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In contrast to the current state of knowledge in the field of eukar-
yotic chromosome segregation, relatively little is known about the
mechanisms coordinating the appropriate segregation of bacterial
chromosomes. In Escherichia coli, the MukB/E/F complex and
topoisomerase IV (Topo IV) are both crucial players in this process.
Topo IV removes DNA entanglements following the replication
of the chromosome, whereas MukB, a member of the structural
maintenance of chromosomes protein family, serves as a bacterial
condensin. We demonstrate here a direct physical interaction
between the dimerization domain of MukB and the C-terminal
domain of the ParC subunit of Topo IV. In addition, we find that
MukB alters the activity of Topo IV in vitro. Finally, we isolate a
MukB mutant, D692A, that is deficient in its interaction with ParC
and show that this mutant fails to rescue the temperature-sensitive
growth phenotype of a mukB− strain. These results show that
MukB and Topo IV are linked physically and functionally and
indicate that the activities of these proteins are not limited to chro-
mosome segregation but likely also play a key role in the control of
higher-order bacterial chromosome structure.

bacterial chromosome segregation ∣ mass spectrometry

During cell division, chromosomes must be faithfully repli-
cated and segregated. Structural maintenance of chromo-

somes (SMC) proteins and their non-SMC accessory partners
play a crucial role in this process (1, 2). In eukaryotes, SMC
proteins function as heterodimers and can be grouped into three
categories: cohesin (SMC1/SMC3), condensin (SMC2/SMC4),
and a DNA repair complex (SMC5/SMC6) (1, 2). In contrast,
most prokaryotes contain a single SMC protein that functions
as a homodimer (3, 4).

Escherichia coli MukB was the first member of the SMC pro-
tein family to be discovered (5). In spite of its limited sequence
homology with other SMC proteins, MukB shares a five-domain
structure common to all SMC family members (6). Its globular
N- and C-terminal domains combine to form a bipartite ATP
binding cassette ATPase “head” domain, which is connected to
a smaller globular dimerization or “hinge” domain by a rod-
shaped antiparallel coiled coil (Fig. 1A) (6–14). In addition to
its structural similarity to canonical SMC proteins, MukB shares
a common function with prokaryotic SMCs. Both E. coli mukB−

strains and smc− strains from Bacillus subtilis and Caulobacter
crescentus show temperature-sensitive colony formation and an
increase in the number of anucleate cells at the permissive
temperature, suggesting a deficiency in chromosome segregation
(5, 7, 15–19). Moreover, a convincing array of experiments has
demonstrated that MukB functions as a condensin in vitro and
in vivo (20–28).

As is the case for bacterial SMC proteins, two non-SMC
accessory proteins, MukE and MukF, are required for full MukB
function (29, 30). Null mutations in the mukE or mukF genes,
which are encoded within the same operon as MukB, result in

a phenotype indistinguishable from that of a mukB− mutation
(31). Like most non-SMC subunits of the eukaryotic and other
prokaryotic SMC complexes, these accessory proteins associate
with the MukB head domain (30).

In eukaryotes, it is well established that the SMC complexes
interact transiently with binding partners in addition to their
stably associated, non-SMC accessory subunits, including the
condensin partners Cti1 and PARP-1-XRCC1 and the cohesin
partner Wap I (32–34). In contrast, apart from MukF/E, only
one potential binding partner for MukB has been identified.
The acyl carrier protein (ACP) copurifies with MukB, which
also appears in a proteomic screen for ACP binding partners
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Fig. 1. Schematic views of MukB and Topo IV. (A Left) Domain structure of
MukB and truncated constructs used. (Right) Cartoon representation of a
MukB homodimer. Head domains are represented by blue circles and the
coiled coils by black lines. The dimerization domains are represented as blue
half-circles. (B, Left) Domain structure of ParC and truncated constructs used.
(Right) Cartoon view of Topo IV heterotetramer. N- and C-terminal domains
of ParC are represented by light green ovals and dark green squares, respec-
tively; ParE is represented by dark blue circles. The hinge, N-, and C-terminal
domains are indicated by the appropriate initial.
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(7, 23, 35). However, the physiological importance of this inter-
action is not clear (7, 23, 35). Nevertheless, considering the com-
plexity of E. coli chromosome organization and dynamics, we
viewed it as likely that MukB, one of the central proteins in chro-
mosome segregation, would cooperate with additional protein
factors to achieve its cellular functions.

Using affinity purification-mass spectrometry (36), we show
here that MukB interacts with ParC, a subunit of topoisomerase
IV (Topo IV). In E. coli, ParC, the DNA binding and cleavage
subunit, combines with ParE, the ATPase subunit, to form a
functional ParC2ParE2 heterotetramer (Fig. 1B) (37–39) that re-
solves the catenated chromosomes created during replication
(40–43). We further present evidence that the presence of MukB
leads to a stimulation of both the relaxation and decatenation
activities of Topo IV. Finally, we demonstrate that a MukB mu-
tant with reduced affinity for ParC fails to rescue a mukB− muta-
tion in vivo. This demonstration of a physical and physiologically
important interaction between MukB and Topo IV provides a
mechanism for communication between two major players in
bacterial chromosome organization. These observations also sug-
gest that cross-talk between SMC complexes and other cellular
factors is not restricted to eukaryotes.

Results
Identification of Binding Partners for MukB. Because the hinge
domain of SMC proteins is thought to have important functions
in addition to dimerization (44–46), we initially sought to identify
binding partners for a truncated version of MukB containing
this domain and a portion of the coiled coil (MukB-D; residues
566–863) (44). In these initial pull-down experiments (see SI
Text), we identified ParC, one of the two subunits of Topo IV,
as a binding partner for MukB-D. As Topo IV is an essential
enzyme for chromosome segregation (37, 47), this observation
promoted our investigation into the role of the interaction of
its ParC subunit with MukB.

To test the physiological relevance of this interaction, we
carried out proteomic assays using isolated MukB complexes
from E. coli strain KAT1. In this strain (48), the chromosomal
coding sequence for MukB has been replaced by GFP-tagged
MukB, resulting in the expression of MukB-GFP under the
control of the endogenous promoter. MukB-GFP-containing
complexes were immunoprecipitated from cell lysates with a
specific anti-GFP antibody (36). The isolated protein complexes
for KAT1 and the wild-type W3110 control were subjected to
SDS-PAGE and mass spectrometry (MS) analysis (Fig. 2A and
Fig. S1). As expected, ParC was immunoprecipitated, along
with previously identified MukB binding partners MukE, MukF,
and ACP (Fig. 2A and Fig. S1). The positive identification of
ParC by MS was supported by good sequence coverage (41%)
and an extremely low expectation value (5E-10) and was further
confirmed by tandem MS sequencing of four unique peptides
(Fig. S1). Taken together, these results strongly suggest an inter-
action between ParC and MukB-D.

A Direct Physical Interaction Between ParC and MukB. To establish
whether the interaction between MukB-D and ParC is direct or
indirect,His6-tag pull-downassayswere carried outwithE. coli cell
lysates containing overexpressed proteins. Untagged ParC is not
retained on a Ni-NTA column in the absence of His6-MukB-D
(Fig. 2B, Left); however, untagged ParC is clearly retained in
the presence of His6-MukB-D (Fig. 2B, Left). This result demon-
strates that MukB-D interacts directly with full-length ParC.

To rule out any possible influence of the His6 tag on the
observed interaction, we switched the His6 tag onto ParC. In ad-
dition, MukB-D was substituted with intact MukB to study the
effect of MukB coiled-coil and head domains for ParC binding.
As expected, untagged MukB was not retained on the Ni-NTA
column in the absence of His6-ParC but was retained in its

presence (Fig. 2B, Right). This observation confirms that full-
length ParC is able to interact with full-length MukB. To our
surprise, this interaction remained stable even at high concentra-
tions of salt (Fig. S2A), suggesting that the binding between
MukB and ParC is robust even under stringent conditions.

To determine whether the MukB-ParC interaction is affected
by the presence of ParE, we carried out pull-down experiments
with the three proteins together. His6-ParE pulls down untagged
MukB in the presence of untagged ParC (Fig. S2B). Similarly,
His6-ParC pulls down untagged MukB-D in the presence of un-
tagged ParE (Fig. S2C). These results suggest that MukB does not
interfere with the ParC-ParE interaction and Topo IV formation.

Fig. 2. MukB interacts with ParC in vivo and in vitro. (A) Isolation of
MukB associated proteins via the GFP tag. The proteins were visualized by
Coomassie blue stain and identified by mass spectrometry. (B Left) His6-
MukB-D (566–863) and untagged full-length ParC (1–752). (Right) His6-ParC
(1–752) and untagged full-length MukB (1–1,486). (C) Identification of the
domains responsible for the interaction between MukB and ParC. Untagged
MukB-D (566–863) with His6-ParC-NTDb (24–497) or His6-ParC-NTDx (2–482)
(Left). Untagged MukB-D (566–863) with His6-ParC (1–752) or His6-ParC-CTD
(497–752) (Right). The lane labels for parts B and C are as follows: L: lysate;
B: bound to the Ni-NTA resin; U: unbound.
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We also investigated the location of the protein–protein inter-
face between MukB and ParC. Pull-down experiments were car-
ried out with untagged MukB-D and a series of His6-tagged ParC
truncation constructs (Fig. 1B). ParC consists of an N-terminal
domain (NTD) and a C-terminal domain (CTD) connected by
a short linker region (49). Constructs lacking the ParC C-terminal
domain (ParC-NTDb and ParC-NTDx) (49) showed no binding
activity toward MukB-D (Fig. 2C, Left). In contrast, untagged
MukB-D was retained with Ni-NTA beads in the presence of
His6-tagged ParCC-terminal domain (ParC-CTD) (Fig. 2C,Right).

To determine the binding affinity and stoichiometry of the
complex between ParC and MukB, we carried out isothermal
titration calorimetry experiments by titrating ParC against
MukB-D at 25 °C (Fig. S3). The interaction between MukB-D
and ParC is exothermic (ΔH ¼ −8.0 kcal∕mol) with a Kd of
approximately 0.4 μM. A similar Kd (0.5 μM) was observed for
the interaction between MukB-D and ParC-CTD (Fig. S3).
Finally, we measured the binding affinity of ParC for a truncated
version of the MukB hinge domain, MukB (645–804). Although
this construct lacks all but two heptads of the coiled-coil region
(50), it also binds to ParC with similar affinity to that of MukB-D
(Kd ¼ 0.5 μM) (Fig. S3), suggesting that little, if any, of the
adjacent coiled-coil domain is required for ParC binding. Taken
together, these results suggest that residues 645–804 of MukB
and 497–752 of ParC are necessary and sufficient for the observed
physical interaction.

Interestingly, the observed stoichiometry for binding of
MukB-D to full-length ParC is about 0.5 (one MukB-D dimer
to two ParC dimers). When ParC-CTD, which lacks the dimeri-
zation domain of ParC, is used, the observed stoichiometry is 1.0
(Fig. S3). This relationship indicates that each subunit of a MukB
dimer is capable of binding to a monomer of ParC (through a
single CTD) and that an intact ParC dimer cannot contact both
subunits of the MukB dimer simultaneously. These observations
suggest that it is possible for a ParC homodimer (or a ParC2ParE2

heterotetramer) to bridge the hinge domains of neighboring
MukB dimers.

MukB Stimulates Topo IV Activity. Topo IV belongs to the type IIA
topoisomerase family and is homologous to both DNA gyrase and
eukaryotic topoiosmerase II (Topo II) (51, 52). In vitro, the het-
erotetramer formed by ParC and ParE shows a broad range of
activities, from relaxing supercoiled DNA substrates to unlinking
catenated DNA rings (37–39, 53, 54). In E. coli cells, the primary
role of Topo IV is to resolve catenated chromosomes, which form
during the replication of the closed circular genome (40–43).

To assess the effect of MukB on the activity of E. coli Topo IV,
we turned to both DNA relaxation and decatenation assays. Dur-
ing electrophoresis, relaxed plasmids migrate more slowly than
supercoiled plasmids, allowing these topoisomers to be separated
on an agarose gel. When the concentration of Topo IV is held
constant, the fraction of relaxed topoisomers formed increases
with increasing MukB concentration (Fig. 3A). This observation
shows that MukB is able to stimulate the relaxation activity of
Topo IV in a dose-dependent manner. We also performed a time-
course experiment to determine the effect of MukB on the
kinetics of the Topo IV-catalyzed DNA relaxation reaction. In the
presence of MukB, a larger fraction of the DNA is partially or
completely relaxed at early time points in the reaction (Fig. 3B).
Similarly the reaction reaches completion significantly earlier
in the presence of MukB than in its absence (Fig. 3B), demon-
strating that MukB enhances the rate of Topo IV-catalyzed DNA
relaxation.

The standard assay to measure the decatenation activity of
type II topoisomerases uses kinetoplast DNA (kDNA) as sub-
strate (55). kDNA is a network of interlocked and covalently
closed minicircles (∼2.5 kb) (56). Prior to decatenation by
Topo IV, kDNA will remain in the wells during electrophoresis

due to its high molecular weight. In the presence of Topo IV, dec-
atenated minicircles will enter the agarose gel. The band intensity
of these minicircles can then be used to quantify the decatenation
activity of Topo IV. MukB increases the amount of decatenated
DNA minicircle products in the presence of Topo IV in a modest,
but dose-dependent manner (Fig. 3C). Similarly, we also quanti-
fied the effect of MukB in time-course experiments (Fig. 3D).
Again, MukB has a modest but reproducible stimulating effect
on the rate of Topo IV-catalyzed decatenation and on the

Fig. 3. MukB specifically stimulates the relaxation and decatenation activ-
ities of Topo IV. The position of supercoiled plasmids is indicated by SC, and
the position of completely relaxed plasmids is indicated by R. Between them
are incompletely relaxed topoisomers. Excess MukB is used to drive complex
formation at experimentally accessible concentrations of Topo IV. (A) Topo IV
(2.7 nM) is incubated with negatively supercoiled pBR322 (100 ng) at 30 °C
for 30 min, along with MukB at various concentrations (lanes 1–6: 0, 36,
90, 180, 270, and 360 nM, respectively). (B) In the absence or presence of
MukB (39 nM), Topo IV (3.0 nM) is incubated with pBR322 (100 ng) at 30 °C.
The reactions were quenched at different time points (indicated above the
lanes). (C) Topo IV (0.67 nM) with various concentrations of MukB (lanes 1–5:
0, 9.0, 18, 36, and 72 nM, respectively), was incubated with kDNA (180 ng)
at 30 °C for 12 min. The unreacted kDNA network is retained in the wells
due to its large molecular weight. The position of decatenated minicircles
is indicated by MC. The asterisks (*) indicate the incompletely decatenated
products. A representative agarose gel is shown. (D) Topo IV (0.74 nM)
was incubated with kDNA (180 ng), in the absence or presence of MukB
(39 nM). The reactions were quenched at different time points (indicated
above the lanes) and loaded onto a single agarose gel for quantification.
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amount of minicircle product (ca. 35% greater in the presence
of MukB).

Because full-lengthMukB affects the supercoiling and conden-
sation of DNA (20, 21, 23, 24), we also probed the ability of
MukB-D, which lacks the DNA-binding head domain and much
of the coiled coil (44) to stimulate Topo IV function. As with in-
tact MukB, we observe that MukB-D is sufficient to stimulate the
DNA decatenation and relaxation activities of Topo IV (Fig. S4 A
and B), although it stimulates the relaxation reaction less effi-
ciently than the full-length protein. As MukB-D does not interact
with DNA at the concentrations tested here (44), this result
suggests that MukB-dependent stimulation of Topo IV activity
occurs is not due to MukB-induced changes in DNA supercoiling
or condensation.

To examine the specificity of MukB’s effect on the activity of
Topo IV, control experiments were performed with Human Topo
II, the eukaryotic homolog of E. coli Topo IV. MukB fails to
stimulate the relaxation activity of Topo II in the relaxation assay
and may even inhibit its decatenation activity (Fig. S4 C and D).
Similarly, MukB-D has no effect on the rates of these Topo II
catalyzed reactions (Fig. S4E). These results provide confirma-
tion that the effect of MukB on Topo IV activity occurs through
a direct physical interaction.

A MukB Mutant with Reduced Affinity for ParC. To assess the impor-
tance of this interaction for MukB function, we conducted an
alanine scan of surface acidic residues in the MukB hinge
domain. As the surfaces of the relevant domains of MukB and
ParC are highly acidic and basic, respectively, we reasoned that
electrostatic attractions would be important in this interaction.
Thirteen Asp or Glu residues were mutated to Ala (Fig. 4A),
separately or in tandem, and the resulting MukB mutants were
assayed for their ability to rescue the temperature-sensitive
growth phenotype of the mukB− strain SH7718 when expressed
from a low-copy number plasmid under the control of the native
mukB promoter (57). Two of the 12 mutant proteins, MukB-
D692A, and MukB-A686-689, in which E688 is replaced with
Ala, failed to rescue the growth at the restrictive temperature
(37 °C; Fig. 4B). These residues form a common locus on the
surface of the MukB hinge domain (Fig. 4A).

We chose the point mutant, MukB-D692A, for further char-
acterization. As expected, the D692A mutation affected neither
the structure nor the dimerization state of the MukB hinge do-
main (Fig. S5 A–C), nor did it affect the DNA-binding ability of
full-length MukB (Fig. S5D). However, in pull-down experiments
with ParC, significantly less ParC is retained on the Ni-NTA
column in the presence of His6-MukB-D-D692A than in the
presence of wild-type His6-MukB-D (Fig. 4 C and D). Thus,
the D692A mutation leads to impaired ParC binding by MukB,
suggesting that this residue is at the ParC-MukB interface. Taken
together, these observations suggest the MukB-ParC interaction
is required for complete MukB function in vivo.

Discussion
Both the E. coli condensin MukB and Topo IV are crucial for
chromosome segregation, as a single point mutation in either
can cause a segregation-deficient phenotype (5, 37). In spite of
their similarly impaired chromosome segregation phenotypes,
the two proteins play different roles in the process. ParC acts
in a complex with ParE to form Topo IV, which disentangles
topologically linked daughter chromosomes. In contrast, MukB’s
effect on chromosome segregation is a result of its condensin
activity (20–25). Nonetheless, we have demonstrated that MukB
and the ParC subunit of Topo IVare coupled by a direct physical
and functional interaction. Moreover, a point mutation at the
apparent ParC-binding interface of MukB abrogates the ability
of the mutant protein to rescue a mukB− mutation, suggesting

that this interaction is essential for the activity of the MukBEF
complex in vivo.

This interaction between MukB and ParC appears to be
mediated by electrostatic interactions between the C-terminal
domain of ParC and the globular dimerization domain of MukB.
MukB mutants in which E688 or D692 have been replaced with
Ala fail to rescue a mukB− mutation, and the D692A mutation
impairs the ParC-binding activity of MukB. Both residues are
strictly conserved in all MukB proteins for which sequence infor-
mation is available. Conversely, in the accompanying manuscript
(58), Marians and co-workers demonstrate that mutations at
two highly conserved Arg residues in the CTD of ParC similarly
abrogate complex formation between MukB and ParC.

To our knowledge, ParC is the only protein demonstrated to
interact with the hinge region of a prokaryotic SMC protein.
However, several examples of non-SMC accessory factors that
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Fig. 4. MukB mutants fail to complement mukB− mutation. (A Left) Side
view of MukB-D dimer. Positions at which Ala substitutions led to the most
severe growth defects are shown in blue, whereas those at which Ala sub-
stitution had no obvious effect on growth are shown in red. For clarity,
one monomer of MukB-D is shown in tan, whereas the other is shown in
gray. (Right) Top view of MukB-D dimer. (B) The mukB− null cells were trans-
formed with the p15sp-B03a plasmid containing either wild-type, D692A, or
Ala686-689 MukB. All cells exhibited normal growth at 22 °C (Middle). How-
ever, both D692A and Ala686-689 MukB cells showed severe temperature
sensitivity at 37 °C (Right). (C) MukB-D-D692A shows reduced binding with
ParC. Both the wild-type MukB-D and MukB-D-D692A mutant were assayed
for binding to ParC using the pull-down assay. ParC binding is clearly impaired
for MukB-D-D692A. U: unbound, B: bound to the Ni-NTA resin. (D) Quanti-
fication of the binding data from C.
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interact with the hinge domain of eukaryotic SMC proteins have
been reported. In fission yeast, the essential protein Cti1 interacts
with the hinge domain of Cut3/SMC4 and may play a supporting
role in the DNA repair function of condensin in interphase cells
(32). Similarly, in budding yeast, the hinge region of the Smc5/
Smc6 heterodimer interacts with the non-SMC accessory proteins
Nse5 and Nse6 (59). Finally, also in budding yeast, the cohesin
accessory protein Pds5 appears to associate with the SMC hinge
domain, perhaps mediating an interaction between the head and
hinge domains of SMC1 (60). SMC conformations consistent
with direct head-hinge interactions have also been observed for
yeast SMC complexes (10).

In contrast to MukB, numerous examples of proteins with
physical and/or functional interactions with ParC have been
reported, including the DNA polymerase III holoenzyme, FtsK,
MreB, and SeqA (61–64). Marians and co-workers have clearly
shown functional significance for the interactions of Topo IV with
the first of these three binding partners (61, 62, 64). Moreover,
these workers have proposed an attractive model for their roles
in the activation of Topo IV in the center of the E. coli cell im-
mediately prior to cytokinesis, thus ensuring that the daughter
chromosomes are unlinked before cell division. The significance
of the interaction with SeqA is less clear.

Just as cell division and decatenation of sister chromosomes
are coordinated in the bacterial cell cycle, it may also be the case
that chromosome condensation, which results in the overall
movement of daughter chromosomes from the cell center to the
cell quarter positions, must be coordinated with chromosome
decatenation. However, the modest enhancement of the Topo IV
decatenation activity by MukB suggests this is not the sole func-
tion of the physical interaction between the two proteins.

Unlike ParC, MukB does not appear to be localized to the
replication fork (48, 65). Instead, MukB is found consistently
at the quarter and eighth positions of living E. coli cells, with the
exception of newborn cells under slow growth conditions, when
it is found at the cell center (65). Intriguingly, ParC foci are
occasionally observed to occupy a position closer to the quarter
positions than to the centrally located replication factory (62),
perhaps suggesting colocalization of ParC and MukB foci during
a discrete portion of the cell cycle. Alternatively, MukB may
associate with a smaller pool of ParC that is not sequestered
at the replication fork. Consistent with this notion, although high
levels of Topo IVactivity appear to be restricted to the cell center
following DNA replication, low levels of Topo IV activity are
observed in the nucleoid throughout the cell cycle (62). Indeed,
the relaxation activity of Topo IV may be required for efficient
MukB-dependent DNA packaging.

Eukaryotic condensin complexes also appear to interact func-
tionally with Topo II, the eukaryotic homologue of Topo IV. It has
been reported that the Drosophila non-SMC condensin subunit
Barren (CAP-H) interacts with Topo II, stimulating its activity
(66). Consistent with this report, depletion of the Condensin I
non-SMC subunit CAP-D2 leads to an alteration of the spatial
organization of Topo II in both Drosophila and humans, along
with a change in CAP-H levels or localization (67, 68). Moreover,
Topo II appears to be improperly localized in mitotic chromo-
somes from SMC-2 or SMC-4 depleted cell extracts (for a review,
see ref. 69). Finally, Graumann and co-workers have shown that
the overexpression of Topo IV partially rescues smc− defects in B.
subtilis (70). Given the functional similarities between MukB and
prokaryotic SMC proteins, it is attractive to propose that this ge-
netic interaction is also the result of a direct physical interaction.

Finally, as the two subunits of Topo IV are not colocalized
throughout the bacterial cell cycle (62), there may be an impor-
tant functional interaction between MukB and ParC that is inde-

pendent of Topo IV catalytic activity. The most likely role for
such an interaction is in the chromosome scaffold. In eukaryotes,
Topo II and condensin SMC subunits are abundant components
of histone-depleted mitotic chromosomes (69). Similarly, the
MukBEF complex remains stably associated with the E. coli chro-
mosome following cell lysis, suggesting that this complex also
serves a scaffolding role that organizes the bacterial chromosome
into a higher-order structure (71). Electron microscopy studies
have revealed that MukBEF complexes can aggregate to form
rosettes (72), and high-resolution structural studies suggest that
this process may occur through MukF/E mediated bridging of
MukB dimers (73).

Our observation of a robust interaction between MukB and
ParC suggests that Topo IV is also a component of this higher-
order chromosome architecture in γ-proteobacteria. Indeed, as
each dimer of MukB appears to be capable of binding two equiva-
lents of the ParC2 dimer (or ParC2ParE2 heterotetramer), our
results raise the possibility Topo IV may bridge the hinge regions
of MukB while MukE/F bridge the head domains, providing two
major sites of interaction for the formation of an ordered array
(Fig. 5). Thus, in addition to their individual roles in chromosome
segregation, the interaction between E. coli condensin MukB
and Topo IV is likely to be important for the organization of
the chromosome into a higher-order structure.

Methods
Experimental details are available in SI Text.
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