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ABSTRACT

Single-stranded regions in RNA secondary structure
are important for RNA–RNA and RNA–protein inter-
actions. We present a probability profile approach for
the prediction of these regions based on a statistical
algorithm for sampling RNA secondary structures.
For the prediction of phylogenetically-determined
single-stranded regions in secondary structures of
representative RNA sequences, the probability
profile offers substantial improvement over the
minimum free energy structure. In designing anti-
sense oligonucleotides, a practical problem is how to
select a secondary structure for the target mRNA
from the optimal structure(s) and many suboptimal
structures with similar free energies. By summar-
izing the information from a statistical sample of
probable secondary structures in a single plot, the
probability profile not only presents a solution to this
dilemma, but also reveals ‘well-determined’ single-
stranded regions through the assignment of proba-
bilities as measures of confidence in predictions. In
antisense application to the rabbit β-globin mRNA, a
significant correlation between hybridization poten-
tial predicted by the probability profile and the
degree of inhibition of in vitro translation suggests
that the probability profile approach is valuable for
the identification of effective antisense target sites.
Coupling computational design with DNA–RNA array
technique provides a rational, efficient framework for
antisense oligonucleotide screening. This framework
has the potential for high-throughput applications to
functional genomics and drug target validation.

INTRODUCTION

In the last two decades several important approaches have been
developed for the prediction of secondary structure from an
RNA sequence. The popular mfold program, developed with
dynamic programming algorithms, predicts optimal structure
and suboptimal structures through free energy minimization
(1–3; http://bioinfo.math.rpi.edu/~zukerm/rna/). The partition

function approach by McCaskill (4) computes base pair proba-
bilities and the binding probability for any base. A C program
for this algorithm is available in a suite of RNA secondary
structure software known as the Vienna RNA package. This
package was developed by a theoretical chemistry group at the
University of Vienna (5; http://www.tbi.univie.ac.at/~ivo/
RNA/). Ding and Lawrence (6) formulated the RNA folding
problem in a Bayesian statistical framework and extended the
partition function method by generating a statistically repre-
sentative sample of the probable structures. Heuristic Monte
Carlo algorithms based on kinetics and genetic principles have
also been described (7–10).

In this paper, we explore the use of a sampling approach for
the prediction of single-stranded regions in an RNA molecule.
While we focus on the important antisense application, single-
stranded regions, particularly destabilizing loops, can play
many important functional roles. These include, for example,
protein binding (11,12), ribozyme binding and catalysis (13),
regulation of cellular processes (14,15), pseudoknot formation
and tertiary interactions for kissing hairpins, bulge–loop
complexes, hairpin loop–internal loop complexes, etc. (16).
For these applications, computational prediction of single-
stranded regions can also be helpful for experimental design
for structure probing by RNases or chemical means.

A novel regulatory mechanism was recognized about two
decades ago: an oligodeoxynucleotide can bind to an mRNA
through complementary base pairing to block its translation
(17). The discovery that oligonucleotides can play a regulatory
role in gene expression led to the development of the antisense
strategy to artificially control gene expression. Although vari-
able degrees of success have been achieved in the application of
antisense methods to the research of biological phenomena and
human disease treatment, it has been proven that antisense oligo-
nucleotides (ASOs) are able to modulate gene expression in both
prokaryotes and eukaryotes (18). In recent years, several anti-
sense compounds for disease treatment have been evaluated in
clinical trials with promising results, and more compounds are
being evaluated in clinical trials (19,20). In 1998, Vitravene (Isis
Pharmaceuticals, Carlsbad, CA) became the first antisense drug
approved by the Food and Drug Administration. It is used to
treat cytomegalovirus retinitis in AIDS patients.

For ASOs to be effective, the complementary target
sequence on mRNA must be available for hybridization. RNA
nucleotides can be inaccessible when they are sequestered in

*To whom correspondence should be addressed. Tel: +1 518 486 1719; Fax: +1 518 473 2900; Email: yding@wadsworth.org



Nucleic Acids Research, 2001, Vol. 29, No. 5 1035

secondary structure. The usually weaker tertiary interactions
and RNA–protein interactions can also be factors that affect
accessibility. The identification of regions likely to remain
single-stranded in RNA secondary structure can be an impor-
tant part of antisense technology.

Lima et al. (21) concluded that the tightest binding of ASOs
occurs at target sites for which disruption of the target structure
is minimal, and single-stranded regions should be selected over
double-stranded regions in the consideration of target sites.
Vickers et al. (22) directly demonstrated that mRNA structures
play a significant role in determining antisense oligonucleotide
efficacy in vivo. They concluded that discovery of active ASOs
requires identification of unstructured sites in the cellular
mRNA. Matveeva et al. (23) also found that there is a correla-
tion between single-stranded specific probes and accessible
sites for antisense targeting, but there are a few exceptions,
probably due to steric hindrance that limits RNase H access. It
has been speculated that duplex formation is initiated at an
accessible substructure that includes a site for nucleation with
unpaired bases and then propagates from the nucleation site
through a ‘zippering’ process (24,25). A hairpin of four
unpaired bases can be involved in hybrid formation (26).

A few secondary-structure-prediction based computational
approaches to the evaluation of potential antisense targets have
been reported. Stull et al. (27) presented thermodynamic
indices by averaging relevant free energies of secondary struc-
tures generated from a Monte Carlo RNA folding algorithm
based on an evolutionary heuristic (7,28). Because this algo-
rithm does not guarantee the generation of a valid statistical
sample of low energy structures, the most likely structure is not
necessarily the lowest free energy structure.

For the genomic RNA (∼9700 nt) and the complementary
RNA strand of the human immunodeficiency virus type 1
(HIV-1), Sczakiel et al. (29) found that local folding potential
can shed light on effective antisense targets. The local folding
potential was computed for each of successive overlapping
segments of a chosen window width (ranging from 50 to
400 nt) along the RNA chain, by folding each segment with
mfold and computing its minimum free energy. This method
was proposed by Le et al. (30) for assessing stable structures in
HIV-1. Because long distance interactions and short term inter-
actions between the nucleotides near the ends of the segment
and the neighboring nucleotides outside the segment are
ignored, this method appears to be reasonable only for rela-
tively long window width, as it cannot address the hybridiza-
tion potential of individual nucleotides or short segments.

Zhao and Lemke (31) performed a comparative analysis on
22 RNAs using mfold. The RNAs were previously studied for
selective gene inactivation by ASOs and ribozymes, small
catalytical RNA molecules that specifically bind to and cleave
target RNAs. Despite limited representation of alternative
structures by four or five suboptimal foldings, they found a
correlation between the predicted base-pairing accessibility of
the targets and the experimental efficacy of the antisense
reagents. They recommend that the cleavage site for ribozymes
should fall within a loop of at least four nucleotides, and one,
preferably both, of the 5′- and 3′-ends of the antisense segment
should fall within a single-stranded rather than a stem region.
Despite the inherent difficulty in selecting a representative
sample of the suboptimal foldings, James and Cowe (32)
proposed addressing the hybridization potential using

suboptimal foldings from mfold and showed that their proce-
dure works well for the rat OX40 mRNA.

These findings lend additional support to the importance of
exploring secondary structure in the selection of antisense
targets. Our strategy is to focus on single-stranded regions in
RNA secondary structure, in particular those of at least four
consecutive unpaired bases. The Vienna package can calculate
the probability of a single base being unpaired; however, it
cannot address the hybridization potential of a region. This is
not a problem for the sampling-based probability profile
approach we propose in this work, which can overcome limita-
tions of existing computational approaches. We illustrate our
approach with applications to representative RNA sequences
and an antisense application to rabbit β-globin mRNA.

MATERIALS AND METHODS

Statistical sampling of RNA secondary structures

The structure sampling algorithm of Ding and Lawrence (6)
yields a representative statistical sample of secondary struc-
tures. This algorithm was based on free energies for stacking in
helices. The sampling probabilities are computed using parti-
tion functions calculated in the forward step of the algorithm.
For more sophisticated and realistic energy rules, we have
developed an extended algorithm. The forward step of this
algorithm is a recursive algorithm for partition functions. This
recursive algorithm extends the work of McCaskill (4) by
including single base stacking energies and other up-to-date
free energy parameters. The backward step takes the form of a
sampling algorithm; the sampling probabilities are computed
using the partition functions computed in the forward step.

The extended algorithm accommodates the up-to-date free
energy rules and parameters developed by Turner’s group
(33,34) with the exception of coaxial stacking. These include
free energies for stacking in a helix, stacking for a terminal
mismatch in a hairpin loop (size ≥4 nt) or an interior loop, and
penalties for hairpin, bulge, interior and multi-branched loops.
Free energies for single base stacking (dangling ends) are used
for exterior and multi-branched loops. For hairpins, a bonus for
UU and GA first mismatches (included in the terminal stacking
data) and a bonus for G·U closure preceded by two G nucleo-
tides in base pairs are applied, and a penalty for oligo-C loops
(all unpaired nucleotides are C) are used. A table is consulted
for tetraloops (hairpin loops with four unpaired nucleotides).
For a bulge of 1 nt, the stacking energy of the adjacent pairs is
added. For interior loops, tables for 1 × 1, 1 × 2 and 2 × 2 loops
are consulted and a penalty for asymmetry is applied. A
terminal A-U, G·U penalty is explicitly applied to exterior
loop, multi-branched loops, bulges longer than 1 nt and
triloops (hairpin loops with three unpaired nucleotides), while
this penalty is included in the terminal stacking data for hairpin
loops (size ≥4 nt) and interior loops. These free energy para-
meters are for 37°C and 1 M NaCl; however, this algorithm can
be used with any set of nearest neighbor parameters derived for
other conditions.

The Boltzmann distribution in statistical mechanics gives
the probability of a secondary structure I at equilibrium as
(1/U)exp[–E(I)/RT], where E(I) is the free energy of the struc-
ture, R is the gas constant, T is the absolute temperature and U
is the partition function for all admissible secondary structures
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of the RNA sequence. The extended algorithm samples exactly
according to the Boltzmann distribution, i.e. it can generate a
statistical sample of any desired size from the Boltzmann
ensemble of secondary structures. The sampling process is
similar to the traceback algorithm employed in the dynamic
programming algorithms (1–3) but differs in that the base
pairing is randomly sampled from Boltzmann probabilities
rather than chosen to yield a minimum free energy structure.
Because the probability of a structure decreases exponentially
with increasing free energy, the structure with highest
frequency in the sample is most likely the minimum free
energy structure. When long interior loops (e.g. size >30 nt)
are disallowed, the forward step of the algorithm is cubic. The
sampling step of the algorithm is stochastically quadratic in the
worst case, thus it can quickly generate a large number of
secondary structures.

Probability profiles of single-stranded bases and sequences

From recursively derived partition functions for an RNA
sequence of n bases, McCaskill (4) also presented recursions
for marginal base pairing probability,

Pij = Prob(base i and base j form a pair);

then the probability that base i is unbound, i.e. single-stranded, is

qi = 1 – Σ(i + 1) ≤ j ≤ n Pij – Σ1 ≤ j ≤ i Pji.

As emphasized by McCaskill (4), the base pair binding proba-
bilities are not locally determined by the RNA sequence, rather
they reflect a sum over all equilibrium-weighted structures in
which the chosen base pair occurs. Therefore, {qi} statistically
describe the antisense hybridization potential for every nucle-
otide in the sequence. Alternatively, the sampling method
presents a means to estimate qi with the sampling frequency for
the unbound base i. This avoids the cubic algorithm required to
compute the probabilities analytically. A probability profile is
then displayed by plotting {qi} against the nucleotide position.

However, probabilities {qi} do not provide a suitable means
to assess the potential of a sequence to be single-stranded and
available for hybridization. More specifically, for a fragment
from base i to base j, Qij, the probability of the fragment being
single-stranded is not simply the product of individual proba-
bilities {qm}, i ≤ m ≤ j, because independence is invalidated by
the nearest-neighbor interactions. However, a probabilistic
measure of the hybridization potential of a sequence can be
obtained from a sample of secondary structures. Because the
sample is representative of the Boltzmann ensemble of
secondary structures, the fraction of the sample in which all the
nucleotides in the sequence are single-stranded provides an
unbiased estimate of the probability of the sequence being
single-stranded. For all successive overlapping sequences of
width W, the sampling estimate for the probability that a sequence
is single-stranded can be plotted against the first nucleotide of the
sequence for a probability profile of single-stranded sequences
with width W. Based on the rule-of-thumb of at least four unpaired
bases (26,31), we set W = 4 for antisense application.

RESULTS

Examples of probability profiles

For single-stranded bases in Escherichia coli tRNAAla, Figure
1A demonstrates the probability profile estimated from 1000

sampled secondary structures, the probability profile computed
by the Vienna RNA package, the profile indicated by the
minimum free energy (MFE) structure computed with version
3.1 of mfold (33,34; http://bioinfo.math.rpi.edu/~mfold/rna/
form1.cgi) and that indicated by the phylogenetically-deter-
mined structure (35). A sample size of 1000 was found to be
adequate because the profile estimates from this sample and a
larger sample of 10 000 structures were not readily distinguish-
able. For the unpaired individual bases, the probability profile
and the profile by the MFE structure are comparable. This is
generally expected because the MFE structure is the most
probable structure in the sample. However, the MFE structure
substantially underpredicts the width of the region around
nucleotide G35 of the anticodon loop, while a significant
portion of the sample adequately reveals the width. For the
region between nucleotide G30 and A76, the sampling approach
and version 1.3.1 of the Vienna RNA package gave compa-
rable results; however, for the region between nucleotides C5

and C25, the sampling profile predicted the phylogenetic struc-
ture substantially better than the Vienna profile. This version
of Vienna package is based on an earlier compilation of
Turner’s free energy parameters described by Walter et al.
(36). It has been shown that the latest update improves the
prediction of secondary structure (33). This explains the better
performance by our sampling algorithm.

Figure 1B shows the probability profile of the sample for
single-stranded sequences with a sequence width of 4 nt. For
comparison with the phylogenetic structure, a dot with coordi-
nates (i, 1) is shown in Figure 1B if the 4 nt sequence starting
at nucleotide i is single-stranded, and a dot with coordinates
(i, 0) is plotted if any of the four nucleotides is base paired.
Similarly, the MFE structure is plotted. The unstructured
region of the anticodon loop is missed by the MFE structure,
but is revealed by the sampling profile through a peak of
substantial probability. For the two sampling profiles in
Figure 1A and B, not only do the single-stranded regions in the
phylogenetic structure correspond well to the local peaks of the
probability profiles, but also the width of the regions matches
the width of the peaks with only one exception, region
32AUGGCAU38 of the anticodon loop. The peak for this region
in the phylogenetic structure is slightly narrower because two
Watson–Crick pairs A32–U38 and U33–A37 are likely to be
predicted by any free-energy based algorithm, while these two
base pairs are absent in the phylogenetic structure. In
Figure 1B, the peak of the sampling profile between A32 and
U38 is much lower than the corresponding peak in Figure 1A
because, while the single-stranded probability for each of G34,
G35 and C36 is >0.96, the probabilities for U33 and A37 are
<0.28. Thus, for identifying a single-stranded region of at least
4 nt, a high peak in the profile of single-stranded bases can be
visually misleading when the width of the peak is <4 nt. The
probability profile of single-stranded sequences presents a
clearer picture of potential antisense sites, because it has fewer
and narrower peaks than the profile of single-stranded bases.
This probability profile cannot be obtained by the Vienna RNA
package or any other existing computational methods.

To further illustrate our approach, we present the probability
profiles in Figure 2A–D for the following representative RNA
sequences with phylogenetically-determined secondary struc-
tures: Xenopus laevis oocyte (Xlo) 5S rRNA (37), domain II of
E.coli 16S rRNA (38), E.coli RNase P (39) and group I intron
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from 26S rRNA of Tetrahymena thermophila (40,41). For
these sequences, phylogenetically-determined single-stranded
regions correspond to peaks in the probability profile with near
certainty (Fig. 2; PC in Table 1). On the other hand, peaks with
at least a maximum probability of 0.5 almost certainly point to
single-stranded regions (PC1 in Table 1); peaks with a

maximum probability between 0.2 and 0.5 have at least a 50%
chance of correctly indicating single-stranded regions (PC2 in
Table 1), whereas there is a far smaller but appreciable chance
for peaks with a maximum probability <0.2 (PC3 in Table 1) to
correctly indicate single-stranded regions. As in the case of
E.coli tRNAAla, for all these RNA sequences, the probability

Figure 1. Probability profiles for E.coli tRNAAla, with sampling estimates computed from 1000 sampled secondary structures. (A) The probability profiles for
single-stranded nucleotides (sequence width W = 1) indicated by the phylogenetic structure (large dots) and by the minimum free energy structure (vertical bars),
estimated by the sampling algorithm (short dashed line) and computed by the Vienna RNA package (long dashed line). For the region between C5 and C25, the
sampling estimate predicts the phylogenetic structure substantially better than the Vienna RNA package. (B) The probability profiles for single-stranded sequences
of four consecutive nucleotides (sequence width W = 4) in E.coli tRNAAla indicated by the phylogenetic structure (large dots) and by the minimum free energy
structure (vertical bars) and estimated by the sampling algorithm (dashed line). The probability profile cannot be computed by the Vienna RNA package or other
existing algorithms.
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profile reveals more single-stranded regions in the phyloge-
netic structure than the MFE structure (PI in Table 1). The
substantial improvement is because the alternative structures in
the sample are able to reveal structural motifs not predicted by
the MFE structure. On the other hand, the motifs in the MFE
structure are well reported by the sample because it is the most
probable structure in the sample. The improvement is notice-
ably greater for E.coli RNase P, which has the highest
percentage of nucleotides in pseudoknots, a motif not allowed
by either mfold or our current algorithm.

The results reveal variation in the reliability of prediction
among different RNAs. For free energy minimization for the
prediction of RNA secondary structure, variability in the
reliability of prediction for different RNAs has been well

documented (33,42,43). Because our sampling algorithm is
also based on free energies, it is not surprising to observe a
similar phenomenon in our context. There is also substantial
variability in the maximum probabilities for the peaks that
correspond to single-stranded regions. Similarly, for minimum
free energy prediction of secondary structure, there is varia-
bility in the reliability of predictions for different regions of a
sequence (43). The summary in Table 1 indicates that single-
stranded regions predicted by high probability peaks are ‘well-
determined’ by the probability profile. In other words, these
regions are highly stable and, thus, are present with high prob-
ability in a sample of probable secondary structures. For
regions of lower stability, their probabilities are either
moderate or low, because alternative structural motifs will be
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more likely to be present in the sample. Our sampling algo-
rithm gives a complete statistical presentation of probable
competing alternative structures. Thus, the probability profile
provides a statistical delineation of single-stranded regions
with varying stabilities.

Antisense application

The rabbit β-globin mRNA (589 nt, GenBank accession
V00879, coding region 54–497) has been well studied for

antisense inhibition of protein synthesis (24,44,45). Cazenave
et al. (44) used an 11mer and three 17mers targeted to rabbit
β-globin mRNA in a wheatgerm extract as well as in micro-
injected Xenopus oocytes. Goodchild et al. (45) examined the
inhibition of cell-free translation by eight phosphodiester
ASOs targeted to this mRNA. Milner et al. (24) described a
combinatorial oligonucleotide array technique for hybridiza-
tion assessment of oligonucleotides within a given region. For
the rabbit β-globin mRNA, an array of 1938 oligonucleotides

Figure 2. (Opposite and above) Probability profiles (sequence width W = 4) for other representative RNA sequences, with sampling estimates computed from 1000
sampled secondary structures. For X.laevis oocyte 5S rRNA (A, opposite), the large dots present the profile indicated by the phylogenetic structure, the dashed line
is the sampling estimate and the vertical bars represent the minimum free energy structure. For E.coli 16S rRNA domain II (B, opposite), E. coli RNase P (C,
above) and Group I intron from 26S rRNA of T.thermophila (D, above), the small solid squares (adjacent squares appear to form line segments) present the profile
indicated by phylogenetic structure, the dashed line is the sampling estimate and the vertical bars represent the minimum free energy structure. For the Tetrahymena
Group I intron, a 6 bp double-stranded region called P3 (38) in the phylogenetic structure is not considered here because of the creation of a pseudoknot. The
current sampling algorithm needs to be extended to predict certain types of pseudoknots.
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up to a length of 17 bases was used to measure the
ASO:mRNA hybridization potential. These oligonucleotides
were complementary to the first 122 bases of the mRNA.
Three oligomers, BG1, BG2 and BG3, were chosen for study
by in vitro translation in wheatgerm extract and the RNase H
assay.

In our analysis, the results for BG1, BG2 and BG3 are
directly compared to the data from the other two groups,
because all these ASOs were studied in cell-free translation
systems and the percentages of translation inhibition were
reported (Table 2). The inhibition percentages facilitate a
quantitative comparison and assessment of the correlation
between inhibition of cell-free translation and computational

predictions. The qualitative array hybridization data of Milner
et al. (24) and the computational predictions were summarized
and compared separately (Table 3).

The probability profile with a sequence width of 4 nt was
computed with a sample of 1000 secondary structures for the
rabbit β-globin mRNA. The probability profile and the profile
by the MFE structure for the region A1–U230 are shown in
Figure 3, as the ASOs in these studies were targeted to this part
of the mRNA. The target sites on the mRNA, the inhibition
effect in cell-free translation systems in the three studies, and
the hybridization potential predicted by the probability profile
are summarized in Table 2. For this analysis, the hybridization
potential was assessed as high if, for the target site, there was

Table 1. Correspondence between phylogenetically-determined single-stranded regions and peaks on the probability profile and improvement in predictions over
minimum free energy structure

aPC is the percentage of phylogenetically-determined single-stranded regions (region here is either a sequence of four consecutive nucleotides or several such
sequences in a row) that correspond to peaks (regardless of the magnitude of the maximum probability) in the probability profile in Figure 2.
bFor peaks with a maximum probability ≥0.5, PC1 is the percentage of these peaks that correspond to single-stranded regions.
cPC2 is the percentage of the correspondence for peaks with a maximum probability between 0.2 and 0.5.
dPC3 is the percentage of the correspondence for peaks with maximum probability <0.2.
eA probability profile predicts more single-stranded regions in the phylogenetic structure than the minimum free energy structure (Figs 1B and 2). PI is the
percentage of improvement in the prediction by the probability profile over the MFE structure. This is computed by the number of regions missed by the MFE
structure but predicted by the probability profile divided by the total number of single-stranded regions in the phylogenetic structure (e.g., seven for Xlo 5S RNA)
and multiplied by 100%.

RNA sequence Accession no. Length (nt) PC (%)a PC1 (%)b PC2 (%)c PC3 (%)d PI (%)e

Escherichia coli tRNAAla X66515 76 100 100 100 0 20

Xenopus laevis oocyte 5S rRNA K02695 120 100 100 100 25 28

Escherichia coli 16S rRNA domain II J01695 353 82 100 50 33 29

Escherichia coli RNase P V00338 377 100 100 58 50 40

Tetrahymena thermophila LSU group I intron V01416 413 95 88 67 29 19

Table 2. Comparison of inhibition of rabbit β-globin synthesis in cell-free translation systems and hybridization potential
predicted by probability profile for rabbit β-globin mRNA

aNumbers in parentheses represent ASO concentration in µM.

ASO name Target sequence/site % Inhibitiona Hybridization Reference

(length in nt) on mRNA potential

β1 (20) A14–C33/5′-UTR 23 (5.2) high 45

β2 (20) C46–G65/start 61 (5.2) high 45

β3 (20) A144–C163/coding 18 (5.2) moderate 45

β4 (20) G207–A226/coding 43 (5.2) high 45

β5 (22) A1–G22/cap 67 (5.2) high 45

β6 (23) U23–A45/5′-UTR 47 (5.2) high 45

β7 (CCC+β5, 25) A1–G22/cap 75 (5.2) high 45

β8 (β7β6, 48) A1–A45/cap 89 (2.6) high 45

β6+β7 (mixture) A1–A45/cap 89 (2.6) high 45

BG1 (17) C46–U62/start 50 (0.1) high 24

BG2 (17) A51–C67/start 50 (0.5) high 24

BG3 (15) C85–U95/coding 0 (1) low 24

17 Glo[3-19] (17) A3–A19/cap 72 (0.5) high 44

17 Glo[51–67] (17) U51–C67/start 95 (0.5) high 44

11 Glo (11) A44–A54/start 65 (0.5) high 44

17 Glo[113–129] (17) U113–G129 / coding 95 (0.5) low 44
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at least one peak with probability ≥0.6; the potential was
considered moderate for a peak with probability between 0.3
and 0.6; and the potential was low for a site with a probability
<0.3 of being partly single-stranded. For ASOs described by
Cazenave et al. (44), the inhibition figures for wheatgerm
extract were estimated from figures 3 and 7 in that report. The
region A1–A45 was targeted by five of eight ASOs described by
Goodchild et al. (45). There are three high probability
sequences in this region: A1–C4, A18–U21 and U36–A45. They
explain the predicted high hybridization potential for β5, β6,
β7, β8 and β6 + β7. The moderate inhibition by β1 indicates
that A18–U21 alone is not as effective as the other two. One
explanation is that the two adjacent nucleotides, C17 and G22,
are predicted to almost certainly engage in G·C pairing and,
thus, they might present a substantial energy barrier for hybrid-
ization elongation by ‘zippering’. The high inhibition by β8

and β6 + β7 suggests that an antisense effect can be enhanced
by simultaneously targeting several high potential sites. We
also found consistent results for BG1, BG2 and BG3 reported
by Milner et al. (24). Clear inconsistency between our predic-
tions and the observed inhibition was found for 17 Glo[113–
129] of Cazenave et al. (44), which appears to be an exception
to the rule-of-thumb of at least four unpaired bases (26,31). In
the case of an effective antisense site with less than four
unpaired bases, the site would not be predicted by the proba-
bility profile with a sequence width of 4 nt. On the target site of
17 Glo[113–129], the probabilities of being unpaired for U125

and G126 are 0.61 and 0.56, respectively, but the probabilities
are <0.1 for adjacent bases U124 and G127. Among many other
potential reasons for poor prediction in this case could be
tertiary interactions and RNA–protein interactions, and self-
folding of the oligomer that are unaccounted for by the current
algorithm.

If we associate low, moderate and high hybridization potential
with inhibition of 0–19, 20–39 and 40–100%, respectively, then
for 13 of the 16 ASOs (81%) examined here, the hybridization
potential revealed by the probability profile is indicative of the
antisense inhibitory effect. For all the ASOs, there is a signifi-
cant correlation (P = 0.0147, correlation coefficient = 0.597)
between the hybridization potential predicted by the probability
profile and the degree of translation inhibition. For β1–β8, there
is a substantially higher correlation (P = 0.0037, correlation
coefficient = 0.882). In contrast, Stull et al. (27) found no
significant correlations between observed inhibition and any
predictive indices for β1–β8. For ASOs described by Cazenave
et al. (44), Stull et al. (27) found a correlation between Dscore,
one of their indices, and inhibition for oligomer concentration at
6 µM, but no significant correlation for oligomer concentrations
<6 µM. The probability profile and the MFE structure give

Table 3. Comparison of the intensity of ASO:mRNA hybridization on the
oligodeoxynucleotide array and the probability profile for the first 122 bases
of rabbit β-globin mRNA

aC46–C60 is contained in two 16mers C46–A61 and A45–C60, and three 17mers
C46–U62 (BG1), A44–C60 and A45–A61. The hybridization yields for ASOs
complementary to these six sequences are at least three times that of any other
oligonucleotides in the array (24).

Region Hybridization intensity Probability profile (peak feature)

A1–C37 not detectable high peaks (narrow)

C46–C60 a high high peak (wide)

A61–C91 weak but detectable low

A76–A90 not detectable low

C94–G110 moderate moderate

Figure 3. The probability profile for single-stranded sequences of four consecutive nucleotides (sequence width W = 4) estimated by 1000 sampled secondary
structures (dashed line) and the profile indicated by the minimum free energy structure (vertical bars) for rabbit β-globin mRNA and the experimentally measured
inhibition of ASOs in cell-free translation systems. The profile is shown for the region of the first 230 nt that is targeted by the ASOs. The length and binding sites
of the ASOs are indicated by horizontal lines with the names of the ASOs centered above or below the lines. These lines also indicate the inhibition of translation
through their position on the vertical axis. The vertical axis also shows the probability for the profile with inhibition corresponding to probability multiplied by
100%.
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comparable predictions of single-stranded regions. However,
without an associated measure of confidence, there is a lack of
correlation between the binary prediction by the MFE structure
and the degree of translation inhibition (P = 0.567, correlation
coefficient = 0.155). This exemplifies the observation that there
is limited success in using MFE structure for antisense design
(46). Because the sampling profile provides a statistical measure
of confidence in the predictions, it is not surprising that the
profile is found to be generally indicative of the degree of trans-
lation inhibition.

For the hybridization intensity data of Milner et al. (24),
there is very good agreement between the hybridization inten-
sity and the probability profile for regions C46–C60, A76–C90

and G94–G110 (Table 3). The hybridization intensity for region
A61–C91 is in reasonable agreement with the probability profile.
In this region, the maximum probability of a peak is ∼0.1. For
a peak with a maximum probability <0.2, there is an appreci-
able chance for the peak to correctly predict single-stranded
regions (Table 1). Thus, weak hybridization is possible for low
but appreciable probabilities. For region A1–C37, it is an
intriguing contrast that the hybridization data are in disagree-
ment both with the data described by Goodchild et al. (45) and
with the probability profile, but the probability profile is in
good agreement with the data of Goodchild et al. (45). The
length of the oligomers, 20–45 nt discussed by Goodchild et al.
(45), and at most 17 nt in the report of Milner et al. (24), offers
an explanation for the conflicting results. Goodchild et al. (45)
indicated that a greater inhibition could be obtained by
covering a longer portion of the mRNA. This is evidenced by
the greater inhibition of β8 or a mixture of β6 and β7 than
either β6 or β7 alone (Table 2). There are several sharp peaks
in the probability profile for this region. Thus, a plausible
explanation from the profile is that substantially longer ASOs
cover more peaks in this region and hence enhance the chance
of both nucleation and propagation of duplex formation.
Although oligomer length has a positive effect on translation
inhibition in this case, this may not be generally true (24). We
also note that the conclusion of insignificant hybridization by
Milner et al. (24) for region A1–C37 appears to be based on the
lack of a continuous subregion with detectable hybridization.
In this region, there are two isolated intensity bands in figure 1
of Milner et al. (24), indicating substantial hybridization at
sequence positions that were also targeted by Glo[3–19] of
Cazenave et al. (44).

The six oligomers containing bases C46–C60 (Table 3), and
BG2, β2, Glo[51–67] in Table 2 share one common feature on
the profile: a relatively wide, high probability peak between
A54 and U58, with 54AUG56 being the initiation codon. This
suggests that a smooth and relatively wide peak on the proba-
bility profile can be a high potency antisense site because the
chance of hybridization is improved for a wider single-
stranded region.

DISCUSSION

Prediction of single-stranded regions

In this work, we have demonstrated the probability profile
approach for the prediction of single-stranded regions in RNA
secondary structure. The results on the test sequences show
good correspondence between single-stranded regions by

phylogenetic structure and predictions by the probability
profile. In particular, high probability peaks correspond to
single-stranded regions with high reliability. The variability in
the reliability of predictions suggests that the results from the
test sequences may not indicate the reliability of prediction for
other RNA sequences. Poor predictions for a particular RNA
or regions of the sequence can be partly attributed to uncertain-
ties in thermodynamic parameters, pseudoknots and other
tertiary interactions and RNA–protein interactions. These
factors are not taken into account in the current algorithm.
These caveats are associated with other efficient and free-
energy based algorithms for RNA secondary structure predic-
tion. In future work, we plan to extend the sampling algorithm
to address certain types of pseudoknots.

The sampling stage of the algorithm is rather fast, although
the implementation of the algorithm in Fortran 77 is not yet
highly optimized. For the rabbit β-globin mRNA, it took 527 s
to complete the partition function calculation, and 75 s to
generate 1000 structures on a 300 MHz CPU of an Ultra 2
SPARC workstation. The computation time for the partition
function calculation can be substantially improved if simpler
multibranched loop evaluation is made possible, as was done
for version 3.1 of mfold (33). This will be investigated. The
sampling algorithm can be used for estimating the probability
of any structural motif, such as helices, hairpin loops, bulges or
interior loops, in addition to single-stranded regions.

Computational screening of effective antisense sites

For long mRNA sequences, there are many suboptimal fold-
ings with free energies close to the minimum free energy. It has
been a practical problem for antisense experimentalists to
select one of the low free energy structures as the basis for anti-
sense design. Furthermore, the suboptimal foldings from mfold
do not guarantee a statistically unbiased sample of probable
secondary structures. This makes it difficult to assign a statis-
tical measure of confidence for predictions based on these
suboptimal foldings. By summarizing a statistical sample of
probable structures in a single plot, the probability profile
approach overcomes these difficulties. The ‘well-determined’
single-stranded regions are revealed by peaks with high proba-
bilities on the profile. While the test RNA sequences in Figures
1 and 2 probably have a single well-defined structure, it is
possible that mRNAs do not. Statistical sampling of probable
structures provides a suitable means to address this uncer-
tainty. This is demonstrated by the substantial improvement in
predictions over the minimum free energy structure. The
sampling method also has the advantage that it does not require
the generation of a huge number of all possible structures, as
suggested previously (47).

The probability profile approach offers a comprehensive
computational screening of the entire mRNA. For several other
mRNA sequences with length ranging from 1 to 3 kb, we
observed 15–20 high hybridization sites per kilobase (data not
shown). These sites provide ample opportunities for rational
design of antisense oligomers. An antisense oligomer is the
reversed complement of a target sequence. The identification
of optimal oligomers could be particularly important for anti-
sense drug development. In applications, one can focus on sites
within a particular mRNA region (e.g., coding region) of
interest. In designing antisense oligomers, some basic rules are
applicable for avoiding non-antisense effects and for
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enhancing antisense potency. Three or more Gs in a row
should be avoided (48). To minimize the possibility of binding
to a non-targeted mRNA with strong sequence homology at the
binding site, a BLAST search for a prospect oligomer can be
performed to ensure no appreciable overlapping with other
mRNAs in the experimental system (49). In particular, investi-
gators need to be aware that translation initiation sites can have
good homology in both related and non-related genes (46). To
avoid stable intra-molecular structure within oligomers,
oligomers that contain self-complementary regions (i.e. palin-
dromic sequences) should not be used. Other suggestions for
experimental design can be found in the literature (49–51).

The results with rabbit β-globin mRNA suggest that rela-
tively wide, high probability peaks on the probability profile
are very likely to be effective antisense sites. In some cases,
relatively long oligonucleotides covering narrow high proba-
bility peaks in a region can be effective, because the chance of
nucleation and propagation of duplex formation is enhanced
with several single-stranded sites, despite their short length. In
other cases, increasing oligomer length may not improve
hybridization, because intramolecular base pairing within the
oligomer may hinder hybridization (24). The finding of a
significant correlation between the degree of translation inhibi-
tion in cell-free systems and predicted hybridization potential
is consistent with results from in vitro and in vivo studies (21–
23). This further supports the belief that the accessibility of the
target site through complementary base pairing is a very
important factor in determining the efficacy of an antisense
oligonucleotide.

The antisense analysis is based on data from cell-free trans-
lation systems and an oligonucleotide array. A correlation
between in vitro accessibility data and oligonucleotide intra-
cellular activity has been documented for several RNAs
(23,52–54) and a significant correlation by statistical analysis
on a large number of oligonucleotides has been reported (55).
Also, for oligonucleotide array, good correspondence between
hybridization yield on the array and in vivo and in vitro anti-
sense activities has been reported (23,54).

Similar to several existing procedures, our approach to anti-
sense application is also based on mRNA secondary structure,
one of several factors that can affect the accessibility and effi-
cacy of an antisense molecule. Tertiary structure and RNA–
protein interaction are not addressed. Cellular concentrations
of the ASO and the mRNA are also important variables that
can dictate how likely it is that the target mRNA and the anti-
sense oligonucleotide will encounter and hybridize. Our
finding reiterates the belief that secondary structure is perhaps
the most important variable.

The approach presented in this work does not address the
potential impact of secondary structure around single-stranded
regions. In view of the multi-step process of nucleation and
propagation for duplex formation (24,25), the probability
profile presents a statistical delineation of the potential for
nucleation. The initial pairing from the nucleation step needs to
be stable enough to allow propagation (25). While the free
energy gained can be computed, some empirical rule for
minimum free energy gain required for propagation will be
helpful for selecting sites with propagation potential from the
profile. Propagation can more readily proceed by strand inva-
sion of stems, while propagation through a single-stranded
region may involve considerable reorientation of the strand

(25). This striking observation suggests that it does not require
too great a free energy price to invade a helically-ordered
strand for propagation. It also suggests that for a sizable loop,
sites on the ends of the loop may be more efficient for propa-
gation. Furthermore, duplex propagation is affected by features
in the target structure that are not well understood (25). The
‘zippering’ process for propagation stops when it meets an
energy barrier such as the ends of stems or sharp turns in the
folded RNA (24,25). These observations offer some clues as to
how a quantitative score based on the profile might be
developed to assess the potential of propagation. The algorithm
can be expanded to include the free energy change attributed to
oligomer–target duplex formation and to assess its impact on
the predictions. A lack of apparent correlation between the
measured free energy change and the measured hybridization
has been demonstrated (24). However, correlation between the
free energy change and antisense efficacy has been indicated
by computational studies (27,56). With a better understanding
of the contributions of structures around single-stranded
regions, an extension to the present work may improve the reli-
ability of the predictions.

Functional genomics and drug target validation

Functional genomics, the determination of the function of
DNA sequence on a genomic scale, is a fast-growing field in
biotechnology. Recently, the first assembly of 3.12 billion base
pairs for the human genome was completed by Celera
Genomics, and a working draft of the human genome by the
publicly funded Human Genome Project has been finished.
Definitive functions have been assigned to less than 1000 of
the estimated 100 000 genes in the genome. While every tech-
nique for the determination of gene function has its own
strengths and weaknesses, ASOs are given the most favorable
assessment on all attributes in a comprehensive comparison of
techniques (57). These attributes include broad applicability,
usage of primary sequence, time, cost and resource require-
ment, chance of success, relevance to human disease and the
possibility the technique will result in a drug product. For
example, gene knockout is not broadly applicable. Routine
gene knockout in mammals has been performed only in mice.
In addition to the lengthy duration of the procedure, mamma-
lian gene knockout often leads to an embryonic lethal pheno-
type, providing very little information about the gene function.
Mutagenesis has not been shown to be feasible in mammals.
For mice, antisense strategy has been demonstrated to inhibit
gene expression in utero, permitting the stage-specific analysis
of gene function and identification of secondary phenotypes
(58). This technique is expected to be applicable to other
mammalian species (59). At relatively low cost, antisense not
only offers high specificity of gene expression inhibition and
rapid detection of antisense effects, but it also enables determi-
nation of gene function in adult animals by bypassing the
potentially lethal embryonic stage. For functional genomics in
the post-genomic era, traditional tools can no longer keep pace
with new sequence information rapidly accumulated from
various genome projects. The antisense technique has emerged
as an important tool both in vitro and in vivo. When properly
used, it has the potential to meet the need of large-scale func-
tional genomics.

Antisense technique is also a very important tool for drug
target validation. This is also well illustrated by the most
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favorable assessment on all attributes in a comparison of drug
target validation techniques (57). Thousands of new potential
therapeutic targets have emerged from human genome
sequencing. The selection and validation of molecular targets
are of paramount importance for drug development in the new
millennium (60). Although phenotypes of many diseases are
well known, the identification of the genes responsible for
these phenotypes is a major challenge in the drug development
process.

An ASO, by specifically blocking the synthesis of a prospec-
tive protein drug target, provides a fast, inexpensive and often
definitive assessment of the biological effect achieved by a
drug targeted against that protein. The antisense technology
offers a rational alternative to the typical strategy of designing
small molecules for the inhibition of a particular gene, which
requires substantially more information than antisense design.
Furthermore, the interactions between many small molecules
and multiple members of a gene family can confound the
assessment of a gene as a drug target (20).

Complicated multi-component biological systems can be
studied by using an appropriate set of ASOs to independently
block the synthesis of each individual protein in the system.
Antisense also promises to reveal genetic pathways through
expression arrays. By antisense inhibition of protein expres-
sion and target mRNA, and through the evaluation of inhibi-
tory effects on expression of genes on DNA arrays, insight will
be gained on gene interaction and regulatory pathways (20).

High-throughput antisense applications

DNA expression arrays have emerged as major high-
throughput experimental tools in the post-genomic era which
allow the measurement of gene expression patterns of tens of
thousands of genes in parallel (61,62). DNA expression arrays
can provide important clues to gene function. Genes of similar
expression behavior suggest that they are likely to be co-
regulated or possibly functionally related. Indeed, statistical
clustering analysis has revealed that gene expression data tend
to organize genes into functional categories (63). Genes with
unknown function can be assigned tentative functions or a role
in a biological process based on the known function of genes in
the same cluster.

Single nucleotide polymorphisms (SNPs) show promise in
the progression of pharmacogenomics, the emerging field
concerned with the dissection of the genetic basis of disease
and therapeutic response. Assembly of large SNP databases
has been undertaken by the next phase of the Human Genome
Project (64), a non-profit SNP Consortium of 10 pharmaceu-
tical companies and the Wellcome trust (65; http://
snp.cshl.org/data/), and by several industrial efforts. SNPs
enable studies of association between a SNP and risk of a
disease or drug response (66,67). The associations are valuable
for the identification of candidate genes for disease pheno-
types.

The eventual determination of the functions of the candidate
genes and confirmation of gene functional predictions based
on analysis of DNA expression arrays will require experi-
mental analysis in a systematic and high-throughput fashion to
keep pace with the fast growing genome, expression array and
SNP databases. Antisense technology is well suited for this
endeavor. Expression array and SNP databases can provide the

basis for high-throughput antisense applications to functional
genomics and drug target validation.

Experimental approaches for finding effective ASOs are
expensive, time consuming and laborious, and are usually
limited to a region of the mRNA. Published work suggests that,
at the very best, only one in eight ASOs is effective (68). To
realize the promise of antisense technique for high-throughput
functional genomics and drug target validation, efficient
screening for identifying active antisense target sites on the
mRNA is necessary. This must be based on the combination of
a high-throughput experimental platform and rational anti-
sense design by a computational method. The combinatorial
DNA–RNA oligonucleotide array technique appears to be an
adequate experimental approach (25,69). With labeled tran-
scripts, hybridization intensity can be measured and visualized
(25). However, there are seemingly two practical limitations.
First, the number of all possible oligomers up to a preset length
is huge for an mRNA. Secondly, large mRNAs can be
hampered by their bulky size from approaching the oligomers
densely distributed on the array surface (69). Use of selective
oligomers designed by comprehensive computational
screening provides a solution. Hence, we advocate the strategy
of integrating computational predictions and the array tech-
nique for a rational, efficient and comprehensive platform for
ASO screening (Fig. 4). This platform needs to be extensively
tested by experimentalists in both academia and industry to
assess its potential for high-throughput applications.
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