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Abstract

Background: It is difficult to measure precisely the phenotypic complexity of living organisms. Here we propose a
method to calculate the minimal amount of genomic information needed to construct organism (effective
information) as a measure of organismal complexity, by using permutation and combination formulas and
Shannon’s information concept.

Results: The results demonstrate that the calculated information correlates quite well with the intuitive organismal
phenotypic complexity defined by traditional taxonomy and evolutionary theory. From viruses to human beings,
the effective information gradually increases, from thousands of bits to hundreds of millions of bits. The simpler
the organism is, the less the information; the more complex the organism, the more the information. About 13%
of human genome is estimated as effective information or functional sequence.

Conclusions: The effective information can be used as a quantitative measure of phenotypic complexity of living
organisms and also as an estimate of functional fraction of genome.

Reviewers: This article was reviewed by Dr. Lavanya Kannan (nominated by Dr. Arcady Mushegian), Dr. Chao Chen,
and Dr. ED Rietman (nominated by Dr. Marc Vidal).

Background
Organismal complexity is difficult to define and to mea-
sure, especially quantitatively. When DNA was discov-
ered to be the material basis of inheritance in all
organisms, it was thought that the DNA content of an
organism should correlate with its phenotypic complex-
ity, but soon thereafter the C-value paradox was found.
C-value refers to the amount of DNA contained within
a haploid nucleus, and usually equals to genome size.
Salamanders and lungfishes have the largest genomes of
120pg, while the C-value of humans is only 3.5pg [1].
C-values vary enormously among species. In animals
they range more than 3,300-fold. Variation in C-values
bears no relationship to the complexity of the organism.
The discovery of non-coding DNA in the early 1970 s
resolved the C-value paradox. Although it is still unclear
why some species have a remarkably higher amount of
non-coding sequences than others of the same level of
complexity, it was believed that the number of genes
contained in the genome, rather than the genome size,

correlated with the complexity of the organism. How-
ever, the human genome project and other model
organism genome projects revealed that there are only
about 25,000 genes in the human genome [2], while
simple organism nematode have 19,500 genes [3] and
rice even has more genes than humans, 46,000~55,000
[4]. Obviously, the number of genes bears no direct rela-
tionship to phenotypic complexity. This is called G-
value paradox.
As proteins are the ultimate bearers of organismal

structure and function, it is now believed that the diver-
sity of proteins as well as the interactions between the
proteins correlates with the phenotypic complexity. The
study of proteomics proceeds extensively after the gen-
ome projects. However, proteins are different from
nucleic acids. Many proteins are subjected to a wide
variety of chemical modifications after translation. A lot
of these post-translational modifications, such as phos-
phorylation, ubiquitination, methylation, acetylation, gly-
cosylation, oxidation, nitrosylation and protein splicing,
are critical to the protein functions. The modified pro-
teins display different physical and chemical properties
and biological functions from the unmodified. If a* Correspondence: ryanyunjiang@hotmail.com
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modified protein can be seen as a new protein, then the
size of the proteome would be much larger than the
number of genes. The number of proteins in a living
organism may never be accurately counted as the num-
ber of genes, because every modified protein can only
be individually studied. That is technically much more
difficult because different proteins have different proper-
ties. A proteomic study can become quite complex even
if the object of the study is very restricted. Therefore, it
seems difficult to calculate the phenotypic complexity of
an organism at least at the present time.
There are some studies about the problem of biolo-

gical complexity. The traditional mathematical notion
of complexity is Kolmogorov complexity, which can
be thought of as the length of the shortest message in
which the given sequence can be encoded [5]. The
complexity is minimal for a homopolymer, and is
maximal for a random sequence, in which case com-
plexity is equal to the sequence length. The later case
means the sequence cannot be simplified at all, so is
the most complex. However, Kolmogorov complexity
does not correspond to our intuitive notion of biolo-
gical complexity. The other complexity is to calculate
the Shannon ’s information entropy of a sequence
[5-8]. The complexity is the length of the sequence
subtracting the Shannon’s entropy, and is actually the
information content of the sequence. This kind of
complexity has biological meaning. The more com-
plex means the sequence is more conserved and
therefore carries more information. However, this
complexity is only the complexity of sequences, which
has nothing to do with the phenotypic complexity of
organisms.
There are three parts of information contained in an

organism’s genome: first, the information to construct
the organism; secondly, the information to constitute
DNA structures, including replicons, centromeres, telo-
meres, etc; and finally, the information for the mechan-
isms of evolution, which we do not know at the present
time. Here we take the amount of minimal information
needed to construct an organism as a measure of organ-
ism phenotypic complexity because apparently more
complex organisms should need more minimal informa-
tion to construct and simple organisms are supposed to
need less information to construct. The information to
constitute DNA structure is relatively simple and less
important, and we know very little about the mechan-
isms of evolution, so for the purpose of this article we
will not be considering these areas of information. The
information needed to construct organism, to put it
simply, is the information needed to express proteins in
time, in space, and in quantity. We actually still know
very little about this information up to now. The con-
served gene coding sequences are only part of the

information. To calculate this information, we need to
construct organism mathematically using permutation
and combination formulas based on the numbers of
proteins and cell types.

Results
The calculation of information
While some biologists may know how to calculate the
information content of sequence, most are not familiar
with how to calculate amount of information. According
to Shannon’s information concept, information is to
decrease uncertainty. The more uncertainty information
decreases, the more the information. Information is the
difference between the entropy of known and unknown.
How much uncertainty you need to decrease, how much
information you need. If you know everything, you do
not need information. The less you know, the more you
need to know, the more information you need. The
uncertainty can often be calculated as possibility. The
certainty means only one possibility. The uncertainty
means many possibilities. The more possibilities
excluded, the more the information.
Shannon’s information entropy can be calculated using

formula:

H p p= − ⋅Σ log ( )2

where p are the probabilities of events.
When the probabilities of all events are equal, H gets

the maximal value. Let N be the number of events or
possibilities, then

H
N N

N= − ⋅ =∑ 1 1
2 2log ( ) log ( )

The number of possibilities N can be calculated by
using permutation and combination formulas. H is the
entropy of unknown because you only know the prob-
abilities or possibilities. When you know everything, H
becomes 0 because there is only one possibility left with
probability 1 and the probabilities of other possibilities
are 0. The entropy of known is 0. In order to know, you
need to reduce the entropy to 0, so you need informa-
tion:

I H H H H N= − = − = =unknown known 0 2log ( )

So information I has the same value as entropy H, but
they are different concepts. Entropy is a quantity to
describe disorder. Information is a quantity to reduce
disorder. Information can be calculated based on the
entropy you need to reduce. It is easy to calculate infor-
mation if the number of possibilities can be calculated.
For example, in order to guess a random 8-digits tele-
phone number, you need information
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I = =log ( ) .2
810 26 57 bits

The probability for each event is same here. Some-
times the probability for each event may not be same,
but you do not know the probabilities, so any probabil-
ity distribution is possible and equal probability distribu-
tion is also possible. In order to know, you have to need
information to reduce the entropy from the maximum
to 0. You have to assume equal probability because in
this way you need minimal information. For example,
we need to encode a protein sequence with 10 amino
acids (all the amino acids are independent). Although
the actual amino acids distribution across the sequence
may not be equal, we do not know the distribution
information. We have to assume equal probability to
write the sequence. In this way, we need minimal infor-
mation. The formula I=log(N) can still be used. We
need information

I = ⋅ =10 20 43 2log( ) .  bits

to write a protein sequence with 10 amino acids. If we
know the sequence is MMMMMMMMMM, we need
information I=0 to write the sequence because it is
already known. If we know the sequence is a DNA
sequence, then the entropy of unknown is H = 10 log
(4), so we need information

I = ⋅ =10 4 20log( )  bits

to write the sequence. If we know it is an English
sequence but we do not know any English except 26 let-
ters, then the entropy of unknown is H=10 log(26). We
need information

I = ⋅ =10 26 47log( )  bits

to write the sequence. If we know English quite well,
we will need much less information to write the
sequence. For example, for the last character of the
sentence “I love yo_”, you may need no information to
guess the underscore is “u” if you know English, but I
need information log(26) bits to guess the character if
I do not know English except 26 letters. Even though
the distribution of each English letter is actually not
equal at all, but I do not know the probabilities of
each letter, I have to assume equal probability. I still
need information log(26) bits for each character. Dif-
ferent persons need different information to know
because they know differently. Information is the dif-
ference between the entropy of known and unknown.
How much information you need depends on how
much you have known, therefore depends on the
entropy of unknown. The more you know, the less the

entropy of unknown, and the less the information you
need. For a sequence, we can also say the information
of the sequence is the information we need to write
the sequence.
Another example is to calculate the regulatory infor-

mation of viruses. If a virus has 10 protein coding genes
and all the genes express one by one in sequence and
only express once, how much should be the regulatory
information? The probability for each gene expression is
the same, so the formula I=log(N) can be used. For the
first gene to express, you have 10 genes to choose. For
the second gene, the number of genes to choose is 9.
For the third gene, you have 8 genes to choose... For the
last gene, only one gene left. So the number of possibili-
ties for all genes expression is:

N = ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ = =10 9 8 2 1 10 3 628 800! , ,

The information needed for the order of expression is:

I N= = =log( ) log( !) .10 21 8 bits

This information is regulatory information, which is
actually composed of regulatory sequences or Transcrip-
tion Factor (TF) binding sites. Because every base pair
of DNA contains information log(4) = 2 bits, the length
of all TF binding sites should be at least 21.8/2 = 10.9
bp. A virus may use longer sequence for the binding
sites, but the minimum should be 11 bp.
The concept of information content of sequence is a

little different from the concept of information above.
The calculation of information content also needs to
use Shannon’s information entropy. To calculate infor-
mation content, you must know the probability distri-
bution of each site of a sequence, which is based on
the data of population genetics. The information con-
tent or complexity of the sequence can be calculated
as [5,7,8]:

C H H L H= − = −max known

where L is the length of the sequence, H is the
entropy of known. For example, for a sequence AXT,
the first site A is very conserved with probability 1 for
A, 0 for other base pairs. The information content of
the first site is:

C C1 4 1 2 21 1 1 0 1 4 1 2 0 2= − = − = = − = − =log ( ) log ( ) log ( )or  bits

If the second site X is actually random, any bases are
possible, the information content is: C2 = 1-1/4·log(4)·4

= 1-1 = 0 or C2 = log2(4)-1/4·log2(4)·4 = 2-2 = 0bit
If the probabilities of the third site T are 1/2 for T,

1/4 for A, 1/4 for G, the information content of third
site can be calculated as:
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So the information content of this sequence is:

C C= + + = = + + =1 0 1 4 1 25 2 0 0 5 2 5/ . . .or  bits

The more conserved the sequence, the more the infor-
mation content. The amount of information of the
sequence is determined by how much you know to
write the sequence. If you know it is a DNA sequence
and the probability distribution of each site of the
known sequence, you need information I = Hunknown-
Hknown = 6-3.5 = 2.5 bits to write the sequence AXT.
The information of the sequence is 2.5 bits.
For each genetic codon, which is composed of 3 base

pairs, the amount of information is I=Hunknown- Hknown

=3 log2(4)-0 = 6 bits. For each amino acid, because
many amino acids have more than one codon, the infor-
mation content is different. For example, proline has 4
codons and the third base pair of the codons is wobbled,
the information content of proline C=Hmax-Hknown=6-2
= 4 bits. In the same way, the information content of
Arg is 3 bits, of Asn is 5 bits, and of Trp is 6 bits.
Organisms probably know the importance of each
amino acid and how to regulate gene expressions with
codon bias, and evolved this codon system to regulate
translation efficiently and reduce the harm of mutation
of important amino acids. The redundance of informa-
tion is R=I-C. The less the information content is, the
more the redundance of information, the more the
space to silence or neutralize mutation. So Arg is more
important, more protected from mutation, and more
expression regulated than Trp. Although some amino
acids may need less information to be encoded (for
example, 2 base pairs for the amino acids with informa-
tion content less than 4 bits), organisms actually use 3
base pairs for every amino acid, so it cost organisms 6
bits genomic information to encode every amino acid.
In another word, the amount of information of every
amino acid in genome is 6 bits although there is infor-
mation redundance in the 6 bits.
Using fixed number of base pairs rather than different

number to encode all amino acids manifests that organ-
isms probably do not know the distribution of amino
acids across all protein sequences and assume equal
probability for all amino acids. In this way organisms
can change protein sequences and amino acid distribu-
tions flexibly and efficiently under changing environ-
ments. Otherwise, organisms have to change the codon
system when the distributions change. For evolution, it
is impossible for a living organism to know the future

protein sequences and the amino acid distributions
across the sequences. In order to generate any unknown
future sequences efficiently, living organisms need to
use a mechanism that can encode any protein sequences
efficiently. In fact, all organisms use a mechanism that
can reduce the maximal entropy to 0, which means
equal probability for all amino acids when encoding pro-
tein sequences. For the same reason, organisms may not
know the distribution of bases across all nucleotide
sequences, and may assume equal probability for all
bases even though the actual probability distribution
across some genomes may not be equal at all. For biolo-
gical information, most cases are like this with maxi-
mum entropy needed to be reduced and equal
probability need to be assumed by organisms, so for-
mula I=log(N) can be used to calculate the information.
Fixed number of base pairs of genetic code also sim-

plifies the reading of DNA protein coding sequence and
reduces the total information needed to encode protein.
If the lengths of codons were different, “space” would
have to be used to separate each codon in protein cod-
ing sequence, and the total mechanisms of translation
would be more complex.

The calculation of effective information of viruses
Although proteins and other molecules may contain
information beside DNA genetic information, most
information that can pass to next generation is in DNA,
so DNA directly controls enough information to con-
struct organism. All the processes not directly controlled
by DNA, including post-translational protein modifica-
tions and interactions, are the functions of proteins and
will proceed automatically when the proteins are synthe-
sized. All the information necessary for these functions
is already contained in DNA sequences. Therefore, we
do not need to take the post-translational processes into
consideration when calculating genomic information
needed to construct an organism.
The term “effective information” can be used to

describe the minimal amount of information needed to
construct an organism. The effective information actu-
ally means the genome size except “junk DNA” or
“functional fraction” of genome. There are different for-
mulas to calculate the effective information of viruses,
bacteria, and eukaryotes because they have different
genomic information structures.
Every organism has proteins, which need to be

expressed in order, in time, and in quantity. Viruses
have several to hundreds of proteins. For a complex
virus with hundreds of proteins, it may need to separate
expression of early and late proteins and maintain pre-
cise ratios of different protein products expressed simul-
taneously. Because all virus proteins are expressed only
once, we only need to consider the order of virus
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protein expressions, while the quantities of protein
expressions are controlled by the feedback through the
affinity of regulatory factors to the binding sites.
There are many possibilities for the order of virus

protein expressions and the protein sequences. If each
protein is expressed one by one, the number of possibi-
lities N can be calculated by using permutation and
combination formula:

N x n n nx= ⋅ ⋅ ⋅ ⋅ ⋅! 20 20 201 2

where x is the number of proteins, n1, n2, ... nx are the
length of protein sequences (the unit is the number of
amino acid residues).
As the probabilities for all amino acids and proteins

are equal as analyzed before, the effective information
can be calculated:

I N x n x n= = + ⋅ = + ⋅log( ) log( !) log( ) log( !) .Σ Σ20 4 32

where n are lengths of virus proteins.
The protein expressions may not be one by one in

sequence. Some proteins may be expressed simulta-
neously. In this way, organisms may use less informa-
tion to express proteins, depending on the specific
expression routes. However, this way will be inflexible
to change the routes under changing environments.
Like encoding protein sequence, organisms may possi-
bly use a mechanism that can cope with any routes
and reduce the maximum entropy to 0. The maxi-
mum entropy is the case that all proteins are
expressed one by one in sequence. In this way, organ-
isms can change the expression routes easily without
changing the mechanism of how the information sys-
tem works.
Genetic information is stored in the form of DNA.

DNA genetic code has degeneracy. In order to better
compare the value of I and the genome size, we will not
calculate the actual minimal information but the DNA
information. So the formula becomes:

I x n x n I I= + ⋅ ⋅ = + ⋅ = +log( !) log ( ) log( !)Σ Σ3 4 62 2 1

where 3 is the number of base pairs that make up a
codon. The information I1 forΣn 6 is of the protein cod-
ing sequences, because it is just the length of protein
coding genes in bits. The information I2 for log(x!) is of
regulatory sequences. The x should be the number of
protein linkage groups or operons. If all virus proteins
are in one operon or linkage group or expressed simulta-
neously, no regulatory information is necessary. Because
the number of protein linkage groups is usually
unknown, we still use the number of proteins instead.
The real I2 in viruses is very possibly equal to x log(x)
because in this way viruses can use fixed length of

regulatory sequence log(x) for every gene or operon. This
may simplify the mechanism of regulation. Although the
information I2 is calculated by assuming one by one pro-
tein expression, the result is that each gene or operon
has a regulatory sequence, which is very possibly true.
The amount of effective information of Avian infec-

tious bronchitis virus is: I=76,512 bits. The genome size
is: C=length of genome 2 = 55,216 bits. So the I value is
larger than the C value. After checking the virus gen-
ome, we find there is an overlap between genes. It’s the
overlap that makes the I value too large. When calculat-
ing the information of the overlapping part of the genes
for the second time, because these base pairs already
cannot change any more and there are no possibilities
to be excluded, the amount of information for the sec-
ond time calculation is 0. For example, sequences
AACCC and CCCGG have overlapping part CCC. The
information of the first sequence is 5 2 = 10 bits. The
information of the second sequence is 2 2 = 4 bits
because the information of sequence CCC is already
known and this part contains no new information. So
the information of sequence AACCCGG is 14 bits
rather than 20 bits. The actual value of I1 should be
exactly equal to the size of the protein coding area. For
virus genomes with overlapping genes, we use the actual
size of protein coding area instead of Σn 6 to calculate
the effective information.

Table 1 The effective information of viruses (the
numbers in parentheses are the numbers of proteins)

Virus name I (bit) C (bit)

African cassava mosaic virus(ssDNA)(9) 8,233 11,042

Australian bat lyssavirus (ssRNA)(5) 21,523 23,644

Avian infectious bronchitis virus (ssRNA)(6) 52,465 55,216

Barley yellow dwarf virus-PAV (ssRNA)(7) 9,777 11,354

Bat coronavirus Rp3/2004 (ssRNA)(13) 57,720 59,472

Beak and feather disease virus (ssDNA)(3) 3,271 3,986

Bean common mosaic necrosis virus (ssRNA)(1) 18,396 19,224

Bean golden yellow mosaic virus (ssDNA)(8) 7,878 10,464

Beet curly top virus (ssDNA)(6) 5,278 5,988

Beet mosaic virus (ssRNA)(1) 18,510 19,182

BK polyomavirus (dsDNA)(6) 9,182 10,306

Bovine coronavirus (ssRNA)(12) 60,223 62,056

Bovine polyomavirus (dsDNA)(6) 8,558 9,394

Cabbage leaf curl virus (ssDNA)(7) 7,875 10,192

Canary circovirus(ssDNA)(2) 3,240 3,904

Cestrum yellow leaf curling virus (Retro-transcribing)(7) 14,372 16,506

Human herpesvirus 1 (dsDNA)(77) 240,948 304,522

Human SARS coronavirus (ssRNA)(14) 56,411 59,502

Murine polyomavirus (dsDNA)(6) 9,544 10,594

Porcine epidemic diarrhea virus (ssRNA)(6) 54,393 56,066

Vaccinia virus (dsDNA)(223) 344,114 389,422

Zucchini yellow mosaic virus (ssRNA)(1) 18,480 19,182
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The effective information of some viruses is as follows
(Table 1).
The effective information I of viruses range from

thousands of bits to hundreds of thousands of bits. In
general, single strand DNA viruses have the minimum
amount of effective information, down to 3 thousands
bits, while double strand DNA viruses have the maxi-
mum amount of effective information, up to hundreds
of thousands of bits. Single strand RNA viruses and
retro-transcribing viruses are between the above two.
The amounts of calculated effective information of

viruses are consistent to the complexity defined by the
number of proteins or genome size. In fact, the effective
information is roughly proportional to the number of
proteins. For viruses, the advantage of using effective
information is not obvious because viruses are simple
and the number of protein coding genes or genome size
can be used to determine the complexity of viruses. For
higher multicellular organisms, due to G-value paradox,
the effective information will be more useful.

The calculation of effective information of Bacteria
The calculation of effective information of bacteria is
more complex than viruses’ because the genes may
express more than once in the growth of bacteria. There
are regulations on protein sequency and quantity, but
no regulation on the spatial deployment. The proteins
can be thought to reach their positions in a cell automa-
tically after synthesized.
A grown bacterium has roughly fixed volume, mass,

and the number of protein molecules. It needs to pro-
duce all the protein molecules in its growth. The pro-
duction of proteins in the growth is like chain reactions
controlled by complex regulatory cascades with feed-
backs. Even though the production of proteins is com-
plex, we can always think that a bacterium grows
theoretically from producing the first protein molecule
to the last molecule in sequence. In this way, we can
calculate the effective information. The problem is that
many molecules may be produced simultaneously in the
process. This may need less information. However, like
viruses, in order to change protein expressions flexibly,
organisms may use an information mechanism that can
produce protein molecules one by one in sequence to
reduce the maximum entropy to 0, which means each
protein or operon has at least one regulatory sequence.
Even if the calculated information may be more than
necessary, we can still use k value later to adjust the
information to fit to the actual amount of effective
information based on real regulatory information of
organisms.

The number of possibilities for the first molecule is:

N x n
1 20 1= ⋅

where x is the number of proteins, n1 is the length of
the first protein.
If all the molecules are independent each other, the

number of possibilities for all molecules by using per-
mutation and combination formula is:

N x y n n nx= ⋅ ⋅ ⋅ ⋅ ⋅20 20 201 2

where y is the number of all protein molecules in a
grown bacterium, n1, n2, ... nx are the length of
proteins.
The regulatory information is calculated as encoding

the order of all protein molecules in a cell, which
includes timing and volume of expression. If you know
the first 10 molecules produced are protein A, the next
100 molecules are protein B, the next 50 molecules are
protein A again, the last 200 molecules are protein Z,
you know the timing and volume of expression.
Although the chance for each protein in an organism

may not be equal, the distribution is actually unknown
for the organism because the distribution always needs
to change under changing environment. For similar rea-
son for encoding protein sequences, in order to cope
with changing environments, organisms have to use a
mechanism that can generate any distribution, including
equal distribution, to reduce the maximal entropy to 0.
This kind of mechanism provides flexibility for organ-
isms to change the quantities of certain proteins any
time to adapt the environments.
The effective information can be calculated:

I N y x n I I= = ⋅ + ⋅ = +log( ) log( ) log( )Σ 20 2 1

The effective information includes two parts: first, the
information to encode the protein sequences (I1), and
secondly, the regulatory information (I2). The formula to
calculate I1 is the same as virus’s. Converting the infor-
mation to DNA information, the calculation can be sim-
plified as:

I n nx1 6 6= ⋅ =Σ

where n is the average length of bacteria proteins,
which is 308 for all bacteria[9]. I1 should be adjusted to
the exact size of the proteins coding area if there is
overlapping of genes.
For regulatory information I2, in fact, every protein

molecule is not produced independently. A bacterium
does not once synthesize only one protein molecule, but
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a batch of protein molecules. Only the first protein
molecule in the batch is independent, the possibility is ×
kinds of protein. The other following protein molecules
are not independent. The possibilities follow the pre-
vious protein, which can only be 1. If a bacterium
synthesizes 100 protein molecules at a time, I2 is:

I y x2 100= ⋅/ log( )

It can be expected that the number of protein mole-
cules a bacterium once synthesizes may be proportional
to the average quantity of the proteins y/x, which means
the bigger the bacterium of the same structural com-
plexity, the more the protein molecules it synthesizes at
once.

I k y y x x k x x kx x2 = ⋅ ⋅ = ⋅ ⋅ =/ ( / ) log( ) log( ) log( )

where k is the average number of times a protein is
synthesized. The value of k can be estimated as 5 based
on the genomic information structure of E. coli (about
3% of E. coli genome is estimated as regulatory informa-
tion). This is equivalent to that E. coli synthesizes 67
same protein molecules on average at a time. When the
bacteria are very small, y is very close to x. The quantity
of a kind of protein molecules may be less than 5. In
order to ensure at least one protein molecule synthe-
sized at once, the formula needs to be calibrated as:

I
kx

k x y
x2 1

=
+ ⋅ /

log( )

This formula means that each protein has at least one
regulatory sequence. The average number of regulatory
sequences is k. The quantity of a certain protein is con-
trolled by the times the protein is synthesized. The
more the quantity, the more the times the protein is
synthesized, the more the regulatory sequences. The
average number of times is k. The quantity of protein
synthesized each time is not directly determined by
DNA information, but determined by the feedback
through the affinity of regulatory factors to the binding
sites. It is the number of regulatory binding sites
upstream the protein coding gene sequence that deter-
mines the quantity of the protein.
In fact, most bacterial proteins are synthesized within

the unit of operons, i.e. all the proteins in an operon are
linked. They are not independent and are synthesized
together. So the x in the formula should be the number
of the addition of all operons and independent proteins
in the genome. For example, the number of operons in
E. coli is 834 [10], with the number of independent pro-
teins, together amounts to about 2,584. The x should be
2,584 for E. coli. Because the number of operons in

most bacteria genomes is still unavailable at the present
time, we calculated I2 based on the number of proteins.
The complete formula to calculate the amounts of

information of bacteria is:

I I I nx
x

x y
x= + = +

+1 2 6
5

1 5 /
log( )

where y is the total number of protein molecules in a
bacterium. The effective information of some bacteria is
as follows (Table 2).
The amounts of effective information of bacteria range

from millions of bits to tens of millions of bits, just one

Table 2 The amounts of effective information of bacteria

Bacterium name x v(μm3) I (bit) C
(bit)

I1(bit) I2/C

Acetobacter pasteurianus 2628 1.00 5.00e6 5.8e6 4.86e6 2.6%

Acinetobacter baumannii 3351 1.15 6.39e6 7.8e6 6.19e6 2.5%

Bacillus anthracis 5300 13.27 1.01e7 1.08e7 9.79e6 3.0%

Bacillus subtilis 4176 1.51 7.97e6 8.4e6 7.72e6 2.9%

Bordetella pertussis 3436 0.0082 6.47e6 8.1e6 6.35e6 1.4%

Clostridium botulinum 3425 4.02 6.53e6 7.7e6 6.33e6 2.6%

Clostridium perfringens 3301 14.13 6.29e6 7.8e6 6.10e6 2.5%

Clostridium tetani 2373 2.26 4.52e6 5.6e6 4.39e6 2.3%

Corynebacterium
diphtheriae

2272 0.523 4.32e6 4.97e6 4.20e6 2.5%

Coxiella burnetii 1866 0.065 3.54e6 4.01e6 3.45e6 2.4%

Escherichia coli 5105 0.588 9.74e6 1.15e7 9.43e6 2.7%

Francisella tularensis
subsp.

Holarctica 1521 0.0042 2.86e6 3.7e6 2.81e6 1.3%

Haemophilus influenzae 2307 0.1413 4.39e6 3.7e6 4.26e6 3.4%

Klebsiella pneumoniae 4776 0.9813 9.12e6 1.06e7 8.83e6 2.8%

Lactobacillus delbrueckii
subsp.

Bulgaricus 1715 4.52 3.26e6 3.7e6 3.17e6 2.5%

Legionella pneumophila 2942 0.113 5.60e6 6.8e6 5.44e6 2.4%

Mycobacterium avium 4634 0.9043 8.84e6 9.7e6 8.56e6 2.9%

Mycobacterium
tuberculosis

3596 0.785 6.86e6 8.7e6 6.65e6 2.4%

Mycoplasma pneumoniae 689 0.00818 1.30e6 1.6e6 1.27e6 1.8%

Neisseria meningitidis
serogroup A

1909 0.268 3.63e6 4.37e6 3.53e6 2.3%

Pseudomonas aeruginosa 5892 0.097 1.12e7 1.30e7 1.09e7 2.6%

Salmonella enteritidis 4206 1.154 8.02e6 9.3e6 7.77e6 2.7%

Salmonella typhimurium 4423 0.2943 8.43e6 9.7e6 8.17e6 2.7%

Shigella dysenteriae
serotype 1

4419 0.848 8.43e6 1.05e7 8.17e6 2.5%

Staphylococcus aureus 2660 0.5233 5.07e6 5.6e6 4.92e6 2.7%

Streptococcus
pneumoniae

2386 0.3815 4.54e6 4.1e6 4.41e6 3.2%

Streptococcus pyogenes
serotype M1

1696 0.5233 3.22e6 3.7e6 3.13e6 2.4%
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order of magnitude higher than viruses’. The regulatory
information, except very small bacteria and mycoplasma,
accounts for 2~3% of the genome. The I values correlate
well with the bacterial complexity defined by number of
protein-coding genes, genome size, and volume. Bacter-
ia’s I values are higher than virus’s. This is also consis-
tent with our knowledge about complexity.
The only thing that looks like an anomaly is that the I

value of Haemophilus influenzae and Streptococcus
pneumoniae exceeds the C value. Checking the average
length of the proteins, we find that the actual protein
average length of Haemophilus influenzae is only 235 (<
308) and the actual size of protein coding area is only
3.26e6 bits, while the calculated I1 value is 4.26e6 bits,
which already exceeds the C value. The corrected actual
I value of Haemophilus influenzae is 3.39e6 bits,
accounting for 91.6% of C value. Similarly, the average
length of proteins of Streptococcus pneumoniae is 250,
which is also much lower than the average value of bac-
teria. The corrected actual I value of Streptococcus pneu-
moniae is 3.77e6 bits, accounting for 92% of C value.
Therefore, if precise I1 value is needed, it should be
directly calculated from the actual size of protein coding
area, which is: I1 = C•%coding

The calculation of effective information of eukaryotes
While the calculation of effective information of unicel-
lular eukaryotes is the same as bacteria’s, the calculation
of I of multi-cellular organisms is much more complex
because multicellular organisms not only need to pro-
duce all proteins to build different cells, but also need
to put all the cells in spatial structures to build the
organisms.
The number of possibilities for all the cells put

together and the effective information can be calculated
by using permutation and combination formula simi-
larly, but the equation is very long and the explanation
can be quite complex. It is better to separate the effec-
tive information directly to three parts and calculate
separately: first, the information to encode all the pro-
teins (I1); secondly, the information to produce all the
differentiated cells (I2); and finally, the information to
construct the spatial structures (I3).
The information to encode all the proteins is the size

of the protein coding area in the genome, like bacteria’s
I1. There are also overlapping genes in eukaryotic gen-
omes, and the overlapping genes account for consider-
able weight [11]. So these overlapping parts must be
adjusted according to the actual size of protein coding
area, otherwise these parts will mix with other parts of
information and can cause confusing results.
If the genome is not yet sequenced, this information

can be calculated:

I n g1 6= ⋅

where g is the number of protein coding genes, n is
the average length of proteins of eukaryotes, which is
448 [9]. In this way, the calculated I1 is usually larger
than the actual size of protein coding area.
To produce all the differentiated cells, proteins need

to be chosen from the complete proteome. For one type
of cells, the algorithm is similar to bacteria’s,

I k x x x xk
2 2

2= ⋅ ⋅ =log( ) log( ).

Let x be the size of complete proteome (number of
functional proteins before post-translational modifica-
tions), let t be the average size of cellular proteome of
differentiated cells, cn is the number of cell types, a1, a2,
a3,..., acn are the diversities of differentiated cellular pro-
teomes from t. Because many genes expressed in the dif-
ferentiated cells are the same, t+a1+a2+a3+...+acn=x,
then the information to produce diverse differentiated
cells is:

I C t C t C tx
t a t a k

x t a
a a k

x t a a
a a k

2
1 1 2

1

2 2 2

1 2

3 3 2= ⋅ ⋅ ⋅ ⋅ ⋅+ +
− − − − −log( ( ) ⋅⋅ ⋅ ⋅ ⋅

= + ⋅ + + + ⋅ ⋅ ⋅ + ⋅ =∑
C t

C k t a a a t

a
a a k

cn

cn

cn cn 2

2 1 2log( ) ( ) log( ) log(( ) log( )C k x t+ ⋅ ⋅∑ 2

where k2 is a coefficient. The formula means choosing
t+a1 from × to construct the first type of cell, and
choosing a2 from x-t-a1 to construct the second cell,
and so on. The possibilities for every protein molecule
in all cell types are t, and the numbers of free protein
molecules are proportional to the diversities of cellular
proteome. As the calculated value of Σlog(C) is actually
quite small and can be negligible, the information to
produce diverse differentiated cells is:

I k x t2 2= ⋅ ⋅ log( )

For unicellular eukaryotes, the calculation of I2 of is
the same as bacteria’s:

I k x x2 1= ⋅ ⋅ log( )

where x is the number of proteins. k1 is estimated as
30 based on the information structure of Saccharomyces
cerevisiae (Baker’s yeast) genome to make the amount of
effective information account for about 80% of the gen-
ome. This is equivalent to that a yeast cell synthesizes
average 1000 protein molecules at once.
Because there are regulations between the cells of

multicellular organisms, k2 can be larger than k1, esti-
mated as 110, which is equivalent to a cell synthesizes
average 820 protein molecules at a time.
The average number of genes expressed in specific tis-

sues is about 5000. The proteome size of a specific
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tissue ranges from a few thousand to tens of thousands.
Because a tissue contains diverse cells, the proteome
size of one differentiated cell may be a few thousand.
Because most proteome data are still unavailable and
are confusing with the proteome containing post-trans-
lational modifications, transcriptome data from clustered
EST can be used instead. The number of unique
sequences of clustered ESTs from human breast tumors
is 6501[12], so we estimated t=6500 as the average cellu-
lar proteome size of differentiated cells.

I x x2 110 6500 110 6500= ⋅ ⋅ = ⋅log( ) log( )

With all the differentiated cells available, organism
spatial structure can be constructed. Let z be the total
number of cells in an organism.
In the process of organismal development, cell divi-

sions are controlled by complex regulatory signals. We
can always think that cells are produced from the first
one to the last one in sequence. When the last cell is
produced, the development ends and the organism
reach its adult weight. In this way, information can be
calculated. Although some cells may be produced simul-
taneously, organisms may use an information mechan-
ism to reduce the maximum entropy to 0, which is the
case that all cells are produced one by one in sequence,
in order to keep the flexibility to change the cell devel-
opment routes easily. Even if the calculated information
may be more than necessary, it can still be adjusted by
k3 value later to fit to the actual amount of information.
Like cell division, there is only one appropriate posi-

tion between two adjacent cells. In this way, the spatial
structure can be easily constructed. Let us start from
deploying the first cell. For the first cell, the possibility
is cn, i.e. there are cn kinds of cells to choose. For the
second cell, the possibility is cn 1, i.e., there are cn kinds
of cells to choose and the cell can only be deployed
adjacent to the first cell (divided from the first cell). The
possible position is only 1. For the third cell, the possi-
bility is cn 2, i.e. there are cn types of cell to choose and
the cell can be divided from the first cell or the second
cell. There are 2 positions to choose. When deploying
the last cell (the zth cell), the possibility is cn (z-1), i.e.
there are cn types of cell to choose and the cell can be
divided from any (z-1) cells. There are z-1 positions to
choose.
If all cells are independent, the number of possibilities

to produce and deploy all cells can be calculated using
permutation and combination formula:

N cn z= ⋅ −( )!z 1

The information is:

I cn z cn zz
3 1= ⋅ − = ⋅ +log[ ( )!] ~ log( ) log( !)z

The chances for different cell types and different posi-
tions may not be equal, but they are unknown. Organ-
isms have to use mechanisms that can generate all
possible distributions of cells and positions, including
equal distribution. This kind of mechanisms provides
flexibility for organisms to change the quantities and
positions of cells easily and efficiently to adapt the
environments.
When z is larger than 105, log(z!) is very close to zlog

(z) (> 90%). In order to simplify the calculation, log(z!)
is replaced by zlog(z). When z is small, log(z!) is still
used.

I z cn z z z cn z3 = + = +log( ) log( ) [log( ) log( )]

z can be calculated from the average adult body
weight.
In fact, not all the cells are generated and deployed

independently. Usually a batch of cells are generated
and deployed at once. Only the first cell of the batch is
free. The possibilities of cells afterward can only be 1. If
all the cells of one type are averagely generated by one
time, then

I z z cn cn z cn cn z3 = ⋅ + = ⋅ +/ ( / ) [log( ) log( )] [log( ) log( )]

The actual situation is that all the same cells are gen-
erated and deployed by many times.

I k cn cn z3 3= ⋅ +[log( )] log( )]

where k3 is the average number of times one type of
cells is generated. cn should be the number of cell types
or the number of linkage groups. In fact, in the organs
or tissues of multicellular organisms, many cells are
linked, causing repetitive pattern in the organ or tissue.
So the numbers of cell types cn in the formula should
be replaced by the number of linkage groups. There is
no regulatory information needed for genes or cells
inside a linkage group. However because the numbers of
linkage groups in organisms are still unknown, we cal-
culated I3 based on the number of cell types.
The formula also means each type of cells has at least

one regulatory sequence. The average number is k3. The
quantities of each type of cells are controlled by the
number of times this type of cells is generated. The
more the quantity, the more the times this type of cells
is generated. The quantity of cells generated each time
is not directly determined by DNA information, but by
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the cellular feedback signals. It is the times of generating
that determines the quantities of each type of cells.
k3 can be estimated as 2.5e4, which is equivalent to

that human body averagely generates and deploys 4.2e7
cells at once, that is about 0.012g. The k3 value is deter-
mined by the information structure of Schistosoma man-
soni and Caenorhabditis elegans. Because C. elegans is
very small and the I3 of which is almost negligible, and
Schistosoma mansoni is bigger than C. elegans but the
phenotypic complexity should be a little bit less than C.
elegans, therefore we adjusted the k3 value to make the I
value of Schistosoma mansoni close to, but a little bit
lower than the value of C. elegans. So we take k3 value
as 2.5e4.
When z is very small, z is close to cn. That may make

organisms once generate less than one cell. To avoid
this kind of error, the formula can be calibrated as:

I
k cn

k cn z
cn z3

3

31
= ⋅

+ ⋅
+

/
[log( ) log( )]

The final formula to calculate the effective information
of Eukaryotes is:

I ng x
cn

cn z
cn= + ⋅ + × ⋅

+ × ⋅
+6 110 6500

2 5 10

1 2 5 10

4

4log( )
.

. /
[log( ) log(zz)]

The x in the formula is the size of complete transcrip-
tome. Because the size of proteome before post-transla-
tional modifications is still unknown, we use the size of
complete transcriptome instead.
The sizes of complete transcriptome come from clus-

tered EST data. As the number of genes is quite differ-
ent from the number of clustered EST, it is a problem
how to use the data from EST databases. There are a
few databases having EST fragments and mRNA
assembled and clustered to reduce the redundancy for
gene discovery, but different databases give different
results. For example, the number of human UniGene
clusters is about 120,000, while the number of unique
sequences of human EST clusters in The Gene Index
project (TGI) of Harvard University is 1,080,000 [13,14].
The difference between the two databases is supposed
to be that TGI separated alternative splicing sequences
and tried to produce tentative consensus, while UniGene
put all the overlapping sequences together in one clus-
ter. However only knowing this does not help match the
data from the two databases. We still did not know the
actual size of human complete transcriptome.
Even in one database, the data are often conflicting

each other. For example, the number of human Uni-
Gene clusters is about 120,000 [15]. UniGene means
unique gene, and is supposed to cluster the transcribed
ESTs and mRNA into unique genes. So the number of

UniGene clusters should be equal to the number of
genes. However, there are only about 25,000 genes in
human genome, while the number of UniGene clusters
that contain only one sequence is more than 40,000.
There must be errors inside. Zhang et al analyzed the
results of UniGene clusters [16] and pointed out that
most narrowly expressed transcripts (NETs), whose
expression is confined to a few tissues, resemble inter-
genic sequences, and most NETs are singleton clusters
containing only one EST or mRNA sequence. So those
singleton clusters seem unreliable. The sequences in
these clusters may come from non-coding RNA, con-
tamination of pre-mRNA, genomic DNA, non-canonical
introns or foreign sources, or simple sequencing errors.
Owing to the establishment of other specialized data-

bases, we can resolve this problem, at least the size of
the human transcriptome. The Alternative Splicing Pre-
diction Data Base (ASPicDB) in Italy has predicted
almost all human alternative-splicing transcripts and has
them listed in detail [17]. They analyzed 18,193 human
genes and found 319,745 transcripts, which on the
whole can represent the size of complete transcriptome
because their data correspond quite well with the data
from TGI.
In TGI’s data, 730,000 of 1,080,000 human unique

consensuses are singleton. The total number of human
genes is about 25,000, among which 35~60% contain
alternative splicing, so the number of singleton should
be about 10,000~15,000. Obviously, most sequences in
the singleton are the result of errors. The real singleton
sequences perhaps are already included in the tentative
consensuses (TC). So we discarded all unique singletons
and only count the number of TCs and obtain the result
of 328,301. As ASPicDB only analyzed 18,193 genes,
while human beings have 25,000 genes. If other genes
do not have alternative splicing, then the size of total
transcriptome should be 326,552, which is quite close to
the result of TGI. It is a pity that only human data in
ASPicDB is fairly comprehensive, the data of other spe-
cies are quite sparse and cannot be used in the same
manner.
Because TGI is not updating the data regularly and

many data was released in 2006, which may be out of
date, so we use UniGene data as supplement. In order
to take advantages of both UniGene and TGI, we took
the average value of the two databases as the complete
transcriptome size x.
We discarded all the error prone clusters in UniGene

that contain only one sequence. Having the number of
the remaining UniGene clusters multiplied by possible
average number of alternative splicing, we could match
the two databases. For example, the number of human
UniGene clusters after the treatment is 82,718. After
multiplied by the possible number of alternative splicing
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4, we got 330,872, which is close to the result of TGI.
The UniGene result of mouse is 56,365 4 = 225,460,
which is close to TGI result 210,249. We supposed the
average number of alternative splicing for mammals is
4, for birds is 3, for fishes, amphibians and chordates is
2, for other animals is 1.5, for plants is 2~2.5, to make
the results from the two databases as consistent as pos-
sible. We also referred to other databases.
The sizes of complete transcriptome of some eukar-

yotes are as follows (Table 3). The species were chosen
for two reasons: first, we chose the species with higher
numbers of UniGene clusters among the close species
because the data are still incomplete; secondly, the spe-
cies should have TGI data or other data sources. Plant
species were chosen only to illustrate that this method
can apply to plant.
In general, the results from the two databases are con-

sistent. Some results of mammals obtained from TGI
are lower than UniGene’s. It’s probably because some of
TGI’s data are too old, or because there are real differ-
ences in the average number of alternative splicing
among mammals, but if so, it will be difficult to under-
stand the huge difference between mouse and rat. At
the present time, although the transcriptome data

(clustered EST data) of many species are available, most
of them are incomplete.
The TGI result of Danio rerio is too high. We cannot

explain why. Perhaps those clusters contain too much
gene fragments. The data of UniGene and TGI are far
from perfect because they cannot correspond to the
number of genes. Only if every transcript corresponds to
every gene, like ASPicDB, the data can be more reliable.
The data of the number of cell types of eukaryotes can

be calculated. We know the number of cell types of
adult human body is 210 [18]; sponges have 12 kinds of
cell types [19]; the simplest multicellular organism Tri-
choplax adhaerens has 4 types of cell [20]; C. elegans
has 27 types of cell [21]. Because the tanscriptome size
of specific cells are relatively fixed, it can be anticipated
that the larger the size of complete transcriptome of an
organism, the more the number of cell types. Based on
the data of Valentine’s [22], a linear relationship
between the number of cell types cn and the size of
complete transcriptome x can be drawn (Fig 1). The
number of cell types can be roughly calculated as:

cn x= −0 00273 11000. ( )

Table 3 The size of transcriptome of eukaryotes

Species name UniGene count Alternative splicing UniGene results TGI results Other sources Transcriptome size

Homo sapiens 82,718 4 330,872 328,301 326,552 [17] 328,575

Mus musculus 56,365 4 225,460 210,249 217,855

Rattus norvegicus 40,563 4 162,252 76,570 119,411

Bos taurus 33,285 4 133,140 90,392 111,766

Sus scrofa 42,652 4 170,608 110,744 140,676

Gallus gallus 28,917 3 86,751 70,379 85,486 [31] 80,872

Xeneopus laevis 30,638 2 61,276 56,494 58,885

Xenopus tropicalis 34,428 2 68,856 69,590 69,223

Danio rerio 37,236 2 74,472 91,901 83,187

Oncorhynchus mykiss 24,527 2 49,054 40,320 44,687

Salmo salar 29,291 2 58,582 53,602 56,092

Ciona intestinalis 24,757 2 49,514 49,016 49,265

Branchiostoma floridae 13,294 2 26,588 24,020 [32] 25,304

Strongylo. Purpuratus 16,101 1.5 24,152 21,290 [33] 22,721

Aedes aegypti 17,279 1.5 25,919 25,627 25,773

Drosophila melanogaster 15,090 1.5 22,635 36,335 29,485

Lxodes scapularis 14,084 1.5 21,126 20,932 21,029

Caenorhabditis elegans 17,736 1.5 26,604 27,118 26,861

Schistosoma mansoni 9,909 1.5 14,863 19,291 17,077

Hydra magnipapillata 9,156 1.5 13,734 15,510 14,622

Zea mays 51,520 2 103,040 112,156 106,598

Triticum aestivum 32,260 2.5 80,650 93,508 87,079

Oryza sativa 34,913 2.5 87,283 82,830 85,057

Vitis vinifera 18,266 2 36,532 34,154 35,343

C. reinhardtii 8,162 2 16,324 15,761 16,043

S. pombe 5,206 5,206
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There is not yet evidence if the formula apply to
plants, but the cn of plants are calculated using the for-
mula in this paper just to illustrate rough range of effec-
tive information of plants.
With all the data available, the effective information of

eukaryotes can be calculated (Table 4). If the genomes
of some organisms are not yet sequenced, the numbers
of genes are estimated according to the close species
(marked by * sign). Because eukaryotes also have the
problem of gene overlapping, it is better to find the
exact size of protein coding area to calculate I1. Some-
times the size of protein coding area is quite different
from the result calculated from the number of genes.
For unicellular organisms, if the transcriptome sizes x
are not available, then x are the numbers of genes.
After attentive observation of the I values, one can

clearly see that the results demonstrate a definitive cor-
relation between the amounts of effective information
and the organismal phenotypic complexity defined by
biological taxonomy and evolutionary theory. C. pombe
has the lowest I value, while human beings have the
highest. Nematode, insects, amphioxus, fish, frog, bird
falls in between. The I values of eukaryotes range from
tens of thousands to hundreds of thousands of bits,
which are just one order of magnitude higher than pro-
karyotes’. These results are also consistent to our intui-
tion about organismal complexity, whilst the number of
genes is a poor index here. P. tetraurelia has quite high
number of genes 39,642, but is actually a simple single
cellular organism with low I value. So the effective infor-
mation is a much better index of organismal phenotypic
complexity.

Discussion
The I value of Danio rerio (Zebra fish) is too high because
the x is too high (higher than chicken’s). The effective
information of Ciona intestinalis accounts for 69% of the
genome (almost all the non-repetitive sequence), that
means the genome is quite compact and there are less
junk DNA, therefore it will be easier to study the genomic
information structure of this organism.
The x should be the number of transcripts that pro-

duce functional protein sequences. One transcript
should correspond to one protein sequence, and vice
versa. Every UniGene cluster should correspond to one
gene and every TC in TGI should correspond to one
protein sequence, and vice versa. ASPicDB uses a better
algorithm because it makes all transcripts correspond
with genes and proteins very well. The value of x is very
important because the effective information is roughly
proportional to x. The diversity of proteins before post-
translational modifications can reflect the complexity of
organisms.
The number of cell types was calculated with all neu-

ron cells as one type. Some argued that neurons should
be counted as different kinds of cells because they are
functionally differentiated. It is difficult to count the
number of neuron types at the present time. Perhaps in
the future, a more objective and high throughput
method can be found to count the number of neuron
types. This may explain why the number of cell types
reaches saturated at mammal level.
Among the alternative splicing isoforms in organism

transcriptome, how many are functional is still disputa-
ble. Some alternative splicing may cause premature ter-
mination codon (PTC); and the alternative isoforms
with PTC can be potentially targeted for degradation by
the nonsense mediated mRNA decay (NMD) surveil-
lance machinery. According to ASPicDB, the number of
transcripts of the human genome is about 320,000,
among which only 30,000 may generate PTC+ isoforms.
If this part is discarded, there will be no important effect
on the calculation. As PTC related data of most organ-
isms are still unknown, this part is not taken into con-
sideration at this time.
There is an implicit assumption in this paper: all pro-

karyotes have the same k value and so do eukaryotes. It
needs to be verified for this assumption to hold. The
exact values of k can be determined when the genomic
information structures of model organisms are comple-
tely clear. For example, when the genomic information
structures of C. elegans are completely known, the value
of k2 can be completely determined. When the genomic
information structures of C. intestinalis are known, the
value of k3 can be more precisely determined.

Figure 1 Cell-type counts of animals plotted against the
complete transcriptome size. The number of cell types cn
increases linearly with x, until reaching saturation at mammal’s 210.
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The information contained in I2 and I3 cannot be
included in the sequences of regulatory proteins. I2 is
composed of regulatory sequences or regulatory factor
binding sites. I3 may be composed of regulatory non-
coding RNA sequences.

Conclusions
It is clear that the effective information increases along
with the increase of organismal phenotypic complexity
defined by taxonomy, evolution, and intuition. The sim-
pler the organism, the lower the I value. The more com-
plex the organism, the higher the I value. The effective
information in viruses is between 103~105 bits, while in
bacteria is between 106~107 bits, and in eukaryotes
between 107~108 bits. For multicellular organisms, the
effective information increases from 4.68e7 bits of placo-
zoa to 8.38e8 bits of human beings. Worm, insects,
amphioxus, fish, frog, bird falls in between. These results
are consistent to other observations with the number of
cell types [22], and the number of miRNA families [23].
Aburomia et al calculated the morphological complexity

of 21 extant higher-order chordate groups based on the
presence or absence of 479 morphological characters
[24]. Their results are consistent to ours. Therefore, the
effective information can be used as a quantitative mea-
sure of organismal phenotypic complexity from the sim-
plest viruses to the most complex human beings. While
limited by the incomplete data presently available, some
results may not be so accurate, but the approximate
range will remain true. When data become more com-
plete and accurate, more precise calculation can be
conducted.
Studies have reported increasing morphological com-

plexity in multiple parallel lineages of the Crustacea
[25]. When the phenotypic complexity of more organ-
isms can be precisely calculated as effective information,
it will be easier to study the evolution of organismal
complexity.
The results of effective information of mammals are

also consistent to the recently published article regard-
ing the amount of constrained sequence in genome
shared between eutherian mammals [26]. The

Table 4 The amounts of effective information of eukaryotes

Species name x W(g) Gene or I1 I (bit) C (bit) I/C

S. pombe (yeast) 5,206 9.5e-11 1.4e7bits[34] 1.59e7 2.76e7[35] 58%

S. cerevisiae (yeast) 5,570[36] 9.5e-11 1.7e7bits[34] 1.91e7 2.42e7[37] 79%

C. reinhardtii (green alga) 16,043 9.5e-11 3.3e7bits[34] 3.97e7 2.4e8[38] 17%

P. tetraurelia(ciliate) 39,642[39] 1.0e-7 2.2e7bits[34] 4.02e7 1.44e8[34] 28%

T. adhaerens(placozoa) 13,000* 1.57e-10 2.65e7bits[34] 4.68e7 9.8e7[20] 48%

H. magnipapillata(hydra) 14,622 4.0e-4 11,648* 5.67e7 2.3e9[34] 2.5%

S. mansoni(trematode) 17,077 9.5e-3 3.0e7bits[34] 6.59e7 7.6e8[34] 9.7%

C. elegans(nematode) 26,861 3.14e-7 4.97e7bits[34] 8.71e7 2.0e8[37] 43%

D. melanogaster(fly) 29,485 1.96e-3 3.9e7 bits[34] 1.09e8 3.6e8[40] 29%

L. scapularis(tick) 21,029 1.63e-2 20,467[34] 1.05e8 4.2e9[41] 2.5%

A. aegypti(mosquito) 25,773 0.02 15,419[42] 1.08e8 2.7e9[42] 4.0%

S. purpuratus(sea urchin) 22,721 52.3 23,300[43] 1.27e8 1.6e9[43] 7.9%

B. floridae(amphioxus) 25,304 0.15 21,900[44] 1.27e8 1.04e9[44] 12%

C. intestinalis(sea squirt) 49,265 15 4.2e7bits[34] 2.20e8 3.2e8[45] 69%

O. mykiss (fish) 44,687 10k 25,000* 2.48e8 5.38e9[46] 4.6%

Salmo salar(fish) 56,092 5,500 25,000* 3.02e8 5.97e9[46] 5.1%

Danio rerio (fish) 83,187 0.96 6.3e7bits[34] 3.72e8 2.8e9[37] 13%

X. laevis (frog) 58,885 200 30,000* 3.14e8 7.02e9[46] 4.5%

X. tropicalis(frog) 69,223 25 28,000[37] 3.45e8 3.4e9[37] 10%

G. gallus(chicken) 80,872 1000 6.59e7bits[47] 4.13e8 2.0e9[37] 21%

Bos Taurus (cow) 111,766 1300k 22,000[37] 5.28e8 6.0e9[37] 8.8%

R. norvegicus (rat) 119,411 300 9.35e7bits[47] 5.09e8 5.6e9[37] 9.1%

Sus scrofa (pig) 140,676 100k 22,000* 5.49e8 5.4e9[48] 10%

Mus musculus(mouse) 217,855 25 1.0e8bits[47] 6.34e8 5.0e9[37] 13%

Homo sapiens(human) 328,575 65k 9.0e7bits[47] 8.38e8 6.4e9[37] 13%

Vitis vinifera(grape) 35,343 500 23,335[34] 1.89e8 9.3e8[34] 20%

Oryza sativa(rice) 85,057 100 6.0e7bits[34] 4.10e8 8.4e8[37] 49%

T. aestivum(wheat) 87,079 100 48,000* 4.89e8 3.38e10[49] 1.4%

Zea mays(maize) 106,598 1000 32,000[37] 4.93e8 5.6e9[37] 8.8%
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constrained sequence means the sequence under func-
tional constraint. The total amount of constrained
sequence in rodents is estimated as 260Mb (5.2e8 bits),
which is close to 5.09e8~6.34e8 bits effective informa-
tion of rat and mouse. 300Mb (6.0e8 bits) of human
genome is estimated under functional constraint. This is
also close to 8.38e8 bits effective information of human.
For fruit fly, the amount of constrained sequence is esti-
mated as 55.5~66.2Mb (1.1 ~ 1.32e8 bits), which is also
close to 1.09e8 bits effective information. Therefore, the
effective information can be used as an estimate of func-
tional fraction of genome.

Materials and Methods
The genomic information of viruses, bacteria, and some
eukaryotes can be found at GenBank. To access the
GenBank, go to http://www.ncbi.nlm.nih.gov/sites/
entrez?db=Genome&itool=toolbar. Input the name of
the organism in the search bar and search. Then click
the name again in the result page. Click the genome
sequences, you can get the genome information of the
organism, including number of genes, number of protein
coding, percentage of coding, etc. What we need is the
number of protein coding, which does not include RNA
genes and pseudogenes. The size of protein coding area
can be calculated as: I1=length %coding 2. The genomic
information of all sequenced organisms can be obtained
in this way. For the organisms with chromosome map-
ping, sometimes the statistic information of the chromo-
some sequences cannot be obtained directly. You have
to click the mitochondria sequence first, and use the
links in the results page to other genome sequences, to
enter the statistic information pages of the chromosome
sequences. The sizes of protein coding areas of some
eukaryotes can be found in this manner, but some
eukaryotes do not have percentage of coding data.
The value of y is calculated by bacterium volume v

multiplying 16% as the weight of proteins, and divided
by protein molecule average weight q.

y v q

q e e

= ⋅
= ⋅ − = −

16

308 128 18 6 02 23 5 628 20

/

( ) / . .

where 128 and 18 is the mean molecular weight of
amino acids and water respectively, 6.02e23 is the num-
ber of molecules of one mole.
The data for x comes from the genome database of

GenBank. The data for volumes of bacteria can be
found at website: http://www.ionizers.org/Sizes-of-Bac-
teria.html. The volumes of bacteria can be calculated
based on rod lengths and rod or coccus diameters.
Given the average cell volume v of multicellular

eukaryotes as 300 μm3, the total cell number z of an

organism is: z = w/v = (w/3) 1010, where w is the weight
of the organism.
The data of UniGene can be found at website: http://

www.ncbi.nlm.nih.gov/sites/entrez?db=UniGene. On the
homepage of UniGene, you can see the number of Uni-
Gene clusters of diverse organisms. Click on the organ-
ism name and enter the page of statistic data, you can
see “Final Number of Clusters” and “Histogram of clus-
ter sizes”. With the number of total sets subtracting the
number of cluster sizes with only one sequence, you can
obtain the number of UniGene clusters.
TGI’s data can be found at website http://compbio.

dfci.harvard.edu/tgi/tgipage.html. Click on the organism
names, you can enter the database of that organism.
There are statistical data for every organism. Only the
number of TC sequences is what we need. The single-
ton data can be ignored.
Alternative splicing data can be found at http://t.cas-

pur.it/ASPicDB/. There is statistic data of human alter-
native splicing on the homepage, including number of
genes, transcripts, etc. Although there are also alterna-
tive splicing data of other species, they are not yet com-
plete enough. You can also obtain the numbers of genes
expressed in a specific tissue from this database. In the
advanced search page, you can search genes with differ-
ent specific tissue names in the search bar, and then
you can get the number of genes. We had these num-
bers averaged and got about 5000. The database does
not give the data of transcripts expressed in different tis-
sues; otherwise the average size of transcriptome t can
be obtained this way.
The data of average adult weights of eukaryotes are

calculated based on the body sizes, which can be found
or estimated from various sources.
All the calculation can be conducted by simple Perl

scripts, which are available on request.

Reviewers’ comments
Reviewer #1: Dr Lavanya Kannan (nominated by Dr.
Arcady Mushegian) and Dr. Arcady Mushegian
The paper presents a method to calculate the phenoty-
pic complexity of organisms. The phenotypic complexity
of an organism is a measure of uncertainty associated
with the size of the genome sequence, and is mathema-
tically defined as the information entropy of the system.
The amount of effective genomic information needed to
produce a gene/protein sequences from a random
sequence is at least the information entropy. The
approach uses permutation and combination formulas
to model the information needed to encode proteins for
simple organisms like viruses, bacteria and other single
celled organisms; and also extends the method to com-
pute the information needed to produce differentiated
cells and to construct spatial structures formed by the
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cells in higher organisms. The approach is not without
interest, but several questions need to be addressed.
1. The main question is whether the complexity esti-

mates given by the computations in this manuscript are
any better than simply the number of protein-coding
genes. Examining the I values for various species, from
viruses to higher eukaryotes, one gets an impression
that I is roughly proportional to gene numbers. Is this
the case or not? If yes, what is the advantage of using I,
and if no, then the relationship between the two is
worth discussing in some detail.
2. In the calculation of I =Σn 6 for viruses (which is

also I1 for all the higher organisms discussed), where Σn
is the summation of the lengths of all protein sequences,
the authors make the following note: I is the same as
the size of the protein coding area in the DNA
sequence. It would be helpful if this equality may be
explained. This paragraph, as many others, suffers from
simplistic explanation of biological phenomena. In p.4:
\...there are no regulations of quantity of gene products.
Viruses only need to produce their proteins one by one
in order.” - this is not true, most if not all viruses have
elaborate mechanisms of, e.g., separating the expression
of early and late proteins; of maintaining quite precise
ratios of different protein products expressed simulta-
neously; etc. Many of these processes require action of
virus-encoded signals and cellular proteins. But is this
relevant for computing complexity? in p. 5:\In fact,
mutations are not normally allowed for a real protein
sequence” - not true, viruses are notorious for rapid
evolution that is facilitated, in the case of RNA viruses,
by a particularly high mutation rate (but again, is this
information even needed for what authors are propos-
ing?). Why does the quantity I hold for cases of overlap-
ping genes? A simple example that exemplifies both the
above facts would be beneficial for the readers.
3. In the calculation for eukaryotes: For genomes that

are not sequenced, it is noted that I1 =6n g. It is also
mentioned that in the case of overlapping genes, this
quantity should be adjusted to the size of the protein-
coding genes. How can this be done for the genomes
that are not sequenced? Can this be elaborated?
Authors’ response
The comments are insightful. We have revised the

manuscript based on the review, especially the calcula-
tion of effective information of viruses.

Reviewer #2: Dr. Chao Chen
The paper concludes that phenotypic complexity of life
evolves in a single direction toward higher effective
information measured by Shannon entropies. For
instance, the effective information for the eukaryotes is
calculated as sum of Shannon entropies corresponding
to information needed (1) to encode all proteins, (2) to

produce all he differentiated cells, and (3) to construct
the spatial structure. For the three organisms (viruses,
bacteria and eukaryotes) considered in the paper, the
effective information is shown to be increasing in the
order from virus to bacteria and to eukaryotes. What
the authors had done is to use Sharron’s information
entropies to represent genotypic complexity on the
three organisms but failed to demonstrate the relevance
of this information to the evolution of phenotypic com-
plexity. It should be noted that the scalability of genoty-
pic complexity does not automatically lead to the
scalability of phenotypic complexity that is not defined
in the paper.
Here are my specific comments:
1. A logical framework must be constructed so that

the information on genotypic complexity as measured
by Shannon’s information entropies can be used to sup-
port the evolution of phenotypic complexity. This fra-
mework should be equally applicable to either the entire
universe of organisms or only to a single organism such
as eukaryotes. The authors may first focus on one
organism and then apply the methodology to a broader
subgroup of organisms if not the whole universe of
organisms. An interesting work on phenotypic complex-
ity is by Lehere and Haddow [27] in which mapping of
genotypic complexity to phenotypic complexity was
considered.
2. In view of the comment #1 above, it is logical to

consolidate all equations that are now scattering over
three sections into a single section of method and/or
theory. In other words, the metric on genotypic and
phenotypic domains must be well defined first before
any evolutionary claim could be made. Some formality
on how these equations are derived should be presented.
For instance, it would be more appropriate to define a1
along with a2, a3,..., acn, rather than skiping a1 and
replace it by t (the averaged size of cellular proteome of
differentiated cells) as shown in the section “The calcu-
lation of effective information of eukaryotes”. While the
calculated result will be the same, it is desirable to have
some formality in presentation to avoid misunderstand-
ing from readers. For instance, one may question the
meaningfulness of the term (choosing t from x) when t
is not an integer.
3. Another loose end of the manuscript is the lack of a

well-defined universe from which representative samples
are taken and the inference made. The scope of organ-
isms to be inferred must be clearly defined; otherwise,
the conclusion of the paper could be predetermined
simply by the choice of database and the methodology.
A biologist may argue that there is always an increase in
complexity if one follows the simple dictum that eggs
come from preexisting eggs and multicellular organism
evolves from single cell animals. Questions can then be
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raised if viruses are therefore more primitive than rick-
ettsiae, bacteria, fungi, algae, plants or animals. Indeed,
a single cell alga is more complex than bacteria. Can
gastrula be more advanced than a parasite in the gut of
a termite? Can an organism like a viroid more primitive
than free living algae? To prevent such issues, the
domain of study and the scale of complexity must be
clearly defined.
4. The manuscript needs a technical editing. Just to

mention some example problems here: the sentence “Set
× is the size of complete proteome..” is not clear. I
believe what authors intend to say is “Let × be the size
of complete proteome..”. I also notice that the word
“once” has been misplaced or misused in some sen-
tences. Note that “once synthesized” means differently
from “synthesized at once”
Authors’ response
The comments are constructive. We have revised the

manuscript based on the comments. We focus on the
methodology how to calculate effective information
rather than evolutionary claims in this manuscript.

Reviewer #3: Dr. ED Rietman (nominated by Dr. Marc
Vidal)
The authors are to be commended for taking on a chal-
lenging and important biological question. Their basic
hypothesis is that one can use the standard information
measures on DNA strings and induce similar informa-
tion measures on numbers of proteins in all types of
cells. The premise is that there is in increase in com-
plexity over the course of biological evolution and that
this increase in complexity comes about as a result of a
reduction in entropy.
The soundness of the hypothesis will not be commen-

ted upon, because there is so much doubtful with the
basic premise. Start with a simple self-replicating auto-
catalytic set of molecular species. If mutation-based evo-
lution can operate on this set, there will be an increase
in the complexity of the molecular species in the set.
This increase in complexity is driven primarily by che-
mical potential and reduction in free energy. The
increase in the number of new molecular species cap-
able of participating in the reaction set results in more
ways to dissipate the free energy, and thus an increase,
not a decrease, in entropy [28-30].
Similarly, in a microbiological ecosystem with compet-

ing microorganisms, mutation-based evolution will
increase the microorganism-based species diversity and
drive up the number of ways the free energy may be dis-
persed. Again this results in an increase in entropy.
Besides misunderstanding fundamental thermody-

namic issues, there are cellular biology errors. To sup-
port the calculations it is assumed that all proteins are
produced at once. This conjecture can again be argued

away, because chemical reaction networks cannot pro-
duce all molecular species at once. The chemical poten-
tial imbalance, at various points in the network, is the
driving factor to produce other chemical species (Le
Chatelier’s principle). This same logic carries over into
molecular systems biology and thus into cellular biology.
There is an insufficient review of the pertinent litera-

ture. The paper is not a review, but still a few para-
graphs of review of other approaches to addressing this
important question would have put this new work in
perspective.
Authors’ response
It is true that mutation-based evolution is an entropy

increase process, but evolution may not only be muta-
tion-based. There may be other evolutionary mechan-
isms. Anyway, we have deleted those parts regarding
entropy in this manuscript.
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