of
HIV-1 in T cells [121].

How to monitor a good protective immune response?
Few T cell assays have been used to analyze T cell responses induced by vaccination strategies
and predict vaccine efficacy. They include the commonly used IFN-γ ELISPOT assay, but also
tetramer staining, in vitro proliferation assays, intracellular cytokine staining assays, staining
for markers of activation and cytotoxic related molecules. However, experimental procedures
as well as analysis and interpretation still remain controversial as most of these assays have
yet to be standardized. Moreover, considering that few memory T cells could be sufficient for
a robust secondary immune response, the detection level of these assays should be improved
to study the frequencies of memory cells as their frequencies rarely exceed 10−3 to 10−4 of
total T cells. The field has begun to standardize the immuno-monitoring for clinical trials
[122–124] and this will help by defining reliable assays to predict vaccine efficacy. In that
context, both the IFN-γ ELISPOT as well as polyfunctional T cells failed to predict the
unprotective effect of the Step trial [31,75]. New parameters of the induced T cell responses
have to be monitored, such as the differentiation status, migration patterns, proliferation
potential and survival capacity. For example, the expression levels of transcription factors such
as T-bet, Eomes, Blimp-1 and Bcl-6 could be investigated to define the effector and memory
CD8 T cell status [125,126]. Moreover T cells should be monitored at mucosal sites, and the
capacity of memory T cells to migrate in situ should be assessed.

As the very early events in HIV-1 infection in the mucosal sites are not available for study in
vivo, the impact of vaccines as well as HIV-1 infection have to be studied in vitro. Some in
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vitro models have been already used for mucosal reconstruction to follow virus behavior from
its site of entry to the lymph nodes [127]. Randolph et al. have reported a tissue-engineered in
vitro model to promote autonomous generation and maturation of DCs from PBMCs, without
adding exogenous cytokines [128]. In our previous work [53], we found comparable results in
the immune responses stimulated by the YF-17D vaccine in this system versus in vivo responses
after vaccination. Such new models would serve as a surrogate human immune system to
elucidate the first events of HIV-1 infection and would enable the testing of the response to a
vaccine directly in a human system rather than in animal models.

An effective protection in response to a virus or a vaccine involves a complex polyvalent and
coordinated immune response. The recent advances in biotechnological methods, associated
with computational tools, permit a quantitative, qualitative and integrated analysis at genomic,
proteomic and cellular levels [129,130]. This systems biology approach offers the possibility
to examine the immune status of one individual, revealing the complex networks between all
of the innate and adaptive immune components over time and to define key molecules and
signatures of immune protection (Figure 1) [53,54].

Conclusion
As discussed in this review, some correlates of HIV-1 disease control have been identified and
new promising T cell vaccines strategies are emerging [27,29,91,93]. Results from current
clinical trials such as HTVN 205 with a prime DNA vaccine containing gag, pol, env, tat, rev,
vpu and a boost MVA vaccine containing gag, pol, env will provide new advances in T cell
vaccine development [131]. Key factors of immune protection have also been defined in
response to efficient licensed vaccines such as YF-17D [53,54]. Further studies are still needed
to understand the underlying mechanisms of immune protection, especially the crucial role of
the innate immune system in activating and shaping an efficient T cell response. The
characterization of innate and adaptive immune responses in novel in vitro models and in highly
exposed non-infected individuals should also give important clues to the identification of
correlates of immune protection. Furthermore, acute immune responses against other viruses
that persist in humans but are naturally controlled should also bring insights in the first immune
events that lead to viral control. In all these studies, systems biology approaches would allow
for the analysis and integration of innate and adaptive immune responses, providing the tools
to build models of immune protection. These findings could then be employed to define
composition, dose and administration regimens in novel HIV-1 vaccination strategies.
Parameters of immune protection and disease control could be used to assess the efficacy of
vaccines in phase I clinical trials. Therefore, more valuable and meaningful data could emerge
from phase I studies, avoiding the entry into phase II/III trials without sufficient evidences of
vaccine efficacy. New correlates of protection and disease control could emerge and would
provide key elements to develop a potent HIV-1 cell vaccine. As many arms of the immune
system work in concert, combinations of vaccines that induce effective T cell responses along
with neutralizing antibodies or other strategies inducing innate immune responses could
achieve successful results [132].
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Figure 1.
To elicit an efficient T cell response, a vaccine must target innate immune cells, and in particular
the DCs: viral vectors that infect DCs, adjuvants, TLR-ligands or costimulatory molecules
should be included in the vaccine composition to improve Ag-presentation and T cell priming.
The breadth of the vaccine-induced T cell response can be improved by using optimal vaccine
antigens, as mosaic Ags that enhance the recognition of multiple HIV-1 epitopes and variants
within theses epitopes by cross-reactivity. Defined as correlates of HIV-1 disease control, the
polyfunctionality, proliferative capacity and functional avidity of CD8 T cells should be
induced. To achieve a long-term immune protection, HIV-1 T cell vaccine must induce the
generation of long-lasting central memory T cells (TCM) and mostly effector memory T cells
(TEM) that are more likely to act rapidly in the mucosal site of HIV-1 transmission. The
development of novel in vitro models, immuno-monitoring and systems biology approaches
will provide a comprehensive analysis of the complex networks between both arms of the innate
and the adaptive immunity and allow to define precise correlates of immune protection and
key targets for an efficient HIV-1 T cell vaccine.
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