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Abstract
Background—Disparities in cancer defined by race, age, or gender are well established. However,
demographic metrics are surrogates for the complex contributions of genotypes, exposures, health
care, socioeconomic and sociocultural environment, and many other factors. Macro-environmental
factors represent novel surrogates for exposures, lifestyle and other factors that are difficult to
measure but may influence cancer outcomes.

Methods—We applied a “multilevel molecular epidemiology” approach using a prospective cohort
of 444 White prostate cancer cases who underwent prostatectomy and were followed until
biochemical failure (BF) or censoring without BF. We applied Cox regression models to test for joint
effects of 86 genome-wide association study-identified genotypes and macro-environmental
contextual effects after geocoding all cases to their residential census tracts. All analyses were
adjusted for age at diagnosis and tumor aggressiveness.

Results—Residents living in macroenvironments with a high proportion of older single heads of
household, high rates of vacant housing, or high unemployment had shorter time until BF post-
surgery after adjustment for patient age and tumor aggressiveness. After correction for multiple
testing, genotypes alone did not predict time to BF, but interactions predicting time to BF were
observed for MSMB (rs10993994) and percent of older single head of households (p=0.0004), and
for HNF1B/TCF2 (rs4430796) and macroenvironment per capita income (p=0.0002).

Conclusions—Context-specific macro-environmental effects of genotype may improve the ability
to identify groups that may experience poor prostate cancer outcomes.

Impact—Risk estimation and clinical translation of genotype information may require an
understanding of both individual-level and macroenvironmental context.
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Introduction
Interindividual variability in common disease etiology and outcomes likely represents the
complex interactions of multiple factors including genetic susceptibility; individual behavior,
lifestyle, and exposures; macroenvironment-level (e.g., area, community) contextual factors;
and health care access including screening and treatment (1). The elucidation of interactions
among these multiple factors may require novel, transdisciplinary approaches. We hypothesize
that methods that account for the joint effects of both individual-level and macroenvironment-
level effects using a multilevel strategy (2-4) may capture etiologic agents that are not seen in
studies that consider one or a few factors at a time. We propose a “multilevel molecular
epidemiology” (MME) approach that is grounded in multilevel analytical frameworks that have
used both individual-level risk factors as well as macroenvironment-level contextual factors
(5). Macroenvironment-level factors may serve as a surrogate for a wide range of exposures,
lifestyle and other factors that are difficult to measure. We extend this concept to hypothesize
that prediction of risk and outcome by inherited genotype information (and other biomarker
data) may depend on both individual-level and macroenvironment-level context. Disease risk
and outcomes are influenced by both “differences” (i.e., naturally occurring or achieved
factors) as well as “inequities” (i.e., factors ascribed to groups as a function of their social
position (6)). Using the MME framework, we can hypothesize that differences (e.g., genetics,
race, and possibly other innate biological factors) may be acting in the context of inequities
(e.g., discrimination, segregation, or access) and lead to observed disease risks and outcomes.
Related models that define “gaps” occurring between discrete groups in the population (e.g.,
defined by genotype, ethnicity, gender, or other discrete characteristics), as well as effects that
are defined by “gradients” across continuously distributed variables may influence risk and
outcomes (7). Thus, we consider models that consider the effect of genotypes as well as
macroenvironment-level factors.

To illustrate this approach, we have undertaken a multilevel, transdisciplinary analysis of
susceptibility genotypes, individual-level factors, macroenvironment-level factors and prostate
cancer outcomes. Prostate cancer is the second leading cause of cancer deaths in Americans
(8), and is associated with extreme variability in outcomes, including extreme incidence and
mortality differences by race, age, geography, and other factors (9,10). In particular, prostate
cancer outcomes represent a complex and multifactorial phenomenon likely to be caused by
complex interaction of genetic susceptibility, individual risk factors, and macroenvironment-
level factors (11). Genome-wide association studies (GWAS) have identified a number of loci
that are likely to affect prostate cancer etiology or outcomes. The goal of this research is to
better explain the complex, multifactorial nature of prostate cancer outcomes by considering
the context dependency of genetic susceptibility as it relates to individual- and
macroenvironment-level effects.

Methods
Study Participants and Individual-Level Data: The SCORE Study

Our primary goal in this analysis was to evaluate the role of genotype and macroenvironment-
level context in predicting adverse clinical outcomes after a prostate cancer diagnosis. To focus
these analyses and control for unmeasured confounding, we limited our sample to 444 White
incident prostate cancer cases (i.e., diagnosed within 12 months of study ascertainment) who
were identified through Urologic Oncology Clinics at the Hospital of the University of
Pennsylvania between 1995 and 2008 who participated in the Study of Clinical Outcomes,
Risk and Ethnicity (SCORE). Case status was confirmed by medical records review using a
standardized abstraction form. Patients who were non-incident cases (i.e., those diagnosed
more than twelve months prior to the date of study ascertainment), or had a prior diagnosis of
cancer except non-melanoma skin cancer, were excluded. To further limit heterogeneity due
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to access and treatment, we limited the study sample to men who underwent prostatectomy as
the primary treatment of their disease. No men in this sample underwent any other treatments
besides prostatectomy before the occurrence of a failure event or censoring.

Individual risk factors, medical history, and prostate cancer diagnostic and treatment
information were obtained by using a standardized questionnaire and review of medical
records. Information collected included previous cancer diagnoses, demographic information
and primary tumor characteristics including Gleason score (grade) and stage. We also created
a summary tumor aggressiveness scale that reflects the highly correlated variable, tumor stage
and grade to use as a single adjustment in the multivariate survival models. This composite
variable was defined as non-aggressive if cases had both non-invasive cancer (stage 1-2) and
low Gleason score (<7) tumors and as aggressive otherwise. All study participants provided
written informed consent for participation in this research under a protocol approved by the
Committee for Studies Involving Human Subjects at the University of Pennsylvania.

Biosample Collection and Genotype Analysis
Genomic DNA for the present study was self-collected by each study participant using sterile
cheek swabs (Cyto-Pak Cytosoft Brush, Medical Packaging Corporation, Camarillo, CA), and
processed using either a protocol modified from Richards et al. (12) as described previously
(13), or using a modified protocol on the Qiagen 9604B robot with the QIAamp 96 DNA Buccal
Swab Biorobot Kit (Valencia, CA). 109 variants at 30 loci identified from linkage and genome-
wide association studies (GWAS) that have been independently validated as prostate cancer
susceptibility genes (14) were selected for analysis. These include one of the confirmed SNPs
at each of the following GWAS loci without known genes: 3p12 (15), multiple regions at 8q24
(16-18), 11q13 (15,19), 17q24 (18); as well as those with putative candidate genes including
CTBP2 (10q26 (19)), HNF1B/TCF2 (17q12 (20,21)), JAZF1 (7p15.2 (19)), LMTK2 (7q21
(15)), MSMB (10q11 (15,19)), and NUDT (Xp11 (15,22)). We also considered two loci
(MSR1 and RNASEL) that were identified in linkage studies (23,24). In order to ensure adequate
power for our analyses, we only considered SNPs with a minor allele frequency of 10% or
greater in the failure/censoring groups. We also excluded SNPs with genotyping failure rates
greater than 5% or with SNP sample size of <100 cases. No SNPs deviated significantly from
Hardy Weinberg proportions. After applying these criteria, 23 SNPs were removed from
consideration, leaving 86 SNPs that were included in analysis (Supplementary Table 1).

Prior to genotyping, the whole genome of the samples was amplified using the GenomePlex
Complete Whole Genome Amplification kit (Sigma, St. Louis, MO). Genotyping was
performed either by TaqMan™ assay using the 7900HT Fast Real-Time PCR Machine or using
an Illumina GoldenGate Platform. For TaqMan™, all mixes of primers and probes were pre-
designed by and purchased from Applied Biosystems. We included one negative control and
three positive controls for each assay and each 384-well plate and duplicated at least 8% of
samples for each assay. We designed an Illumina GoldenGate assay considering only SNPs
with SNP scores of >0.59 and including at least 10% duplicated samples. Quality control for
both assays was as following: excluding all individuals that failed for at least 15% of the SNPs
attempted, followed by excluding any SNP with a call rate <95% and any SNPs that had >2%
discordance between genotypes in duplicate samples.

Macroenvironment-level Data
In the U.S., census tracts are commonly used to define macroenvironments, despite limitations
in accurately delineate macroenvironment boundaries (25), to allow replication across studies
(26). Therefore, we used the 2000 census tract boundaries to group individuals by residence
(27). The 2000 census was used because it represents approximately the median of our SCORE
accrual period (1995-2008). Census tracts are U.S. Census Bureau defined, standardized, and
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relatively permanent geographical units. Census tracts are constructed specifically to include
on average 4,000 people that are intended to reflect fairly homogeneous population
characteristics, economic position, and living conditions. Federal, state, and local governments
routinely use census tracts as administrative units (28).

We geocoded the residential addresses of our patients using ArcGIS or American Fact Finder
(http://factfinder.census.gov/home/saff/main.html?_lang=en), and methods outlined by The
Public Health Disparities Geocoding Project
(http://www.hsph.harvard.edu/thegeocodingproject/webpage/monograph/geocoding.htm).

To obtain census tract-level data about demographic, education, socioeconomic, and
relationships/social isolation measures, we linked the geocoded addresses from our dataset
with variables from the Geographical Comparison Tables (GCTs) of the United States Census
Bureau's American Factfinder
(http://factfinder.census.gov/servlet/GCTSelectedDatasetPageServlet?
_lang=en&_ts=247057910048). The GCTs were accessed for 24 counties in and around
Philadelphia: Kent, New Castle, and Sussex Counties in Delaware; Atlantic, Burlington,
Camden, Cape May, Gloucester, Hunterdon, Mercer, Monmouth, Ocean, Salem, and Warren
Counties in New Jersey; and Berks, Bucks, Chester, Delaware, Lehigh, Luzerne, Monroe,
Montgomery, Northampton, and Philadelphia Counties in Pennsylvania. The 444 study
participants resided in 342 census tracts. A subset of variables in the GCT were selected for
analysis to represent various classes of macroenvironment factors including: aging and social
isolation (% of residents age 65 years or older, % of households with a single resident age 65
years or older), education (% college graduates among those 25-34 years old),
macroenvironment housing quality (% of houses vacant and not for sale, rent, or vacation),
and socioeconomic status (% unemployed individuals age 16 years or older and per capita
income in $1000).

Statistical Methods
In order to test the joint effects of genotype and macroenvironment context, we modeled time
to biochemical failure (BF) after treatment of prostate cancer by prostatectomy with a Cox
proportional hazards model. Time to BF was chosen as the primary outcome of interest because
it afforded sufficient power to consider these interactions, and was defined as having
experienced a post-prostatectomy PSA value of more than 0.2 mg/dl. We also allowed
outcomes of interest to be diagnosis of metastases. However, no men in our sample were found
to have metastasis after initial diagnosis and before BF. Censored observations had an end of
follow up without BF. Failure time was defined as time from surgery until BF or censoring.

Covariates included in all models as potential confounder variables were age at diagnosis, and
tumor aggressiveness. Main effects of interest were susceptibility genotypes and
macroenvironment-level context variables, as described above.

For tests of genotype effects in the context of macroenvironment-level factors, we evaluated
the first order interaction of these factors by using a Cox proportional hazards model with an
interaction between census tract characteristics as a continuous variable and SNP per-allele
effects. We also considered the effect of clustered sampling of individuals within census tracts
on the standard error and 95% confidence interval (CI) estimates associated with model
parameters by using the robust variance estimation approach of Lin and Wei (29). Two-sided
p-values were corrected for multiple hypothesis tests using the False Discovery Rate (FDR)
method of Benjamini and Hochberg (30). All analyses were performed in STATA (version
10.1, STATA Corporation, College Station, TX).
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Results
Of the 444 White prostatectomy cases followed prospectively from the time of surgery, 397
(89%) did not experience BF during a mean (median) follow up period of 26.8 (21) months,
while 47 (11%) men experienced BF during a mean (median) follow up period of 22.5 (19.1)
months. Six men in the cohort died;death was not used as a censoring event because their psa
status was unknown at the time of death. As expected, tumor stage (1+2 vs. 3+4; HR=3.12,
95%CI: 1.75-5.56), Gleason grade (<7 vs. 7+; HR=6.22, 95%CI: 2.79-13.89), and a combined
metric of tumor aggressiveness (OR=8.11, 95%CI: 2.91-22.60) were significant predictors of
time to BF in univariate analyses. Other individual level factors including age at diagnosis,
marital status, and education were not significant predictors of time to BF (results not shown).
All subsequent analyses were adjusted for age at diagnosis and tumor aggressiveness to
evaluate the potential additional impact of genotype and/or macroenvironment factors on time
to BF after these traditional outcome predictors were considered.

The effects of macroenvironment-level factors on time to BF are presented in Table 1. Three
macroenvironment-level factors were significantly associated with BF: a demographic
measure (% of residents age 65 or older; HR=1.02, 95%CI 1.00-1.04, p=0.049); a measure of
macroenvironment degradation (% vacant housing; HR=1.28, 95%CI: 1.09-1.51; p=0.002); a
measure of socioeconomic status (% unemployed individuals age 16 years or older; HR=1.08,
95%CI: 1.00-1.17, p=0.044). Because all variables selected from the GCTs were percentiles,
except per capita income, the hazard ratio estimates represent a change in relative risk for each
unit of one percent increase in the macroenvironment variable. For per capita income, the HR
is change for each unit of $1000 increase in per capita income.

While the genotypes studied here had previously been identified as being strongly associated
with prostate cancer etiology in case-control studies(14), these loci have largely not been
studied for a role in prostate cancer outcomes. Therefore, we evaluated the per-allele effect of
the 86 variants on time to BF after adjustment for age at diagnosis, and tumor aggressiveness
(Figure 1). Four loci were associated with time to BF at the p<0.05 level of significance:
Chr8q24 (rs4871799, p=0.018), KLK3 (rs1506684, p=0.033), OATP1B1 (M233I; rs7311358,
p=0.044), and KLK3 (rs2569739, p=0.049). However, none of these remained significant after
correcting the significance level for multiple testing by FDR.

Finally, we evaluated whether genotype interacted significantly with macroenvironment-level
effects to influence time to BF. Figure 2 presents the results of per-allele by census tract variable
interactions. Numerous interactions reached a significance level of p<0.05, but after correction
for multiple hypothesis testing, only two highly significant interactions remained. First, we
identified an interaction between MSMB rs10993994 and a measure of macroenvironment
social isolation (% census tract older single heads of household). For each percent increase in
the macroenvironment percent of heads of household aged 65 or older living alone, there was
a 10% increase in time to BF among men who carried the TT genotype at this locus, while
there was no increase in time to BF among men who carried any other genotype (HR=1.10,
95%CI: 1.06-1.14, interaction p=0.0004; Figure 3).

Second, we identified a statistically significant relationship between HNF1B/TCF2 rs4430796
and a measure of macroenvironment socioeconomic status (census tract per capita income).
For each $1000 increase in macroenvironment per capita income, there was a 3% increase in
time to BF among men who carried the TT genotype at this locus (HR=1.03, 95%CI: 1.02-1.04),
while there was a 7% decrease in time to BF for every $1000 increase in per capita income
among men who carried the CC genotype (HR=0.93, 95%CI: 0.89-0.98; interaction p=0.0002;
Figure 3).
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Discussion
We have identified statistically significant joint effects between genotypes known to be
involved in prostate cancer etiology and macroenvironment-level effects on biochemical
failure in White men. These results cannot be interpreted as having direct biological
implications of macroenvironment effects. Just as race or gender are used as surrogates for
differences in socio-economic status, health care access, exposures, and other factors, we
interpret our statistically significant interactions as reflecting the surrogate effects causal
factors in the environment that are measured by census tract-level variables. Thus, the
inferences made here are not necessarily biological in nature, but may provide improved
understanding of the contextual relationship of genotype effects in a given macroenvironment
setting. Instead, the goal of these analyses is to identify whether information about the
macroenvironment in which an individual lives provides information that is predictive of
prostate cancer outcomes. Because we were able to identify significant macroenvironment
effects as well as genotype by macroenvironment interactions after we considered individual
factors, our data support the hypothesis that macroenvironment variables contain information
that is not captured at the individual level. By providing additional surrogate metrics of factors
that may be correlated with disease risk, outcomes, and disparities, the present results may
provide information that moves research in these areas away from more misclassified variables
(e.g., race), and toward variables that may be both less misclassified as well as point toward
specific areas in which targeted interventions may be developed to reduce disparities.

Although some studies have reported associations with disease aggressiveness (19,31), most
of the loci or combinations of loci studied to date have not been associated with disease
aggressiveness or outcomes (31-34). Therefore, we attempted to take a novel approach that
identified contextual factors that may be associated with prostate cancer outcomes and
considered information beyond genotype alone. We identified two statistically significant
HNF1B/TCF2 or MSMB by macroenvironment interactions. HNF1B is the hepatocyte nuclear
factor 1 homeobox B, also known as transcription factor 2 (TCF2). HNF1B/TCF2 is a member
of the transcription factor superfamily that interacts with HNF1A (TCF1), HNF4A, CDH16,
ONECUT1, and NR2F2. The HNF1B/TCF2 protein is involved in metabolism of glucose,
cholesterol, uric acid, and is expressed not just in hepatocytes, but also in prostate and other
tissues. Genotypes at HNF1B/TCF2 have been identified in prostate cancer risk (20,22),
diabetes risk (20,35), male infertility (36), and other traits. Therefore, there is evidence that
this protein is involved in a wide variety of metabolic processes that reflect potential hormonal,
cardiovascular and diabetes risk factors. In our data, we found that time to BF increased with
census tract per capita income in prostate cancer cases with TT genotype at rs4430796, while
time to BF decreased with census tract per capita income in prostate cancer cases with CC
genotype at rs4430796. Since these factors have been associated with adverse cardiovascular,
diabetes, and obesity phenotypes, we also evaluated whether additional adjustment for body
mass index (BMI) might in part explain our observed associations. After adjusting these
analyses for obesity (i.e. BMI<30 vs. BMI≥30), there was no substantial difference in the HR
effects or interaction inferences (results not shown). Therefore, if there is a relationship
between HNF1B, obesity, and time to BF, it is not explained by confounding in our data.

MSMB (microseminoprotein-β) encodes PSP94 (prostate secretory protein of 94 amino acids),
which is found in semen and has been proposed as a prostate cancer screening and prognosis
biomarker (37,38). A SNP in MSMB, rs10993994, has been reported in multiple GWAS to be
associated with prostate cancer etiology (15,19,39,40). Rs10993994 is located 57 bp upstream
of the MSMB transcription start site and has been suggested to regulate PSP94 expression. We
reported that men with TT genotype at rs10993994 were at increased time to BF risk if they
lived in census tracts with a higher percentage of older single heads of household. This suggests
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that the effect of MSMB may be correlated with factors related to age or social isolation. This
effect was present even after adjusting for age at diagnosis and tumor aggressiveness.

The multilevel molecular epidemiology approach is novel, yet its evaluation here is limited.
First, our data included only White men who were seen at a tertiary referral hospital and
underwent prostatectomy as their primary treatment. The advantage of this sample selection
is that it involves a narrowly defined patient and treatment population within a single hospital
which avoids some extraneous variability that may cloud the results. However, these patients
are not representative of the general population, nor of patients who are not treated by
prostatectomy. Therefore, these results may not reflect the same effects as might be seen in
men of other ethnicities, those who receive treatment other than prostatectomy, or who are
diagnosed and treated in community hospital or clinic settings. We would expect that the
individual risk factor and macroenvironment-level variable distributions would be different
than the distributions observed in the present study population. Similarly, genotype frequencies
in this study population of White men are also likely to differ from those in non-White
populations. Therefore, while we find provocative associations of time to BF with individual-
level and macroenvironment-level factors and with genotype interacting with
macroenvironment-level factors, these may be quite different in other populations. In
particular, future studies should include African American populations that suffer from the
greatest prostate cancer disparities.

Second, the present study does not fully explore the relationship of susceptibility genotypes,
individual-level risk factors, and macroenvironment-level factors. Additional research may be
needed to understand the relationship of these factors and the optimal approach toward their
modeling. Other variables not studied here should be considered that may influence prostate
cancer outcomes, including individual insurance or other metrics of health care access as well
as prostate cancer screening history. Furthermore, we have used a dataset that includes a very
narrowly defined sample set (i.e., White men undergoing prostatectomy within a single
hospital) to limit the heterogeneity that might mask the effects seen here. However, these
sample restrictions also limit the inferences because of the relatively narrow spectrum of the
population being studied. Thus, broader sample definitions should be considered in the future
to more fully address questions of prostate cancer disparities by race or other factors.
Conceptually, the multilevel molecular epidemiology approach discussed here is conceptually
tied to that of Mendelian Randomization (41), which uses observational study designs to
evaluate genetic effects indirectly via exposures of interest. As such, some of the analytical
approaches and pitfalls of the Mendelian Randomization framework may be applied in the
future to the type of studies proposed here. In addition, we have not fully explored whether
macroenvironment-level factors are a better measure of disadvantage than individual-level
variables. Since the various macroenvironment-level variables are correlated with one another,
and presumably with individual-level factors (many of which remain unmeasured here), it is
likely that the effects of these variables do not represent independent associations. Therefore,
the associations reported here may reflect similar or even identical phenomena measured
through different analytical variables. Additional exploration of how correlated
macroenvironment variables measure related phenomena that influence prostate cancer
outcomes is required.

Third, our study uses a relatively small sample size of 444 White men followed prospectively
from the time of prostate cancer diagnosis. The sample size studied here included 444 men
residing in 342 census tracts. While the factors studied here reflect macroenvironment-level
effects, the small number of men in a single census tract limits the “multilevel” nature of the
analysis. Despite the limited sample size, our study was adequately powered to detect the effects
reported here. The MME approach used here involved continuously-distributed
macroenvironment effects, which provides generally greater power than discrete variables. We
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also limit our genotype analyses to those variants with 10% or greater allele frequency to ensure
reasonable statistical power, as specified a priori in our study design, and to those SNPs with
a sample size of 100 or more cases. Also, we have limited our sample set to include only a
narrow range of men (i.e., White men from a single hospital who have undergone
prostatectomy) to minimize the potential for unmeasured confounding that may influence our
results. We have taken this approach to demonstrate the MME approach. However, it is also
likely that the effects of GWAS genotypes, individual-level, and macroenvironment-level
effects on time to BF are small in magnitude. For example, it is possible that the sample size
used here was too small to detect effects of genotypes on time to BF if they are of a similar
magnitude as seen in etiology studies. In addition, while we have identified statistically
significant interactions between genotypes and macroenvironment-level context, larger studies
will be required to confirm these results and to extend them to other populations. Furthermore,
studies with greater statistical power and longer follow up will be required to assess
macroenvironment and/or genotype effects on other outcomes, including disease recurrence,
or death.

Finally, macroenvironment-level variables are generally derived from administrative databases
found through the US census or other community surveys, and linked back to the individual
by geocoding the person to their place of residence (42). However, because macroenvironment-
level effects are broad and clearly represent surrogates for both differences and inequities, the
approach presented here is valid for prediction of risk or outcomes, but not necessarily as a
means of identifying underlying etiology. We also considered a limited range of metrics, and
only continuously distributed macroenvironment variables. Future studies should consider the
optimal coding of these variables.

Using a multilevel molecular epidemiology approach, we have identified associations of
candidate prostate cancer loci that are dependent on the context in which these genotype effects
may be acting to predict prostate cancer outcomes. This approach could provide useful
information in studies of cancer outcomes and disparities. Use of macroenvironment-level
variables rather than (or in addition to) other surrogates such as age, gender, or race may provide
better indices of disadvantage. Research related to cancer disparities that uses this approach
may benefit from having measures other than race to compare groups that may differ in ways
relevant to health disparities. These groups may represent target populations in which
interventions can be designed and implemented around potentially modifiable factors. These
macroenvironment-level factors may also identify novel genotype-environment interactions.
However, because macroenvironment-level effects are broad and clearly represent surrogates
for both differences and inequities, the approach presented here may be valid for prediction of
risk or outcomes, but not necessarily as a means of identifying underlying etiology. Thus, the
multilevel molecular epidemiology approach defined here may provide new avenues for
research in cancer health disparities.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Main Effect of 86 GWAS SNPs on time to biochemical (PSA) failure after prostatectomy
adjusted for age at diagnosis and tumor aggressiveness
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Figure 2. Per-Allele Genotype by macroenvironment variable interaction P-values for time to
biochemical (PSA) failure after prostatectomy. Diamonds indicate interaction p-values adjusted
for age, and tumor aggressiveness. Dotted line represents interaction p-value of 0.05; p-values
indicate statistically significant effects after correction for multiple testing
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Figure 3. Time to Biochemical (PSA) Failure after Prostatectomy by Genotype and
Macroenvironment Variable Exhibiting Statistically Significant Interactions after False-Discovery
Rate Correction
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