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In vertebrates, including humans, individuals harbor gut microbial
communities whose species composition and relative proportions
of dominant microbial groups are tremendously varied. Although
external and stochastic factors clearly contribute to the individu-
ality of the microbiota, the fundamental principles dictating how
environmental factors and host genetic factors combine to shape
this complex ecosystem are largely unknown and require system-
atic study. Here we examined factors that affect microbiota com-
position in a large (n = 645) mouse advanced intercross line orig-
inating from a cross between C57BL/6J and an ICR-derived outbred
line (HR). Quantitative pyrosequencing of the microbiota defined
a core measurable microbiota (CMM) of 64 conserved taxonomic
groups that varied quantitatively across most animals in the pop-
ulation. Although some of this variation can be explained by litter
and cohort effects, individual host genotype had a measurable
contribution. Testing of the CMM abundances for cosegregation
with 530 fully informative SNP markers identified 18 host quanti-
tative trait loci (QTL) that show significant or suggestive genome-
wide linkage with relative abundances of specific microbial taxa.
These QTL affect microbiota composition in three ways; some loci
control individual microbial species, some control groups of re-
lated taxa, and some have putative pleiotropic effects on groups
of distantly related organisms. These data provide clear evidence
for the importance of host genetic control in shaping individual
microbiome diversity in mammals, a key step toward understand-
ing the factors that govern the assemblages of gut microbiota
associated with complex diseases.
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Humans are born with a sterile gastrointestinal (GI) tract that is
rapidly colonized by successive waves of microorganisms until

a dense microbial population stabilizes at about the time of
weaning (1). This population is dominated by thousands of bacte-
rial species that belong to a small number of phyla (2–4). Despite
conservation at the highest taxonomic ranks, the composition of
the adult gut microbiota varies dramatically from individual to
individual, including differences in the relative ratios of dominant
phyla and variation in genera and species found in an individual
host (4). Once established, these compositional features are highly
resilient to perturbation (5). Although the mechanism of this ho-
meostasis is unknown, it suggests a “top down”model for assembly
of the symbiotic microbial community that is largely determined by
the host.
A mechanistic insight into the assembly of the gut microbiota is

immediately relevant to our understanding of complex human
diseases (6). Obesity (7), coronary heart disease (8), diabetes (9),
and inflammatory bowel disease (10) have all been associated with
composition of gut microbiota. These diseases are well understood

to be multifactorial, with both environmental and genetic compo-
nents (11–13), and the contribution of the gut microbiota is cur-
rently viewed as an environmental factor (14). Although a number
of studies have suggested that composition of the gut microbiota
may be subject to host genetic forces, existing evidence is conflicting
and confounded by the genetic diversity of vertebrate (especially
human) populations and strong environmental effects (15–19).
To study the combination of environmental and host genetic

factors that shape composition of the gutmicrobiota, we investigated
a large murine intercross model in which genetic background can be
systematically evaluated while environmental factors are carefully
controlled. In this model, we quantified variation in taxonomic
composition of gut microbiota and estimated the effects of maternal
environment and host genotype. We used quantitative trait loci
(QTL) analysis to test whether specific taxa cosegregate as quanti-
tative traits with linked genomic markers. Using sophisticated
methods for quantitative microbiota analysis and a suitably large
number of genomic polymorphic markers, we have identified sig-
nificant QTL that control variability in the abundances of different
taxa in the mouse gut microbiome. We found that gut microbiota
composition as a whole can be understood as a complex, polygenic
trait influenced by combinations of host genomic loci and environ-
mental factors.

Results
Core Measurable Microbiota in the G4 Intercross Population. The
availability of a large murine advanced intercross line (AIL) map-
ping population developed and maintained in a controlled envi-
ronment (20) gave us a unique opportunity to examine the dis-
tribution of gut microbial taxa in a population of known pedigree.
The randomand sequential intercrossing overmultiple generations
in the AIL population increases the chance of recombination; as
a result, AILs offer greater mapping resolution and narrower con-
fidence intervals compared with a typical F2 mapping population
(21). The breeding protocol that created the AIL used in our study
effectively expanded the mapping space 3-fold from that of a stan-
dard murine map (20).
The microbiota were phenotyped by pyrosequencing of 16S

rDNA, generating a detailed and quantitative estimate of the
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taxonomic composition of gut microbiota across the entire pop-
ulation of AILs. To accommodate this massive amount of data and
to estimate covariation of phylogenetically related taxa up and
down taxonomic ranks, we used the CLASSIFIER algorithm to
predict relative abundances of organisms (22). The CLASSIFIER,
which assigns taxonomic rank to sequence reads by matching dis-
tributions of nucleotide substrings to a model defined from
sequences of known microorganisms, detected 420 genera, 143
families, 53 orders, 24 classes, and 16 phyla in the 645 samples
sequenced. The relative abundances of the major phyla (Firmi-
cutes, 30–70%; Bacteriodetes, 10–40%; Proteobacteria, 1–15%;
Actinobacteria, Tenericutes, TM7, and Verrucomicrobia, 0.1–
0.5%) were very similar to those reported for cecal sampling from
murine models (7). CLASSIFIER assignments were validated by
SEQMATCH (Table S1). Many genera were found in only a few
animals; only a small number of genera were distributed quanti-
tatively across most or all animals (Fig. 1A). These taxa—ones that
are largely conserved and that vary quantitatively, and whose
abundance can be accurately estimated from pyrosequencing data
—were the focus of our analysis. Data from multiple technical
repeats of five different samples (Fig. 1B) identified a minimum of
30 sequence reads for a given taxon as the threshold for quanti-
tative repeatability. This threshold was subsequently applied as an
average of 30 reads per bin across the entire mapping population.
We define the resulting 19 genera and a total of 64 different tax-
onomic groups as a core measurablemicrobiota (CMM) (Table S2).
Although the CMM genera represent only a small portion of the
420 total genera that we detected, they account for >90% of the
sequence reads that were assigned to a genus by theCLASSIFIER,
and thus define taxa that constitute a significant portion of the
identifiable and quantifiable portion of the total microbiota. The
CMM are log-normally distributed across the mapping population
(Fig. 1C), with most genera distributed in a relatively narrow range
of relative abundances and a small number of taxa, such as Turi-
cibacter, showing a broader range (Table S2).

Litter and Cohort Have Significant Effects on Gut Microbiota Com-
position. If the relative abundances of the CMM are considered as
complex traits, then the variation represented in their log-normal
distributions would be a result of both environmental factors and
host genetics. Given the well-defined nature of this large, segre-
gating AIL population, our pyrosequencing data gave us the op-
portunity to evaluate systematically the relative contribution of
separate apparent forces, such as the maternal environment and
host genetics, a task that has not yet been accomplished in such
a population.
As expected, environmental effects were readily observed by

amixed-model analysis (Table S3), which included fixed effects for
parent of origin and sex along with random effects for cohort and
family (nested with parent of origin) and litter (nested with co-
hort). On average, cohort accounted for 26% of the variation in
taxa of the CMM (Table S4). Family and litter each accounted for
about 5%of the variation in taxa of the CMM, with over half of the
taxa showing litter effects that were significantly different from
0 (P < 0.05) (Table S3). Whereas variation between families and
variation within litter include both a genetic component and an
environmental component, variation between litters within a fam-
ily includes only an environmental component, thereby leaving
host genetics to explain significant proportions of the variation.

Composition of the Gut Microbiota Behaves as a Polygenic Trait. We
used QTL analysis to assess the degree to which host genotype
contributes to the variation in CMM across the AIL mapping
population. The proportion (Prop) of each CMM taxon at each
taxonomic rank was treated as an individual trait and tested for
cosegregation with 530 fully informative SNP markers. Although
AILs enhancemapping resolution, the complex breeding history of
our study population falsified the assumption of independence
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Fig. 1. Characterization of thegutmicrobiota across theAIL population. (A) A
heat map of the relative abundance of the top 100 genera identified in the G4

AIL population. Vertical columns represent individual animals; horizontal rows
depict genera. Genera of interest are indicated. Black indicates absent taxa.
(B) A scatterplot generated from pairwise combinations of data from technical
repeats fromfive different samples. 16S rDNA fromeach samplewas amplified
with three different sets of bar-coded primers. Processed and filtered
sequences from each barcode–sample combination were then assigned tax-
onomy by CLASSIFIER. Sequence counts for each taxonomic bin were log-
transformed and plotted for all pairwise combinations of the three repeats
for each sample. Axes are the log10-transformed values for total sequence
reads of each taxon. The red crosshairs indicate the 30-read threshold. Above
this number, correlation reaches >0.998: below this number, correlation dis-
sipates rapidly. (C) Histograms of the frequency distribution of selected
CMM taxa across the 645 animals. The histograms were plotted from log10-
transformed values of the proportion (Prop) of sequence reads for each taxon
(i.e., number of reads for that taxon/total sequence reads for a given animal).
Thus, each histogram depicts the number of animals (y axis) with log10-
transformed Prop values (x axis) for the given taxon.
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among individuals and made conventional mapping strategies
inappropriate. To overcome this problem, we used the genome
reshuffling for advanced intercross permutation (GRAIP) pro-
cedure, which estimates parental (F3 in our case) genotypes and
uses a permutation scheme to simulate sets of F3 progenitors (23).
From these progenitor sets, recombination and inheritance are
simulated, creating randomized G4 populations (n = 50,000) that
respect the original family structurewhile removing any association
between genotype and phenotype. QTL analyses are then per-
formed on the original and GRAIP-permuted populations. Locus-
specific and genome-wide empirical P values are estimated using
the distribution of P values from the permuted maps.
With the GRAIP procedure, 26 out of 64 taxonomic groups of

organisms from the CMM showed association with 13 significant
QTL (LOD ≥ 3.9; P < 0.05) and 5 additional suggestive QTL
(LOD ≥ 3.5; P < 0.1). Results for significant and suggestive QTL
and associated data are shown in Tables S5 and S6. QTL positions
relative to the genomic markers and the phylogenetic relation-
ships of the corresponding taxa are illustrated in Fig. 2. Each QTL
individually accounted for 1.6–9.0% of the total phenotypic var-
iation; average additive effects were frequently significant, and
dominance effects were especially large for the Proteobacteria.
Genetic control is exerted across the entire phylogenetic space of
the gutmicrobiota, with at least one taxon from each of the fourma-
jor phyla mapping to a significant QTL. The QTL were dispersed
over eight chromosomes, with multiple QTL mapping to MMU1,
MMU7, and MMU10 (Fig. 2). This pattern of cosegregation in
our intercross population now provides direct evidence that

composition of the gut microbiota as a whole is heritable as a
complex, polygenic trait.
Host genetic control appears to focus largely on the tips of the

phylogenetic tree. This phenomenon was particularly apparent in
diverse groups of organisms (e.g., Bacteriodetes, Clostridia,
Bacilli) in which QTL were observed only at the genus and family
levels. Phylum- or class-level QTL were apparent only in the
Actinobacteria, Erysipilotrichi, and Epsilon classes of the Pro-
teobacteria, which were each dominated numerically by a few
taxa (e.g., Coriobacteriaceae within the Actinobacteria, Turici-
bacter within the Erysipilotrichi, Helicobacter within the Epsilon)
that accounted for the QTL signal.

QTL for Host-Adapted Species of Lactobacilli. Among the CMM
organisms, only the genera Helicobacter and Lactobacillus are
known to form close physical associations with host tissues,
a characteristic that would be expected to be modulated by host
factors. Significant QTL were detected for Helicobacter, but no
QTLwere identified forLactobacillus (Table S1). Lactobacilli form
dense cell layers on the murine forestomach epithelium, and its
isolates’ adherencephenotypes havebeen shown tobehost-specific
(24, 25); L. reuteri even comprises host-adapted subpopulations
(26). This degree of host adaptation at the species level and below,
and the fact that noQTLwere detected at the genus level, led us to
speculate that it may be precisely at the lower taxonomic ranks that
host genetic control over Lactobacilli is exerted. To test for cose-
gregation at the species level, we mapped as individual traits the
relative abundance of three groups with 97% identity: L. reuteri,
L. johnsonii/L. gasseri, andL. animalis/L.murinus (Fig. S1). Indeed,
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the L. johnsonii/gasseri group segregated with two significant QTL
on MMU14 and MMU7 (Table S5), implying that intimate asso-
ciations between the host and its microbiota are subject to heri-
table genetic factors.

Some QTL Have Pleiotropic Effects on the Gut Microbial Taxa. Several
QTL appear to have pleiotropic effects on multiple taxa and
these effects can be divided into three groups. The first group
includes QTL that affect relatively closely related organisms, such
as the QTL for L. johnsonii/gasseri on MMU7 (peak at 66 Mb),
which is adjacent to the QTL for Turicibacter (peak at 73 Mb),
with overlapping confidence intervals. Colocalization of these
QTL implies that MMU7 may encode a gene that influences both
taxa, or that this region contains linked genes that, individually or
in combination, affect gut microbiota composition.
The QTL for the phylum Proteobacteria exemplifies the second

typeofpleiotropy.Here thepeakand confidence interval for aQTL
on MMU6 at 28 Mb are nearly identical to those of a Helicobacter
QTL. Thus, this single phylum-level QTL may have significant
effects on the ability ofHelicobacter to colonize themurineGI tract
along with a broader effect on the entire Proteobacteria pop-
ulation. This finding underscores the importance of testing for
cosegregation at different levels of taxonomic hierarchy. A second
QTL on MMU8 was also associated with the phylum Proteobac-
teria, distinct from all other QTL for lower taxonomic ranks of
Proteobacteria, implying that the relative abundance of an entire
Phylum can be controlled by a single genomic locus.
Finally, a third type of pleiotropy can be found for the genus

Lactococcus (phylum Firmicutes) and the family Coriobacter-
iaceae (phylumActinobacteria). TheseQTL colocalize in the 104–
123 Mb region of MMU10, with peaks at 107 Mb and 119 Mb,
respectively. These organisms, unlike those in the first two groups
of pleiotropic QTL, have a very distant phylogenetic relationship.
Nonetheless, they show a positive correlation in the data set and
have either shared gene action or overlapping QTL, with signifi-
cant dominance effects of the C57BL/6J allele (Table S5). Thus,
the effect of these colocalizing QTL was to cause positive corre-
lation between the relative abundances of Coriobacteriaceae and

Lactococcus, illustrating the significance of host genetic influence
on the population structure in the gut.

Discussion
From an essentially sterile state at birth, the gut ecosystem
develops rapidly as microbes successively colonize vacant niches.
In humans, this period of succession persists until 18–24mo of age,
when the gut microbiota attains its “adult-like” composition and
begins to behave as a highly individualized climax community (1,
27, 28). Despite tremendous diversity of the gut microbial species,
many of which are sparsely distributed between individual hosts,
recent work has revealed that a core of >50 taxa are found in
nearly half of human subjects sampled (29, 30). This finding is
consistent with the observations in our large murine population
under controlled conditions (Fig. 1A). Our discovery that the
CMM taxa, which are some of the most abundant organisms in the
GI tract, are subject to host genetic control now supports the
concept of a core microbiome as a universal feature among ver-
tebrate hosts, with the relative abundances of CMM taxa collec-
tively behaving as a complex polygenic trait. This glimpse of the
host genetic architecture underpinning gut microbiota composi-
tion was attained under the highly controlled environmental con-
ditions of our murine intercross population, and shows that these
genetic effects are broadly distributed across the dominant CMM
phyla (Fig. 2) and can influence very specific groups of organisms
or have pleiotropic effects on diverse taxonomic groups.
Establishment of this murine model and demonstration of

heritability are important steps toward experimental paradigms
that can define the mechanisms which drive the assembly of the
microbiota in individuals. As an example, we again turn to the
colocalized QTL for the Coriobacteriaceae and Lactococcus that
span a 15-Mb region on MMU10 (Fig. 2). As shown in Fig. 3A,
these QTL are closely positioned and control Gram-positive
organisms, which is consistent with several genes in this region,
namely Irak3, which modulates MyoD88-dependent peptidogly-
can (PGN)-stimulated responses of the TLR2 pathway (31), and
the two primary murine lysozyme genes, Lyz1 and Lyz2 (32). The
same interval also contains genes encoding IFN-γ (Ifng) and IL-
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22 (Il22), which play substantial roles in mucosal immunity,
where they shape T cell development and elicit antibacterial
responses in intestinal epithelial cells (33, 34). Lactococci have
only recently been observed in the GI tract through pyrose-
quencing data, but members of the Coriobacteriaceae (e.g.,
Eggerthella, Enterorhabdus) are associated with mouse models of
inflammatory disease (35, 36). The significance of this QTL is
underscored by the strong correlation of these two taxa (Fig. 3C)
due, at least in part, to the QTL effect.
The Il22 gene is duplicated in the C57BL/6J genome, making

it tempting to speculate that this duplication at least partially
accounts for the MMU10 QTL effect. Indeed, in G4 progeny
homozygous for the C57BL/6J allele of the JAX0030095 marker
(at 119 Mb, adjacent to Il22), the Coriobacteriaceae and Lac-
tococcus are both significantly less abundant (Fig. S3). Although
this result would be anticipated, it is not clear whether the du-
plicated gene, which is truncated, is actually functional (37).
Given the collective antimicrobial functions of genes within this
cluster, an alternative explanation is that cumulative allelic var-
iation in several candidate genes in this region accounts for the
overall QTL effect, as has been previously observed for several
QTL that were dissected into subregions through congenic
analysis (38, 39). The mapping power of our approach will in-
crease as we continue into later generations of the AIL (now at
G10). Moreover, new genetic resource populations that will soon
be available, such as the Collaborative Cross (40, 41), will in-
crease the genomic search space, ultimately allowing the dis-
covery of new QTL for gut microbiota and the refinement of
QTL signals to fewer candidate genes.
Fundamentally, the pattern of host genetic control that we ob-

served is consistent with the broader effects of evolutionary di-
vergence of the gut microbiota composition across many host
species (2–4). Specifically, the effects of host genetics, like those of
host speciation, involve all dominant phyla and favor selection at
the tips of the phylogenetic tree. Such patterns could be predicted
to emerge from host speciation events that involve concerted di-
vergence of complex sets of loci (e.g., different QTL) and corre-
sponding stepwise changes in themicrobial populations they control.
This could explain the evolution of highly specialized mammalian
organs (e.g., foregut, hindgut, ceca) that harness microbes for fer-
mentation of fibrous plant materials (42). By exerting top-down
selection pressure, host genetic control would subdue microbial
competition within the gut ecosystem to promote microbes that
benefit the host at the cost of their own competitive fitness. This view
is consistentwith the suggestion that theadaptive immune systemhas
specifically evolved in vertebrates to regulate andmaintain beneficial
microbial communities (43). Important insights into this question
will clearly emerge from QTL analyses across multiple host species.
Beyond the fundamental significance for host–microbe inter-

actions, demonstrating that heritable traits affect the gutmicrobiota
also may shed new light on our understanding of complex diseases.
In many ways, the gut microbiota does behave as an environmental
factor implicated in fat storage (14)or immune systemdevelopment
(44–46). However, our work shows that the gut microbiota can
now be viewed as an environmental factor that itself is controlled in
part by host genetic factors and potentially by interactions between
host and microbial genomes. This view implies that genetic pre-
disposition to complex diseases may bemanifested in part by a pre-
disposition to aberrant patterns of microbial colonization, which in
turn contribute to disease processes. This concept is reinforced by
recent studies in monogenic models showing that both aberrations
in gut microbiome composition and characteristics of complex
diseases can be caused by a single null mutation (9, 36, 47, 48).
Moreover, it is interesting to point out thatTuricibacter,Barnesiella,
and members of the Coriobacteriaceae—taxa that we have now
shown to be controlled by QTL—are associated with complex dis-
ease characteristics in murinemodels (36, 49); in each instance, the
confidence intervals of our QTL overlap known QTL for complex

diseases. For example, theQTL forTuricibacter ofMMU7overlaps
the HCS1 QTL for susceptibility to murine hepatocellular carci-
nomas (50), whereas the QTL for Coriobacteriaceae on MMU10
overlaps the Scc9 locus associated with murine susceptibility to
colon tumors (51). TheQTLonMMU1 forBarnesiella also overlaps
the conserved gene ATG16L, and this region is syntenic with the
ATG16L region of the human chromosome 2 (234Mb region) re-
cently shown to be associated with Crohn’s disease (52). Although
these discoveries were made in different genetic backgrounds, and
the confidence intervals of each QTL contain many genes, it will be
interesting to see if any of these loci have pleiotropic effects on both
microbiota abundance and disease. Conversely, for complex dis-
eases whose genetic architecture is already well defined, such as the
>200 QTL mapped for traits related to obesity (53), our discovery
nowbegs thequestionofwhether someof theseQTLcouldmanifest
their phenotypes through their effects on gut microbiome compo-
sition and, if so, which organisms they affect.
Similarly, the CMM concept can now be translated to genome-

wide association studies in humans, in which dense panels of well-
defined genomic markers can be tested for association with CMM
characteristics.Webelieve that,withhighly refineddata frommurine
models, mapping heritable genetic factors controlling gut micro-
biome composition will ultimately be an important tool for studying
disease.This strategy is also applicable to agriculturally relevant food
animals, where host genetic control is likely to be implicated in col-
onization by zoonotic pathogens as well as organisms important for
ruminal fermentations and feed intake phenotypes.

Methods
Animal Population. A moderately (G4) advanced intercross line (AIL) was bred
from reciprocal crosses between the inbred strain C57BL/6J and the ICR-derived
HR line (54). In brief, F3 breeding pairs produced multiple litters to expand
(n = 815) the G4 population, with staggered mating to reduce intergroup age
variation. To accommodate phenotyping constraints, G4 individuals were di-
vided into 19 consecutive cohorts of ∼45 mice each, with approximately even
numbers of both sexes. After weaning, G4 animals were group-caged by sex
and provided ad libitum access to a repeatable synthetic diet (Research Diet
D10001) and water. At ∼8 wk of age, mice were caged individually; the fol-
lowing day, fecal samples were collected and stored at −30 °C.

Deep Pyrosequencing of the Gut Microbiota. DNA extraction from fecal pellets
and pyrosequencing have been described previously (55). The V1-V2 region
of the 16S rRNA gene was amplified using bar-coded fusion primers with the
Roche-454 A or B Titanium sequencing adapters (see SI Methods). Of the 709
G4 animals’ samples, robust PCR products were obtained from 645 samples.
Pooled and gel-purified amplicon products were sequenced using Roche-454
GS FLX Titanium chemistry.

Pyrosequencing Data Processing Pipelines. Raw readswerefiltered according to
length and quality criteria (see SI Methods). Filter-pass reads were parsed into
sample-barcoded bins and uploaded to a publicly accessible MySQL database
(http://cage.unl.edu). More than 5.2 million quality-filtered reads were obtained
from 645 samples, an average of 8,000 reads per animal. Reads were assigned
taxonomic status with a parallelized version of the multi-CLASSIFIER algorithm
(22), and reads in each taxonomic bin were normalized as the absolute propor-
tion (Prop) of the total number of reads for each sample (see SI Methods). These
Prop values for each taxon were used as “traits” for QTL analysis.

To confirm taxonomic assignments, we randomly sampled 40,000 sequences
from genus-level bins and checked best-hits from the RDP database using
SeqMatch (Table S1). In addition, we validated the quantitative nature of the
pyrosequencing data by qPCR using Lactobacillus-specific primers (56), which
yielded highly significant correlation (r > 0.64; Fig. S2).

QTL Analysis. Prop values of microbial taxa were log10-transformed, and for
animals for which no counts were obtained for a given taxon, a value of 0.5/
total reads was log10-transformed and used. Each individual microbial “trait”
was then evaluated for location and magnitude of QTL. Complete descrip-
tions of the marker genotyping and the final set of SNPs (n = 530, with an
average spacing of 4.7 Mb) used in the QTL analyses are provided elsewhere
(20). To account for the G4 family structure (nonindependence of individu-
als), we used the GRAIP procedure (23), as described previously (20). Details
of the QTL analysis are presented in SI Methods.
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