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Abstract
Acute leukemias are characterized by recurring chromosomal aberrations and gene mutations which
are critical to disease pathogenesis. It is now evident that epigenetic modifications including DNA
methylation and histone modifications contribute significantly to the leukemogenic phenotype. An
additional layer of epigenetic complexity is the pathogenetic role of microRNAs in leukemias, and
their key role in the transcriptional regulation of tumor suppressor genes and oncogenes. The genetic
heterogeneity of acute leukemias poses therapeutic challenges, but pharmacologic agents that target
components of the epigenetic machinery hold promise as a part of the therapeutic arsenal for this
group of diseases.

INTRODUCTION
Understanding the mechanisms of transformation related to chromosome translocations has
had a profound impact on our understanding of carcinogenesis in general and of
leukemogenesis and lymphomagenesis in particular. Identifying the genes at translocation
breakpoints was the first step1, 2. Appropriately the first genes identified were oncogenes,
MYC and ABL and this identification did two things: first for those who questioned the role of
chromosome translocations in malignancy, it resolved any doubts because one of the partner
genes in the 8;14 translocation (Burkitt lymphoma)3, 4 and the 9;22 translocation (chronic
myeloid leukemia)5 was a bonafide oncogene6, 7; for those who had doubts about the relevance
of oncogenes to human cancer (they were, after all, generally cloned from experimental mouse
tumors), the discoveries showed their importance in human disease.

As translocation breakpoints in acute leukemia (see Table 1), especially acute myeloid
leukemia (AML) were cloned, the picture became more murky. The 8;21 translocation
(generally in acute myeloblastic leukemia)8 and the 15;17 translocation9 in a rare subtype of
AML, acute promyelocytic leukemia (APL), each involved a gene critical for myeloid cell self-
renewal, proliferation and/or differentiation but the partner gene was generally not active in
myeloid cells. For the t(8;21) the active gene was AML1 (also known as RUNX1), the DNA
binding portion or alpha subunit of core binding factor (CBF), and the inactive gene was
ETO (also known as RUNX1T1), a homolog of Drosophila nervy which is active in
neurons10. For the t(15;17), the active gene was RARA11, 12, retinoic acid receptor alpha, which
was centrally involved in cell differentiation; its partner was a newly identified gene called
PML for promyelocytic leukemia12. The fusion proteins AML1-ETO and PML-RARA were
found to repress the transcription of wild type AML1 and RARA target genes respectively by
recruiting co-repressor complexes containing histone deacetylases (HDACs) (see Fig. 1)13–
17. This was a revelation and immediately pointed to a potential therapeutic strategy, namely
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transcriptional derepression utilizing pharmacologic inhibitors of these co-repressor complex
components.

In reality, the prototype for the successful therapeutic targeting of transcriptional repression
by leukemic fusion proteins has been the use of all-trans retinoic acid (ATRA) for leukemias
harboring the PML-RARA fusion18, 19, whereas HDAC inhibitors (HDIs) have been less
successful in treating other acute leukemias. We now know that histone alterations are not so
simple, in fact, the “histone code” as far as we understand it is remarkably complex with a
pattern that includes acetylation and methylation (mono, di and tri) that appears to proceed in
a very ordered, complex and incompletely understood fashion20. In addition, there is a complex
interplay of histone modifications and methylation that determines the state of chromatin
structure and is critical to the regulation of gene transcription21. Clearly, in order to develop
effective treatment that reverses transcriptional deregulation in leukemia, we must understand
more about the precise details of these “marks” that are part of the epigenetic code.

To complicate matters, microRNAs (miRNAs, miRs) have been discovered22. These small
(~22 nucleotide) non-protein coding RNAs pair to target mRNAs, usually at the 3' untranslated
regions (3' UTRs), leading to degradation of mRNA or interfering with its translation into
protein22–24. miRNAs appear to have powerful regulatory effects on many genes in various
cancers24–27, including leukemia28–31. Although our understanding of the regulation of
miRNA expression is in its infancy, it is clear that mechanisms such as deletion, amplification,
methylation (or other forms of epigenetic repression) are likely to play a role.

Besides the transcriptional and epigenetic deregulation conferred by oncogenic fusion proteins
resulting from chromosomal translocations in acute leukemia, mutations involving specific
genes that mediate critical signaling pathways, and mutations in key transcription factors also
play a crucial role in leukemogenesis. For example FLT3, KIT, NRAS, KRAS, CEBPA and
NPM1 mutations have been described in AML, and PAX5, TCF3, EBF1, LEF1 and IKZF1
(also known as IKAROS) mutations in ALL. The role of these gene mutations in
leukemogenesis is outside the scope of this review, and has been addressed recently in several
other reports32–34. This review aims to describe the current understanding of epigenetic
changes (including miRNA regulation), in acute leukemias, with a particular focus on acute
leukemias characterized by balanced chromosomal aberrations.

EPIGENETIC CHANGES IN LEUKEMOGENESIS
The term epigenetics is generally used to refer to mitotically and meiotically heritable changes
in gene expression that occur without alteration of the DNA coding sequence35. Epigenetic
changes that underlie leukemogenesis have been described as falling into one of two major
categories; changes in the DNA methylation (Box 1) state, or alterations in the histone
modification (Box 2) pattern. Recent insights in this area suggest that these two major pathways
of epigenetic modification act in concert to regulate gene transcription21. Compared with
normal cells, cancer cells exhibit global DNA hypomethylation accompanied by aberrant
methylation of CpG islands within gene promoters or coding regions36. In the context of
leukemogenesis, aberrant CpG island methylation in promoter regions, for example of tumor
suppressor genes such as cyclin-dependent kinase inhibitor 2B (CDKN2B), which encodes
p15INK4b and CDKN2A, which encodes p16INK4a and p14ARF, is a well described
phenomenon, and is associated with transcriptional silencing, which also involves recruitment
of methyl-binding proteins and HDACs to regions around the transcriptional initiation
sites37, 38.

In addition, the recurring chromosomal translocations in AML result in the generation of
chimeric fusion genes which in many cases have been identified as transcriptional regulators
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(see Table 1). A number of these fusion proteins result in leukemogenesis, at least in part by
causing transcriptional deregulation via mechanisms linked to chromatin alterations (Fig. 1).

Core binding factor leukemias
The fusion proteins resulting from the chromosomal translocations t(8;21)(q22;q22) (AML1-
ETO) and inv(16)(p13q22) (CBFB-MYH11) (Table 1) have been identified as transcriptional
repressors15, 39, 40. These fusion proteins are characterized by disruption of CBF, a
heterodimeric transcription factor which is important in hematopoietic differentiation. CBF
consists of an alpha unit, AML1 (the DNA binding component), and a beta unit, CBFB, which
stabilizes AML1. In murine models, homozygous loss of Aml1 or Cbfb is characterized by lack
of definitive hematopoiesis and embryonic lethality41, 42. Wild-type AML1 acts as a
transcriptional activator. In contrast, the fusion proteins repress transcription of AML1 target
genes by recruiting HDACs directly or by co-operating with corepressors including NCOR1,
SMRT and SIN3A15–17, 43. Recently, AML1-ETO has also been shown to recruit DNA
methyltransferase-1 (DNMT1)44; this finding implies that transcriptional silencing of AML1
target genes occurs at least in part, by an interplay between histone deacetylation and promoter
DNA methylation. AML1-ETO has also been shown to directly repress transcription of tumor
suppressor genes such as p14ARF and NF1 through the AML1 DNA binding domain45, 46.

Acute Promyelocytic Leukemia
All patients with APL harbor the t(15;17) or one of its variants, that results in a fusion protein
comprised of all but the first 30 amino acids of RARA47, fused to a variable partner at the N-
terminus12, 48–52. Wild-type RARA functions as a transcriptional activator, whereas the fusion
protein acts as a transcriptional repressor via recruitment of the HDAC, NCOR1 and SMRT
complex, DNMT1 and DNMT3A, repressive histone methyltransferases, and polycomb group
proteins53, 54. In cells with t(15;17) (PML-RARA), treatment with pharmacologic doses of
ATRA18, 19 relieves this repression by allowing release of the N-CoR complex and recruitment
of a co-activator complex which contains proteins with histone acetyltransferase (HAT)
activity55–57. This results in activation of RARA target genes as well as transcription factors
critical for normal hematopoiesis such as SPI1 (also known as PU.1) and C/EBP-beta
(CEBPB), with subsequent differentiation of leukemic cells55–57. Patients with APL have a
high complete response rate with ATRA used in conjunction with chemotherapy, and APL has
served as a paradigm for the successful therapeutic targeting of epigenetic changes in acute
leukemia. Although the effects of ATRA on cellular differentiation are critical to its success
in APL, ATRA has also been shown to result in degradation of PML-RARA58, leading to
growth arrest and a decline in leukemia-initiating cells or leukemic stem cells. Recently, the
use of arsenic trioxide has also been found to result in the degradation of the PML-RARA
fusion and apoptosis in APL cells, to have significant clinical efficacy in the therapy of APL,
to complement the use of ATRA in the treatment of patients with APL, and to potentially
obviate the need for chemotherapy in some patients with this disease55, 57, 59. Gene expression
and proteomic profiling experiments following treatment with both of these compounds reveal
effects on multiple genes including a pattern of upregulation of genes associated with myeloid
differentiation and downregulation of genes enhancing cellular proliferation55, 57, 60. The
synergistic effect observed with the combination of ATRA and arsenic in producing durable
remissions in APL has also been linked to eradication of leukemic stem cells58.

Leukemias that disrupt histone acetyltransferases
Besides the recruitment of HDACs, DNMTs and co-repressor complexes, the scope of
epigenetic deregulation by chromosomal translocations in acute leukemias also includes a
disruption of the actual enzymes that are involved in chromatin modification61. For example,
HATs such as CBP and the closely related p300, as well as the monocytic leukemia zinc finger
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(MOZ) and the related MORF (monocytic leukemia zinc finger protein related factor) are
rearranged in chromosomal translocations in leukemia. MOZ and MORF belong to the MYST
family of HATs. The t(8;16) and the t(10;16) each result in the fusion of two proteins with
HAT activity, MOZ-CBP and MORF-CBP respectively62, 63. The MOZ-CBP fusion inhibits
AML1 mediated transcription resulting in a differentiation block and the HAT domain of CBP
was found to be indispensable in this regard64. In addition, the HAT domain of MOZ also has
a critical role in hematopoiesis, with abrogation of the HAT activity in ES cell lines and murine
cell lines leading to a significant reduction in the proliferation potential of hematopoietic
precursors65. Therefore it is plausible that deregulation of CBP and MOZ-mediated acetylation
by chromosomal rearrangements could lead to a disruption in the balance between proliferation
and differentiation during hematopoiesis, and thus contribute to the leukemogenic phenotype.

The inv(8) fuses the HAT domain of MOZ to the transcription factor TIF266. The MOZ HAT
domain consists of a nucleosomal binding motif and an acetyltransferase catalytic domain
(Acetyl-CoA binding domain). Murine models of the inv(8) fusion suggest that the
nucleosomal binding domain of MOZ and the CBP interaction domain of TIF2 are essential
for leukemogenesis, whereas the N-terminal PHD and Acetyl-CoA binding domain of MOZ
are dispensable67. This implies that the MOZTIF2 fusion results in transcriptional deregulation
via aberrant recruitment of CBP to nucleosomal regions targeted by MOZ; and the HAT activity
of CBP may contribute at least in part to leukemogenesis.

MLL-associated Leukemias
The t(11;16) which fuses MLL (myeloid lymphoid leukemia or mixed lineage leukemia) and
CBP is another example of a chromosomal translocation involving a protein with HAT
activity68. MLL is located on chromosome band 11q23, has homology to the Drosophila
melanogaster trithorax gene, especially in the SET domain, and is involved in both myeloid
and lymphoid leukemias, as well as biphenotypic or mixed lineage leukemias, hence its
name69, 70. MLL is involved in chromosomal translocations with over 60 different partner
genes in acute leukemias, and the mechanism of leukemogenesis by MLL fusion proteins
remains perplexing given the disparate nature of the multiple known partner genes which have
nuclear or cytoplasmic functions71, 72. However, because CBP had long been recognized to
be a HAT, the MLL-CBP fusion protein provided an initial insight into potential mechanisms
of leukemogenesis induced by MLL fusions, and suggested that transcriptional deregulation
via mechanisms linked to histone modifications and altered chromatin structure was important
in disease pathogenesis68.

Subsequently, MLL was demonstrated to possess histone (H3K4) methyltransferase activity
(and thus transcriptional activation properties) via its C-terminal SET domain73, 74. MLL and
the tumor suppressor protein menin (encoded by multiple endocrine neoplasia type 1
(MEN1)), which binds MLL at its N-terminus, have been shown to associate with the homeobox
A9 (HOXA9) promoter75, 76, and recently, the chromatin associated protein, PSIP1 (also known
as LEDGF), has been demonstrated to be a crucial cofactor for this interaction77. MLL H3K4
methyltransferase activity is associated with activation of MLL target genes including
Hoxa974, which is important in the survival of MLL-rearranged leukemias78. The absence of
menin and/or PSIP1 results in a failure of MLL and MLL fusions to regulate Hoxa9
transcription, illustrating the importance of MLL/MENIN interaction in MLL fusion protein
induced leukemogenesis71, 77.

Despite the fact that the SET domain is associated with H3K4 methyltransferase activity and
Hoxa9 activation, it is consistently lost in the MLL fusions, except for the partial tandem
duplication of MLL (MLL-PTD), where the SET domain and thereby the H3K4
methyltransferase activity is maintained79. However, MLL fusion-mediated leukemogenesis
is not as simple as perturbed MLL-dependent H3K4 methylation74. Indeed, for several of the
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MLL fusion proteins, the loss of the SET domain and H3K4 methyltransferase activity may
be potentially compensated for by the acquisition of an alternative unique histone
methyltransferase activity conferred by the partner proteins71, 80. For example, recent studies
have shown that MLL fusion partners such as AF10, AF9, AF4 and ENL associate with the
H3K79 histone methyltransferase DOT1L81–83. H3K79 methylation is also associated with
transcriptional activation, and the acquisition of H3K79 methyltransferase activity has been
demonstrated to be important for transformation by a subset of MLL fusion proteins81, 84. In
a recently developed murine model of MLL-AF4 leukemia, genome wide assessment of H3K79
methylation was performed using a ChIP-chip technique, and approximately 1000 promoters
were found to be associated with increased H3K79 methylation compared with normal B
cells85. Interestingly, siRNA mediated suppression of the H3K79 histone methyltransferase
DOT1L decreased the expression of genes critical for MLL-fusion mediated
leukemogenesis85, suggesting that the modification of H3K79 methylation may be a potential
therapeutic strategy in leukemias involving MLL-fusions.

MICRORNAS IN LEUKEMOGENESIS
Besides the two classic epigenetic modifications (i.e., DNA methylation and histone
modifications), a third epigenetic mechanism has recently gained attention, namely miRNA
regulation. MiRNAs are critical regulators of many physiological processes such as
development, cell apoptosis, differentiation, and proliferation. Emerging evidence shows that
altered miRNA expression is associated with various types of cancers24–26. In addition,
miRNAs function in complex regulatory networks to regulate hematopoietic differentiation
(see Supplementary Box 1 and Supplementary Table 1) and contribute to leukemogenesis (see
Fig. 2, Table 2, and Supplementary Table 1), (see reviews28–31).

MiRNAs as oncogenes in acute leukemia
Several miRNAs have been shown to function as oncogenes in acute leukemia. Those that are
the most well-studied are discussed in this section and included in Table 2.

The mir-17-92 polycistron located at 13q31, which contains seven individual miRNAs
including miR-17-5p, miR-17-3p, miR-18a, miR-19a, miR-20a, miR-19b-1, and miR-92-1,
functions as an oncogene in various cancers including lymphoma, lung, colon, pancreas,
prostate tumors, medulloblastoma, multiple myeloma86–88. Recently, Li et al.89, 90 showed
that miRNAs in the mir-17-92 cluster are particularly overexpressed in acute leukemia cells
bearing MLL rearrangements, which is at least partly owing to the genomic DNA amplification
of the locus91. Retroviral transduction of the mir-17-92 cluster significantly increased
proliferation and colony-forming/replating capacity of mouse normal bone marrow progenitor
cells alone and particularly, in cooperation with MLL-ELL fusion91. These data suggest that
the mir-17-92 cluster may play an important role in the development of MLL-associated
leukemia. In normal hematopoiesis, mir-17-92 plays an essential role in monocytopoiesis92

and megakaryocytopoiesis93, and in B cell development94–96. mir-17-92 is down-regulated
during monocytopoiesis and megakaryocytopoiesis and its forced expression represses
monocytopoiesis (through targeting AML1)92 and megakaryocytopoiesis93. mir-17-92 inhibits
B cell development at the pro-B to pre-B transition probably through targeting PTEN and
BIM94–96. Thus, aberrant overexpresion of mir-17-92 in leukemia would inhibit normal
hematopoiesis and thereby contribute to leukemogenesis. In addition to the targets described
above, E2F family transcription factors have also been suggested as both functional targets and
regulators of mir-17-9297–99. Moreover, Li et al.90 reported that 19 predicted targets of
mir-17-92 including RASSF2 and RB1, were significantly down-regulated in MLL-rearranged
leukemia and exhibit a significant inverse correlation with expression of the miRNAs. By use
of a luciferase reporter assay, the direct regulation of RASSF2 and APP have been
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confirmed90. Thus, a group of target genes of mir-17-92 have been identified and it is essential
to determine which ones are critical in leukemogenesis.

miR-155 plays an important role in megakaryopoiesis/erythropoiesis93, 100, 101 and
lymphopoiesis102. Transgenic mice with forced expression of miR-155 initially exhibit a
preleukemic pre-B cell proliferation evident in spleen and bone marrow, followed by a frank
B cell malignancy, indicating that miR-155 can induce polyclonal expansion, favoring the
occurrence of secondary genetic changes for full transformation103. In AML, miR-155 is
specifically overexpressed in leukemia with internal tandem duplication of the receptor
tyrosine kinase FLT3 (FLT3-ITD)104, 105, but the up-regulation of miR-155 is independent
from FLT3 signaling106. miR-155 was reported to be overexpressed in a subset of AML
(particularly, FAB-AML-M4 and M5), and sustained expression of miR-155 in hematopoietic
stem cells caused a myeloproliferative disorder107.

miR-196a and b are significantly upregulated in AMLs bearing NPM1 mutations104 and in
MLL-associated pediatric ALL108, as well as in MLL-associated AML89. During mouse
embryonic stem (ES) cell differentiation, Popovic et al.109 showed that MLL normally regulates
expression of miR-196b in a pattern similar to that of the surrounding Hox genes, Hoxa9 and
Hoxa10. Within the hematopoietic lineage, the expression level of miR-196b reached a peak
in short-term repopulating HSCs and then decreased as cells became more differentiated.
Leukemogenic MLL fusion proteins caused overexpression of miR-196b, while treatment of
MLL-AF9 transformed bone marrow cells with miR-196-specific antagomir oligos abrogated
their replating potential in methylcellulose. Forced expression of miR-196b in bone marrow
progenitor cells led to increased proliferative capacity and survival, as well as a partial block
in differentiation109. Consistently, miR-196 (and miR-21) is significantly down-regulated by
the transcriptional repressor GFI1 during the transition from CMPs (common myeloid
progenitors) to GMPs (granulocyte-macrophage progenitors), and forced expression of
miR-196b (particularly, when co-expressed with miR-21) significantly blocks
granulopoiesis110. Thus, miR-196 contributes to leukemogenesis likely through enhancing
proliferation while blocking differentiation of hematopoietic progenitor cells.

MiRNAs as tumor suppressor genes in acute leukemia
miRNAs have also been shown to function as tumor suppressors in acute leukemia (Table 2),
although data in this area are more limited than for those miRNAs that act as oncogenes. The
let-7 family is a well-known tumor suppressor gene family, and functions as a negative
regulator of a set of oncogenes including RAS (NRAS and KRAS) and HMGA2111, 112. In acute
leukemia, let-7b and c were downregulated in CBF leukemia cases104. Upon treatment of APL
primary leukemia samples and cell lines with ATRA, let-7a-3, let-7c, and let-7d were
upregulated, whereas their target RAS was downregulated113. The tumor suppressor property
of miR-15a/16-1 was first highlighted by the findings that they were deleted or downregulated
in 68% of chronic lymphocytic leukemias (CLLs) and targeted BCL2, an anti-apoptotic
gene114, 115. In AML, miR-15a/b and miR-16-1 are upregulated while their target BCL2 is
down-regulated in APL cells after treatment with ATRA113. In addition, a MYB-miR-15a
autoregulatory feedback loop was reported in which miR-15a targeted MYB and blocked the
cells in the G1 phase of cell cycle, while MYB bound the promoter region of miR-15a and was
required for miR-15a expression; moreover, MYB and miR-15a expression were inversely
correlated in cells undergoing erythroid differentiation116.

MiRNA expression profiling in acute leukemia
In a large-scale, genome-wide miRNA profiling study in AMLs, Li et al.89 observed distinct
miRNA expression patterns for t(15;17), translocations involving MLL, and CBF AMLs
including both t(8;21) and inv(16) leukemias. Expression signatures of a minimum of two (i.e.,
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miR-126/126*), three (i.e., miR-224, miR-376c/ miR-368, and miR-382), and seven
(miR-17-5p and miR-20a, plus the aforementioned five) miRNAs could accurately
discriminate CBF, t(15;17), and MLL-rearranged AMLs, respectively, from each other89.
Similarly, Jongen-Lavrencic et al.104 showed that miRNA signatures correlated with
cytogenetic and molecular subtypes of AML (i.e., AMLs with t(8;21), t(15;17), inv(16),
NPM1, and CEBPA mutations). For example, all 6 AML cases with t(15;17) aggregated in a
cluster; a significant upregulation of miR-10a/b and miR-196a/b was identified in AMLs
bearing NPM1 mutations, and of miR-155 in AMLs carrying FLT3-ITD. Notably, they also
observed a significant upregulation of miR-126 in CBF leukemia and of miR-224 and miR-382
in t(15;17) AML104. The specific miRNA signature of t(15;17) (APL) cases and the up-
regulation of miR-10a/b in AMLs bearing NPM1 mutations and of miR-155 in AMLs carrying
FLT3-ITD were also reported by others105, 106, 117. Marcucci et al. reported that miR-181a,
a*, b, c and d, miR-128, miR-192, miR-219-1-3p, miR-224, miR-335, and miR-340 were up-
regulated whereas miR-34a and miR194 were down-regulated in cytogenetically normal
AMLs with CEBPA mutations118.

In addition, the expression signature of some miRNAs was associated with outcome and
survival of leukemia patients. Garzon et al.105 showed that patients with high expression of
miR-191 and miR-199a had significantly worse overall and event-free survival than AML
patients with low expression. In cytogenetically normal AMLs, Marcucci et al.119 found that
expression signature of miR-181a (2 probes) and miR-181b (3 probes) was associated with
good outcome whereas that of miR-124, miR-128, miR-194, miR-219-5p, miR-220a, and
miR-320 (2 probes) was associated with poor outcome.

In a study of 17 ALL and 52 AML cases, Mi et al.120 identified 27 miRNAs that were
differentially expressed between ALL and AML. Among them, miR-128a and b were
significantly overexpressed, whereas let-7b and miR-223 were significantly down-regulated
in ALL compared to AML. Using the expression signatures of a minimum of two of these four
miRNAs could distinguish ALL and AML with >95% accuracy, indicating that expression
signatures of as few as two miRNAs could accurately discriminate ALL from AML120.
Notably, significant overexpression of miR-128 in ALL was also reported elsewhere108, 121.

Thus, miRNA signatures correlate with cytogenetic and molecular subtypes of acute leukemia,
as well as outcome of leukemia patients. Further large-scale miRNA expression profiling
assays conducted by different groups is critical to identify the miRNAs that can serve as reliable
biomarkers for diagnosis and prognosis and/or as therapeutic targets of leukemia.

MiRNAs as targets and effectors of the epigenetic machinery
It is becoming clear now that not only do miRNAs themselves act in an epigenetic way by
post-transcriptional regulation of expression of target genes, but they can also be targets of the
epigenetic machinery, as well as effectors of DNA methylation and histone modifications.
These functions may all have crucial roles in leukemogenesis.

As examples of miRNAs as targets of the epigenetic machinery, their aberrant expression in
acute leukemia is directly associated with DNA methylation. For example, the elevated
expression of miR-126/126* in CBF AMLs and of miR-128 in ALL was associated with
promoter demethylation89, 120. In addition, the fusion oncoproteins that arise from
chromosomal translocations have been associated with epigenetic silencing of miRNAs. For
example, expression of miR-223 is down-regulated by the AML1-ETO fusion resulting from
t(8;21) in AML122 owing to a heterochromatic silencing of the miR-223 genomic region
triggered directly by AML1-ETO. Increasing miR-223 expression through demethylation
restores differentiation of leukemic blasts122. Similarly, transcriptional repression of miR-210
and miR23/24 by PML-RARA was reported in APL with the t(15;17)123.
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Histone modifications may also play a role in regulation of miRNA expression in acute
leukemia. Roman-Gomez et al.124 observed high levels of dimethylation of H3 lysine 9
(K9H3me2) and/or low levels of trimethylation of H3 lysine 4 (K4H3me3) (these are patterns
of histone modifications underlying a closed chromatin structure associated with repressive
gene expression) in CpG islands around 13 miRNAs. Their analysis of 353 ALL primary
patients showed that 65% of the ALL samples had at least one miRNA methylated. Notably,
patients with miRNA methylation had a significantly poorer disease-free survival (DFS; 24%
vs. 78%) and overall survival (OS; 28% vs. 71%) than patients with unmethylated miRNAs.
Multivariate analysis demonstrated that methylation profile was an independent prognostic
factor for predicting DFS and OS. Their results suggest that aberrant miRNA methylation is a
common phenomenon in ALL and miRNA methylation profile might be important in
predicting the clinical outcome of ALL patients124.

On the other hand, miRNAs may also function as effectors of the epigenetic machinery. Two
recent studies125, 126 show that miR-290, a mouse ES cell-specific miRNA, controls DNA
methylation and telomere recombination via retinoblastoma-like 2 (Rbl2)-dependent
regulation of DNMTs in mouse ES cells. In leukemia, forced expression of miR-29b in AML
cells induced global DNA hypomethylation and re-expression of tumor suppressor genes
including p15INK4b and ESR1 by targeting DNMT3A and DNMT3B directly and DNMT1
indirectly127.

EPIGENETIC THERAPY IN ACUTE LEUKEMIA
Unlike gene deletions which lead to irreversible loss of function, transcriptional repression by
epigenetic mechanisms such as histone deacetylation and promoter DNA methylation can be
reversed by pharmacologic inhibitors of such processes. One of the best known and most
successful examples of “targeted therapy” that can induce epigenetic changes, is the use of
ATRA in the therapy of APL, which has been described above. Because epigenetic mechanisms
are critical to the pathogenesis of acute leukemias as a whole, there has been a significant
interest in the clinical and translational investigation of agents that target the epigenome in
these diseases.

Histone deacetylase inhibitors (HDIs)
HDIs have been associated with effects on a variety of genes including those involved with
cell cycle regulation, apoptosis and angiogenesis. HDIs have been demonstrated to exert anti-
tumor effects in vitro and in vivo, and are now in clinical trials in acute leukemias, as well as
in related neoplastic disorders of the bone marrow such as myelodysplastic syndromes (MDS)
and myeloproliferative neoplasms (MPN). In preclinical studies, HDIs have been shown to
induce differentiation of APL cell lines including those resistant to standard differentiating
therapy with ATRA128–130. They abolish tumors with t(15;17) in nude mice, and induce
remissions in transgenic mice models of ATRA resistant APL130, 131. HDIs have also been
demonstrated to induce differentiation and apoptosis of leukemia cell lines and primary
leukemia blasts with the t(8;21)39, 132–134. In the clinical setting, therapy with the HDI sodium
phenylbutyrate has been shown to restore ATRA responsiveness in a patient with APL who
had experienced multiple relapses and was clinically resistant to therapy with ATRA
alone135. Treatment with phenylbutyrate induced a complete clinical and cytogenetic remission
and a time-dependent histone acetylation in peripheral blood and bone marrow mononuclear
cells135. Butyrates however are short chain fatty acids and generally not very potent in
inhibiting HDACs136. More potent HDIs including hydroxamic acids, cyclic tetrapeptides and
benzamides have been developed and are under clinical investigation137. To date however, the
only tumor where significant efficacy has been demonstrated in the clinic is advanced primary
cutaneous T cell lymphoma, where the HDI SAHA (vorinostat) was recently FDA
approved138.
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The majority of clinical trials utilizing HDIs as single agents in patients with advanced AML
or myelodysplastic syndromes have demonstrated limited clinical activity139–147 (Table 3).
Recently published pre-clinical studies have also focused on distinct cytogenetic subsets of
AML such as CBF AML, a cytogenetic subset that would be hypothesized to be particularly
amenable to therapy with this class of drugs, based on transcriptional repression via HDAC
recruitment by the oncogenic fusion proteins132, 133. In a recent clinical trial, transient
antileukemic activity was demonstrated in patients with advanced CBF leukemia treated with
the HDI Romidepsin, and this was associated with upregulation of AML1-ETO target
genes146. Given the relatively limited single agent activity of HDIs thus far in acute leukemias,
ongoing trials are investigating the combination of HDIs with other agents, including DNMT
inhibitors (Table 3).

DNA methyltransferase (DNMT) inhibitors
Although DNMT inhibitors have been in existence for several decades, they were originally
utilized at very high doses which resulted in significant cytotoxicity, and an unacceptable
toxicity profile148. At lower doses however, the DNA demethylating and differentiating effects
of these drugs predominate, and they are active in a broad range of myeloid neoplasms
including MDS, MPN, and AML149. The DNMT inhibitors in clinical and/or preclinical
development fall into 2 broad categories, namely nucleoside analogues and non-nucleoside
demethylating agents (reviewed in137, 149). The prototypic nucleoside analogue DNMT
inhibitors 5-azacytidine (5-Aza, azacitidine) and 5-aza-2'deoxycytidine (decitabine), both get
incorporated into DNA (5-Aza also gets incorporated into RNA) and form a covalent complex
with the DNMT enzyme resulting in trapping and degradation of the enzyme and progressive
loss of DNMT activity within cells. Both compounds have recently been approved by the FDA
for the treatment of MDS150–152. Objective response rates (complete and partial responses) in
these trials have been in the 20 to 30% range, but an additional 20 to 30% of patients derive
clinical benefit in terms of improvement in blood counts or transfusion requirements (so-called
hematologic improvement), despite evidence of persistence of significant disease in the bone
marrow150, 152, 153. Several of the trials conducted in MDS have included patients who have
a myeloblast count of 20 to 30% in the bone marrow (and are therefore considered to have
AML), and in these patients the overall response rates including hematologic improvement
have been in the 35% to 48% range154. There are now several early phase trials utilizing DNMT
inhibitors, either as single agents or in combination with other agents, that confirm the clinical
activity of this group of drugs in AML155–162, including elderly patients with AML who are
unable to tolerate standard cytotoxic chemotherapy155–157.

It is important to note that these drugs may require several cycles of administration for activity
to be demonstrated, and this may be due at least in part to the fact that repetitive administration
is necessary for progressive demethylation and epigenetic modulation of critical genes such as
cell cycle regulatory and proapoptotic genes. In addition, the effects of these drugs on
methylation are not permanent, and therefore chronic exposure is required to maintain the
effects. The clinical activity of these agents is thought to be mediated via reversal of epigenetic
silencing and there are a few published clinical trials that support this hypothesis158, 163.
However, in general this has been challenging to prove conclusively in the clinical setting156,
160, 164 (Table 3), and it is likely that alternative mechanisms of action such as induction of
DNA damage159, 165–167 may contribute to the pleiotropic effects of these drugs.

Efforts are ongoing to develop DNMT inhibitors that have greater selectivity for cancer cells
and that are suitable for chronic oral administration in the clinical setting. In addition, given
the interrelationship between DNA methylation and histone modifications in the regulation of
gene expression168, it is not surprising that HDIs and DNMT inhibitors are being combined in
clinical trials in AML and MDS (Table 3); in an effort to optimize the antitumor activities of
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these agents and recapitulate the synergistic interaction that has been demonstrated in the
preclinical setting. Several of these published trials have been conducted using relatively low
potency HDIs155–158 and have shown the feasibility of this approach, but have not
demonstrated a clear contribution of the HDIs to the clinical or biologic activity of the
combination155. The results from ongoing randomized trials utilizing newer generation, more
potent HDIs will be necessary to validate the hypothesized synergy between these two classes
of epigenetic modulators in patients with AML and MDS.

MiRNAs as Potential Therapeutic Targets and Tools
Because they can function as oncogenes or tumor suppressor genes in leukemogenesis,
miRNAs also have the potential to serve as therapeutic targets or tools. miRNA-based cancer
gene therapy offers the theoretical appeal of targeting multiple gene networks that are
controlled by a single, aberrantly expressed miRNA169. Reconstitution of tumor-suppressive
miRNA, or sequence-specific knockdown of oncogenic miRNAs by “antagomir oliogos”, has
produced favorable antitumor outcomes in experimental models169. In addition, the efficacy
of some existing clinical therapeutic approaches may be mediated via modulation of miRNA
expression. For example, tumor suppressor miRNA upregulation has been demonstrated with
the use of ATRA in APL cell lines and primary leukemia samples113, 123 and the DNMT
inhibitor 5-azacytidine has been associated with reversal of epigenetic silencing of a miRNA
linked to the differentiation block in AML1-ETO AML blasts122.

However, there are still many issues to be resolved prior to consideration of conducting
miRNA-based clinical therapy including dosage, efficacy, functionality, delivery, non-specific
toxicity, and immune activation24, 169. In addition, because of the redundancy of some miRNA
families or functional redundancy of a set of miRNAs that are not in a family, targeting a single
member might not be sufficient in terms of gene therapy. In such cases, targeting several
miRNAs simultaneously would be critical. Furthermore, some miRNAs may play a different
role (as oncogene or tumor suppressor) depending on the cellular context. For example, the
mir-17-92 cluster is a well-known oncogene in various types of cancers86, 87, 89, 170, 171

including leukemia89, 104, 108, 109, but may it function as a tumor suppressor gene in breast
cancer172, 173. Therefore, before considering a potential clinical application, it is important to
understand the expression pattern and potential role of the candidate miRNA(s) in other tissues
to avoid causing undesirable side effects.

CONCLUSIONS AND PERSPECTIVES
The complexity and biologic heterogeneity of acute leukemias pose significant challenges to
making therapeutic advances. It is clear however that an in-depth understanding of the biology
is essential to making meaningful progress. The oncogenic fusion proteins in acute leukemia
associate in macromolecular complexes, lack intrinsic enzymatic activity and are therefore not
easily “druggable” in contrast for example, to the clinical development of ABL kinase
inhibitors in CML. Epigenetic and transcriptional therapeutic strategies that focus on disruption
of the association of oncoproteins with substrate DNA, or interference with key molecules that
oncoproteins may associate with to promote leukemia (such as disruption of the MLL/MENIN
interaction) hold promise for the future. In addition, besides the ongoing clinical studies of
HDIs and DNMT inhibitors, other components of the epigenetic regulatory machinery such as
histone methyltransferases, histone demethylases, HATs, and sirtuins are potential targets for
future anti-cancer and antileukemia therapy174. The importance of miRNAs in enhancing our
basic perceptions about the pathobiology of leukemias as well as their therapeutic potential
and some of the potential pitfalls that could be encountered in clinical translation have been
mentioned above. Given the importance of co-operating gene mutations in signaling pathways
in the generation of the acute leukemia phenotype, it is likely that the most effective treatment
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strategies in the future will involve a combination of rationally designed transcriptional
treatment approaches with those that inhibit relevant activated signal transduction molecules.

Box 1: DNA methylation and associated enzymes

DNA methylation is mediated by DNA methyltransferases (DNMTs) which catalyze the
conversion of cytosine residues which precede guanosine (CpG) to 5-methylcytosine, by
the covalent addition of a methyl group at the 5-carbon position of the cytosine175. These
CpG residues are underrepresented in the genome as a whole and occur at only 5 to 10 %
of the predicted frequency. This underrepresentation is likely linked to the propensity of
methylated cytosine to undergo spontaneous deamination to thymidine, leading to
progressive depletion of CpG dinucleotides over time. CpG residues cluster particularly in
promoter regions of genes, in so called CpG islands, are generally unmethylated in normal
cells, and are associated with hyperacetylated histones and an open chromatin configuration,
which facilitate accessibility to transcription factors and transcriptional activation. CpG
island methylation in the promoter regions of genes is associated with transcriptional
repression, gene silencing and a condensed chromatin state and is seen physiologically, for
example, in the context of genes silenced on the inactive X chromosome and imprinted
genes.

The known enzymatically active DNMTs include DNMT3A and DNMT3B which are de
novo methylases and bind to both unmethylated and hemimethylated CpG sites, while
DNMT1 is responsible for maintaining DNA methylation patterns and binds preferentially
to hemimethylated DNA.

Box 2: Histone modifications and associated enzymes

Structural studies have revealed that the N-terminal tails of the histones protrude outward
from the nucleosome and are subject to various post-translational modifications including
acetylation, methylation, ubiqitination, phosphorylation, sumoylation and ADP-
ribosylation (reviewed in Ref. 176). Histone acetylation is associated with transcriptionally
active chromatin (euchromatin) and is catalyzed by histone acetyltransferases (HATs). A
number of transcriptional co-activators including CREB binding protein (CBP) and p300,
Gcn5/pCAF and SRC-1 have been shown to possess HAT activity. Conversely,
transcriptional co-repressor complexes such as nuclear co-repressor 1 (NCOR1), NCOR2
(also known as SMRT) and SIN3A have been shown to contain subunits with histone
deacetylase (HDAC) activity.

Histone methylation is catalyzed by histone methyltransferases and can occur on lysine and/
or arginine residues. In contrast to histone acetylation which results in a transcriptionally
active state, histone methylation can result in activation or repression of transcription
depending on the residue that is affected. For example, histone H3 lysine 4 (H3K4)
methylation is recognized as an active mark associated with actively transcribed genes,
while H3K20 trimethylation or H3K9 methylation are inactive marks associated with
transcriptional repression and heterochromatic states. Histone methyltransferases also tend
to be more specific with regard to their histone substrates, in contrast to HATs for example,
and contain a conserved SET domain. Some of the histone methyltransferases identified
thus far in mammalians include SETD7, SMYd3 and MLL (catalyze H3K4 methylation);
SUV39H1, euchromatic histone-lysine N-methyltransferase 2 (EHMT2), EHMT1,
SETDB1 (catalyze H3K9 methylation); EZH2 (H3K27 methylation); and DOT1L (H3K79
methylation).
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Histone demethylases have recently been identified and include amine oxidases such as
LSD1 which can demethylate H3K4 or H3K9 depending on the associated protein, and
JmjC family members which demethylate mono-, di-, or tri-methylated lysine.

AT-A-GLANCE SUMMARY

• Acute leukemias, arising from neoplastic transformation of uncommitted or
partially committed hematopoietic stem cells, are characterized by recurring
chromosomal aberrations and gene mutations which are critical to disease
pathogenesis.

• The recurring chromosomal translocations in acute myeloid leukemia (AML)
result in the generation of chimeric fusion proteins, which in many cases function
as transcriptional regulators. These include AML1-ETO (generated by t(8;21)),
CBFB-MYH11 (generated by inv(16) or t(16;16)), PML-RARA (generated by t
(15;17)), MOZ-CBP (generated by t(8;16)), MORF-CBP (generated by t(10;16)),
MOZ-TIF (generated by inv(8)), and MLL fused with various partners (generated
by t(11q23)). They contribute to leukemogenesis, at least partially by causing
transcriptional deregulation via epigenetic modifications.

• Epigenetic modifications including DNA methylation or demethylation and
histone changes lead to activation or repression of gene expression. Aberrant
epigenetic changes occur frequently in acute leukemias. Fusion genes resulting
from chromosome translocations may be regulators or mediators of the epigenetic
machinery.

• MicroRNA regulation may also contribute significantly to leukemogenesis. Some
microRNAs function as oncogenes or tumor suppressor genes in acute leukemias.
microRNA signatures correlate with cytogenetic and molecular subtypes of acute
leukemias, and some microRNA signatures are associated with outcome or
survival of acute leukemias.

• It is evident that not only do microRNAs themselves function in an epigenetic
manner by post-transcriptional regulation of expression of target genes, but they
can also be targets of the epigenetic machinery and effectors of DNA methylation
and histone modifications. These functions may all be involved in leukemogenesis.

• Although the genetic heterogeneity of acute leukemias poses therapeutic
challenges, drugs or small molecules that target components of the epigenetic
machinery hold great promise in the treatment of leukemias. The use of all-trans
retinoic acid (ATRA) in the therapy of acute promyelocytic leukemia (APL) is one
of the best known and most successful examples of “targeted therapy” involved
in epigenetic changes and progress has been made in the clinical trials of histone
deacetylase inhibitors (HDIs) and DNA methyltransferase (DNMT) inhibitors;
however, more effective treatment strategies are needed for therapeutic advances.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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GLOSSARY

Histones the chief protein components of chromatin, which plays an important
role in DNA packaging, chromosome stabilization and gene
expression. Histones form the core component of nucleosomes

Histone classes There are six classes of histones (H1, H2A, H2B, H3, H4, and H5)
organized into two super classes including core histones (i.e., H2A,
H2B, H3 and H4) and linker histones (i.e., H1 and H5)

Histone code the “rules” governing the pattern of covalent histone tail
modifications. Histone tail modifications play an important role in
the chromatin structure, and thereby play an important role in
regulation of gene expression

Histone
deacetylases

enzymes that regulate chromatin structure and function through the
removal of the acetyl group from the lysine residues of core
nucleosomal histones
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Nucleosomes the basic unit of chromatin and consist of approximately 146 base
pairs of DNA wound around an octameric core of histone proteins:
an H3-H4 tetramer and two H2A-H2B dimers

Normal
hematopoiesis

a developmental process by which all types of blood cells of the body
are continuously produced by rare puripotent self-renewing
hematopoietic stem cells (HSCs). In normal adults, hematopoiesis
occurs primarily in marrow and lymphatic tissues

Leukemic blasts abnormal immature white blood cells that are malignant (neoplastic),
and typically found in the bone marrow and peripheral blood of
patients with acute leukemia

Acute leukemia a type of malignancy that results in the relatively rapid growth of
abnormal immature white blood cells (myeloid or lymphoid
leukemic blasts) in the marrow and blood and inhibition of normal
hematopoiesis

FAB classification
of AML

The French-American-British (FAB) classification system divided
AML into 8 subtypes, M0 through to M7, based on the type of cells
from which the leukemia developed and how mature the cells are

Myelodysplastic
syndrome (MDS)

a group of clonal hematopoietic stem cell disorders characterized by
cytopenias (low blood counts) and ineffective hematopoiesis,
dysplasia in one or more myeloid cell lines, and an increased risk of
transformation to AML

Hematopoietic
stem cells (HSCs)

multipotent stem cells that are composed of short-term repopulating
(STR) and long-term repopulating (LTR) stem cells. STR HSC can
sustain the hematopoietic system for only a short term, whereas LTR
HSC can reconstitute hematopoiesis for life

Chromosome
abnormalities

alterations in the number or the structure of one or more
chromosomes. In leukemia or cancer, chromosome abnormalities
usually occur when there is an error in cell division following mitosis;
they can be either numerical or structural, or both

Chromosome
translocation

a structural abnormality resulting from rearrangement of pieces
generally between two non-homologous chromosomes

Antagomir oligos
(AMOs)

a class of chemically engineered antisense oligonucleotides that are
complementary to either the mature miRNAs or their precursors an
are used to specifically inhibit the activity of endogenous miRNAs,
probably through irreversibly binding the miRNAs. Antagomirs are
now used as a method to constitutively inhibit the activity of specific
miRNAs
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Figure 1. Leukemia fusion proteins and epigenetic deregulation
Oncogeneic fusion proteins such as AML1-ETO, CBFB-MYH11, and PML-RARA recruit
transcriptional co-repressor complexes (including NCOR1 and SMRT) which result in the loss
of histone acetylation and the acquisition of repressive histone modification marks such as
histone H3 lysine 9 (H3K9) methylation and H3K27 trimethylation, as well as DNA
methylation, and thereby a closed chromatin structure. This leads to transcriptional silencing
of various target genes including genes that are critical for hematopoietic differentiation.
Epigenetic or transcriptional therapy (targeting the fusion proteins, components of the
corepressor complexes or downstream effectors such as miRNAs) has the potential to reverse
these changes leading to histone acetylation, and acquisition of active marks such as H3K4
methylation, an open chromatin structure with subsequent transcriptional activation and
differentiation of the leukemic clone. HDACs, histone deacetylases; DNMT, DNA
methyltransferases; HMT, histone methyltransferases; NCOR1, nuclear receptor co-repressor
1; SMRT, the silencing mediator of retinoic acid and thyroid hormone receptor, also known
as NCOR2; TF, transcription factor; Ac, histone acetylation; RNApolII, RNA polymerase II.
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Figure 2. Involvement of miRNAs in acute leukemia
miRNAs that are up-regulated (in purple) or down-regulated (in blue) in a subtype of acute
leukemia are shown. Some miRNAs are associated with specific leukemia subtypes and
thereby may be able to serve as biomarkers for classification and diagnosis of these subtypes.
For example, miR-126 in CBF leukemia (leukemias with t(8;21) or inv(16))89, 104,
mir-17-92 in MLL-associated leukemia (those with t(11q23))89, 90, miR-196b in MLL-
associated leukemia89, 108, 109 and in AML with NPM1 mutations104, miR-224, miR-382 and
miR-376 family in APL (t(15;17))89, 104, 117, miR-10a and b in AML with NPM1
mutations104, 106, and miR-155 in AML with FLT3-ITD104, 105 are likely to be such markers.
AML, acute myeloid leukemia; ALL, acute lymphoblastic leukemia; FAB, French-American-
British (FAB) classification; FAB, French American British Classification, MO, Acute
myeloid leukemia with minimal differentiation; M1 Acute myeloid leukemia without
differentiation; M2, Acute myeloid leukemia with maturation, M3, Acute promyelocytic
leukemia; M4, Acute myelomonocytic leukemia, M5, Acute monoblastic leukemia; M6, Acute
erythroleukemia; M7, acute megakaryoblastic leukemia; HSC, hematopoietic stem cell; MPP,
multipotent progenitor cell; CMP, common myeloid progenitor; CLP, common lymphoid
progenitor; MEP, megakaryocyte-erythrocyte progenitor; GMP, granulocyte-macrophage
progenitor; EP, erythroid progenitor; Meg-P, megakaryocyte progenitor; GP, granulocyte
progenitor; MP, monocyte progenitor.
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Table 3

Selected trials of agents targeting the epigenome in AML

Structural Class Agent Target Phase of Study Comments (References)

Single agent HDI trials

Short chain fatty acids

Phenylbutyrate (PB) HDAC I/II I

Safety of PB established and
hematologic improvement in
platelet counts documented in the
occasional patient with
AML195, 196

Valproate (+/− ATRA) HDAC I/II I/II

Hematologic improvement noted
in one third of patients with
MDS, including 1 patient with
sAML/MDS145.
Three of 11 patients with AML
had CR/CRi147, 5% response
rate in AML144.
Histone hyperacetylation
demonstrated at therapeutic
levels of VPA and 2 of 8 patients
had HI associated with
differentiation of the leukemic
clone142.

Cyclic tetrapeptides Romidepsin (Depsipeptide) HDAC I/II I/II

No objective responses in AML
but histone acetylation
demonstrated in mononuclear
cells139.
Response in 1 of 9 patients with
AML143.
Antileukemic activity limited to
CBF AML and associated with
upregulation of AML1-ETO
target genes146.

Hydroxamic acids

Vorinstat (SAHA) HDAC I/II I

CR/CRi in 4 of 31 patients with
AML, and antioxidant gene
expression signature correlated
with vorinostat resistance140.

†Panobinstat (LBH589) HDAC I/II I

Transient reductions in
peripheral blasts, histone
acetylation demonstrated in blast
cells197.

Benzamides

Entinostat (MS275) HDAC I I

No objective clinical responses,
histone acetylation, CDKN1A
induction and caspase 3
activation demonstrated in
leukemic blasts141.

MGCD0103 HDAC I/IV 1
Two of 22 patients with AML
had decline in bone marrow
blasts to <5%198.

Single agent DNMT inhibitor trials

Nucleoside analog

Azacitidine DNMT II/III

Up to 48% of patients with
clinical benefit154.
Overall response rate including
HI was 60%162.

Decitabine DNMT I

Eight of 35 patients with AML
had a response, no correlation of
baseline CDKN2B methylation
with clinical activity160.
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Structural Class Agent Target Phase of Study Comments (References)

Combination DNMT+ HDI trials

Nucleoside analog+Benzamide Azacitidine+MS2 75 DNMT+HDAC I

Responses were seen in 46% of
patients with MDS or AML, no
correlation of clinical response
with reversal of methylation or
gene expression159.

Nucleoside analog+Hydroxamic acid Azacitidine+SAHA DNMT+HDAC I/II
Responses occurred in 18 of 21
(86%) patients199

Nucleoside analog+Hydroxamic acid Azacitidine+PXD 101 DNMT+HDAC I
Responses in 7/21 patients, study
is now in randomized phase200.

Nucleoside analog + Short chain fatty
acid Azacitidine+PB DNMT+HDAC Pilot/I

Antileukemic effect in 2 of 8
patients with AML, no
correlation of response with
histone acetylation161.
Responses in 11 of 36 patients
with MDS or AML, significant
correlation of response with
CDKN2B or CDH-1 methylation
reversal158.

Nucleoside analog + Short chain fatty
acid Azacitidine+VPA+ATRA DNMT+HDAC I/II

Response rate was 42%,
induction of histone acetylation,
global DNA methylation and
upregulation of CDKN2B and
CDKN1A expression was
observed which did not correlate
with clinical response.
Correlation of VPA levels with
response157.

Nucleoside analog + short chain fatty
acid Decitabine +VPA DNMT+HDAC I/II

9 of 48 patients with AML
responded, patients with lower
CDKN2B methylation had a
significantly higher response
rate, CDKN2B gene reactivation
was not associated with clinical
response. Correlation of VPA
levels with response156.
Response rate was 44%,
induction of ER expression was
associated with response.
Addition of VPA did not appear
to increase the response rate155.

Histone methyltransferase antagonist

Nucleoside analog DZNep HMT Pre-clinical

Inhibits S-adenosyl-L-
methionine dependent
methyltransferases and leads to
degradation of PRC2 HMTs and
decrease in H3K27 methylation.
Being investigated in leukemia
cell lines and primary leukemia
cells174.

Hydroxamic acid LAQ824 †HDAC/HMT Pre-clinical

Degradation of HMTs such as
EZH2 leading to decrease in
H3K27 methylation and
apoptosis in human primary
leukemia cells201.

Note: CDKN2B, encodes p15INK4b; CDKN1A, encodes P21; HDAC, histone deacetylase; DNMT, DNA methyltransferase inhibitor, HMT, histone
methyltransferase; VPA, valproic acid; DZNep, 3-deazaneplanocin A; PRC2, polycomb repressive complex 2; AML, acute myeloid leukemia, MDS,
myelodysplastic syndrome.

†
HDAC inhibitor with putative HMT inhibitory activity
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