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Abstract
We present a novel surface smoothing framework using the Laplace-Beltrami eigenfunctions. The
Green’s function of an isotropic diffusion equation on a manifold is constructed as a linear
combination of the Laplace-Beltraimi operator. The Green’s function is then used in constructing
heat kernel smoothing. Unlike many previous approaches, diffusion is analytically represented as a
series expansion avoiding numerical instability and inaccuracy issues. This proposed framework is
illustrated with mandible surfaces, and is compared to a widely used iterative kernel smoothing
technique in computational anatomy. The MATLAB source code is freely available at
http://brainimaging.waisman.wisc.edu/~chung/lb.

1 Introduction
In medical image processing and analysis, anatomical manifolds are commonly represented as
triangular meshes. Procedures such as image segmentation, mesh construction and geometric
computations on the meshes introduce geometric noise to the mesh coordinates. Therefore, it
is imperative to reduce the mesh noise while preserving the geometric details of the object for
various applications.

Many approaches have been proposed for smoothing surface data and coordinates. Probably
the most widely used method is to numerically solve diffusion equations on anatomical surfaces
[1,8]. However, these approaches use discretization schemes which tend to suffer numerical
instability and inaccuracy. Iterated kernel smoothing is also a widely used method in
computational anatomy [3,6] and computer vision [13]. Kernel weights are spatially adapted
to follow the shape of the heat kernel in a discrete fashion along a manifold. In the tangent
space, the heat kernel is approximated linearly using the Gaussian kernel. However, this process
compounds the linearization error at each iteration.

In this paper, we propose to construct the heat kernel analytically using the eigenfunctions of
the Laplace-Beltrami operator, avoiding the need for the linear approximation used in [3,6].
Although solving for the eigenfunctions requires the finite element method, the proposed
method is analytic in a sense that heat kernel smoothing is formulated as a series expansion
explicitly. Thus, the proposed method avoids the numerical instability associated with solving
the diffusion equations numerically [1,8]. Although there are many papers on solving diffusion
equations on arbitrary triangular meshes [1,8,14], this is the first paper that explicitly and
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correctly constructed heat kernel for an arbitrary surface and solved heat diffusion using the
eigenfunctions of the Laplace-Beltrami operator.

2 Heat Kernel Smoothing
Consider a real-valued C2 measure Y defined on a manifold  ⊂ ℝ3. We assume the following
additive model on Y:

(1)

where θ(p) is the unknown mean signal and ε(p) is a zero-mean Gaussian random field. We
may assume further Y ∈ L2( ), the space of square integrable functions on  with the inner
product 〈f, g〉 = ∫  f(p)g(p)dμ(p), where μ is the Lebesgue measure such that μ( ) is the volume
of . Solving

(2)

for the Laplace-Beltrami operator Δ on , we order eigenvalues 0 = λ0 < λ1 ≤ λ2 ≤ ··· and
corresponding eigenfunctions ψ0, ψ1, ψ2, ···. Then, the eigenfunctions ψj form an orthonormal
basis in L2( ) [10].

Using the eigenfunctions, heat kernel Kσ(p, q) is analytically written as

(3)

where σ is the bandwidth of the kernel [3,12]. Then heat kernel smoothing of Y is given
analytically as

(4)

where βj = 〈Y, ψj〉 are Fourier coefficients. This is taken as the estimate for θ. Since the
expansion (4) is a unique solution to isotropic heat diffusion [3,12], we can avoid the need to
solve the diffusion equation using less stable numerical schemes such as the finite difference
method [1,8,14].

In this new analytic framework, we need to compute the terms in (4). We first solve for the
eigensystem (2) and obtain λj and ψj. To estimate βj, we let σ = 0 in (4). Then Kσ becomes the
Dirac-delta function and we obtain

(5)
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This is the usual Fourier expansion of Y. The finite series expansion of (5) will be then used
in estimating the Fourier coefficients in the least squares fashion.

3 Numerical Implementation
Generalized Eigenvalue Problem

Since the closed form expression for the eigenfunctions of the Laplace-Beltrami operator on
an arbitrary curved surface is unknown, the eigenfunctions are numerically calculated by
discretizing the Laplace-Beltrami operator. To solve the eigensystem (2), we need to discretize
it on a triangular mesh using the Cotan formulation [4,11]. In particular, Qiu et al. [11] presented
a similar Cotan discretization and constructed splines on a manifold using the eigenfunctions;
however, there is no direct mathematical relation between splines and heat kernel smoothing.

Using the Cotan formulation, (2) is simplified as the generalized eigenvalue problem:

(6)

where C is the stiffness matrix, A is the mass matrix, and ψ is the unknown eigenfunction
evaluated at mesh vertices. Because C and A are large sparse matrices, we have solved the
problem using the Implicitly Restarted Arnoldi Method [7,9] without consuming large amount
of memory and time for zero entries. The MATLAB code is given at
http://brainimaging.waisman.wisc.edu/~chung/lb. Fig. 1 shows the first few eigenfunctions for
a mandible surface.

Finite Eigenfunction Expansion
Let  be the subspace spanned by up to k-th degree basis. Then an arbitrary measurement Y
is estimated in the subspace  by minimizing the sum of squared residual:

(7)

Consider the triangular mesh for  with Nv nodes, and let β = (β0, ···, βk )′ and Y = (Y(p1), ···,
Y(pNv))′, for k ≤ Nv. Then, we can represent (7) as the normal equation,

(8)

where Ψ = (Ψ0, ···, Ψk) and Ψj = (ψj(p1), ···, ψj(pNv))′, and β are estimated in the least squares
fashion, β ̂ = (Ψ′Ψ)−1Ψ′Y. Since the size of matrix Ψ′Ψ can become fairly large when there is
a need to obtain large number of basis, it may be difficult to directly invert the matrix. So we
have adopted a more general iterative strategy to overcome possible computational bottleneck
for large k.

Iterative Residual Fitting Algorithm
The Fourier coefficients are estimated based on an iterative procedure that utilizes the
orthonormality of the eigenfunctions [2]. Decompose the subspace  into smaller subspaces
as the direct sum  =  ⊕  ··· ⊕ , where each subspace  is the projection of  along the
j-th eigenfunction. Instead of directly solving the normal equation (8), we project the normal
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equations into a smaller subspace  and find the corresponding βj in an iterative fashion from
increasing the degree from 0 to k.

At degree k = 0, we write Y = Ψ0β0+r0, where r0 is the residual of estimating Y in subspace
. Then, we estimate β0 by minimizing the residual in the least squares fashion:

(9)

At degree j, we have

(10)

where the previous residual rj−1 = Y − Ψ0β ̂0 ··· −Ψj−1β ̂j−1. The next residual rj is then estiamted

as . The optimal stopping rule is determined if the decrease of the root

mean squared errors (RMSE), , is statistically significant using the F-test
(Fig. 2). We compute the F statistic at each degree, and find the degree of expansion where
corresponding p-value first becomes bigger than the pre-specified significance 0.01.

4 Experimental Results
We applied the proposed smoothing method to mandible surfaces obtained from CT and further
compared it against iterative kernel smoothing method [3,6].

Image Acquisition and Preprocessing
The CT images were obtained using several different models of GE multi-slice helical CT
scanners. The CT scans were acquired directly in the axial plane with a 1.25 mm slice thickness,
matrix size of 512 × 512 and 15–30 cm FOV. Image resolution varied and was in the range of
0.29 to 0.59 mm as determined by the ratio of field of view (FOV) divided by the matrix. CT
scans were converted to DICOM format and subsequently Analyze 8.1 software package
(AnalyzeDirect, Inc., Overland Park, KS) was used in segmenting binary mandibular structure
based on histogram thresholding. By checking the Euler characteristic, holes in mandible
images were automatically filled up using morphological operations. This process was
necessary to make the mandible binary volume to be topologically equivalent to a solid sphere
and and produces the surface mesh that is topologically equivalent to a sphere.

Results
We applied the proposed method in smoothing a mandibular surface. The optimal
eigenfunction expansion was determined using the F-test at α = 0.01. Fig. 2 shows the plot of
the RMSE for varying degrees between 5 to 200. As the degree k increases, the RMSE for each
coordinate rapidly decreases and starts to flatten out at a certain degree.

The numerical implementation was done with MATLAB 7.9 in 2 × 2.66 GHz Quad-Core Intel
Xeon processor MAC PRO with 32 GB memory. For a mesh with 22050 vertices, the entire
process took approximately 105 seconds: 85 seconds for setting up the generalized eigenvalue
problem (6), 10 seconds for actually solving (6), 0.1 seconds for the IRF, and 9 seconds for
finding the optimal degree.
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Comparison
The proposed heat kernel smoothing was compared against widely used iterated kernel
smoothing [3,6] of which the MATLAB code is given in
http://www.stat.wisc.edu/mchung/softwares/hk/hk.html. In iterated kernel smoothing, the
weights of the kernel are spatially adapted to follow the shape of heat kernel in discrete fashion
along a surface mesh. Smoothing with large bandwidth is broken into iterated smoothing with
smaller bandwidths:

(11)

For small σ, using the parametrix expansion [12], we can approximate heat kernel locally using
the Gaussian kernel for small bandwidth:

(12)

where d(p, q) is the geodesic distance between p and q. For sufficiently small bandwidth, all
the kernel weights are concentrated near the center, so the first neighbors of a given vertex in
a mesh is used in the approximation.

By taking the proposed heat kernel smoothing as the ground truth, we were able to determine
the performance of iterated kernel smoothing. Due to the lack of the ground truth, there are no
studies in the literature validating the performance of iterated kernel smoothing except [5]. For
heat kernel smoothing, we used the bandwidth σ = 1 and eigenfunctions up to k = 139 degree.
For iterated kernel smoothing, we varied the number of iterations 1 ≤ m ≤ 200 with the
correspondingly smaller bandwidth 1/m to have the effective bandwidth of 1. The performance
of the iterated kernel smoothing depended on the number of iterations, as shown in the plot of
RMSE of x-coordinate over the number of iterations (Fig. 3 right). The RMSE was up to 0.5430
and it did not decrease even when we increase the number of iterations. This comparison
directly demonstrates for the first time, the limitation of iterated heat kernel smoothing which
does not converge to heat diffusion.

In another comparison (Fig. 4), we numerically constructed a heat kernel with a small
bandwidth 0.2 as a sample data. Then we performed the additional iterated kernel smoothing
with σ = 0.2 and m = 49 on the sample data to obtain the effective smoothing bandwidth of 10.
The result was compared with the proposed heat kernel smoothing with the bandwidth 9.8 on
the sample data making the effective bandwidth of 10. From Fig. 4, we immediately see that
the shapes of two kernels are different. This visually demonstrates iterated kernel smoothing
substantially diverges from heat kernel smoothing.

5 Conclusions
We present a novel surface data smoothing framework where a smoothed surface measure is
represented as a weighted linear combination of Laplace-Beltrami eigenfunctions. The
expansion analytically solves isotropic heat diffusion. Taking the expansion as the ground truth,
the proposed method is compared against widely used iterated kernel smoothing. The proposed
method outperforms iterated kernel smoothing in accuracy. The divergence of iterated kernel
smoothing is visually represented as kernel shapes on the mandible confirming the superiority
of this proposed framework.
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Fig. 1.
The eigenfunctions are projected on the surface smoothed by the proposed heat kernel
smoothing with σ = 1 and k = 139. The first eigenfunction is simply . The color
scale is thresholded at ±0.015 for better visualization.
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Fig. 2.
The plot of the root mean squared errors (RMSE) for coordinates x (blue), y (red) and z (green)
for a sample mandible surface, varying degree k from 5 to 200. The optimal degree for the
surface is determined as 139.
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Fig. 3.
Top left: original mandible surface. Top right: heat kernel smoothing with σ = 1 and k = 139.
This is taken as the ground truth and iterative kernel smoothing is compared. Bottom left:
iterative kernel smoothing with σ = 1/6 and m = 6 when the reconstruction error is minimum.
Bottom right: iterative kernel smoothing with σ = 1/6 and m = 30. Right: RMSE for x-coordinate
over the number of iterations m.
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Fig. 4.
Comparison of the shape of kernels. Left: heat kernel with 0.2 used as a sample data. Middle:
The sample data is smoothed with heat kernel smoothing method with bandwidth σ = 9.8
making the effective bandwidth of 10. Right: iterated kernel smoothing with bandwidth σ =
0.2 and m = 49 iterations applied to the sample data.
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