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Abstract

Background: Tumor cell motility and invasion is governed by dynamic regulation of the cortical actin cytoskeleton. The
actin-binding protein cortactin is commonly upregulated in multiple cancer types and is associated with increased cell
migration. Cortactin regulates actin nucleation through the actin related protein (Arp)2/3 complex and stabilizes the cortical
actin cytoskeleton. Cortactin is regulated by multiple phosphorylation events, including phosphorylation of S405 and S418
by extracellular regulated kinases (ERK)1/2. ERK1/2 phosphorylation of cortactin has emerged as an important positive
regulatory modification, enabling cortactin to bind and activate the Arp2/3 regulator neuronal Wiskott-Aldrich syndrome
protein (N-WASp), promoting actin polymerization and enhancing tumor cell movement.

Methodology/Principal Findings: In this report we have developed phosphorylation-specific antibodies against
phosphorylated cortactin S405 and S418 to analyze the subcellular localization of this cortactin form in tumor cells and
patient samples by microscopy. We evaluated the interplay between cortactin S405 and S418 phosphorylation with
cortactin tyrosine phosphorylation in regulating cortactin conformational forms by Western blotting. Cortactin is
simultaneously phosphorylated at S405/418 and Y421 in tumor cells, and through the use of point mutant constructs we
determined that serine and tyrosine phosphorylation events lack any co-dependency. Expression of S405/418
phosphorylation-null constructs impaired carcinoma motility and adhesion, and also inhibited lamellipodia persistence
monitored by live cell imaging.

Conclusions/Significance: Cortactin phosphorylated at S405/418 is localized to sites of dynamic actin assembly in tumor
cells. Concurrent phosphorylation of cortactin by ERK1/2 and tyrosine kinases enables cells with the ability to regulate actin
dynamics through N-WASp and other effector proteins by synchronizing upstream regulatory pathways, confirming
cortactin as an important integration point in actin-based signal transduction. Reduced lamellipodia persistence in cells with
S405/418A expression identifies an essential motility-based process reliant on ERK1/2 signaling, providing additional
understanding as to how this pathway impacts tumor cell migration.
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Introduction

Tumor cell motility and invasion is a central problem in cancer

that is paramount in contributing to metastasis [1]. Tumor cells

move through successive series of coordinated and integrated

stages, with formation of protrusive membranous structures

including filopodia, invadopodia and lamellipodia required for

initiation and maintenance of invasion and migration [2,3,4,5].

Central to the movement of most carcinoma cell types undergoing

single or collective migration is the production of lamellipodia at

the leading edge of the cell. Lamellipodia are planar protrusive

extensions of the plasma membrane produced by motile cells in

two- and three-dimensional settings [6]. Lamellipodia extension

drives cell migration through integrin-based adhesion with the

underlying substratum, providing the necessary traction for

contractile-based translocation of the cell body to generate

productive movement [7]. It is generally accepted that dynamic

regulation of the cortical actin cytoskeleton through cycles of actin

polymerization and depolymerization are responsible for generat-

ing the propulsive force needed for lamellipodia extension [8].

The actin binding protein cortactin is a major component of

lamellipodia that regulates the lamellipodia actin network through
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several pro-migratory signaling pathways [9,10,11]. Biochemical

analysis indicates that cortactin interacts directly with the actin-

related (Arp) 2/3 complex through a conserved acidic motif within

the amino terminus, initiating Arp2/3-dependent actin nucleation

responsible for lamellipodia formation [12,13,14]. Simultaneous

binding of cortactin to Arp2/3 complex and the resulting

filamentous (F)-actin dendritic network serves to stabilize F-actin

branchpoints [13], while binding of the cortactin carboxyl-

terminal Src homology (SH)3 domain to the Arp2/3 activator

N-WASp or the N-WASp scaffolding protein WIP additionally

promotes Arp2/3 activation and cell motility [15,16,17].

Although the biochemical features of cortactin seem to point to

a straightforward role in lamellipodia actin regulation, studies of

cortactin function in lamellipodia have proven controversial,

suggesting to a more complex role in cell migration. RNA

interference studies have yielded conflicting results in regards to

lamellipodia dynamics, with cortactin knockdown resulting in

decreased lamellipodia stability and reduced persistence consistent

with a role in lamellipodia actin network stabilization [18,19,20].

However, similar studies in different cell types suggest cortactin

downregulation increases the length of extending lamellipodia

[21]. Furthermore, recent analysis of lamellipodia dynamics in

cortactin2/2 fibroblasts indicates that cortactin does not play a

role in directly regulating lamellipodia protrusion or Arp2/3-based

actin dynamics, but rather is important in mediating upstream

activation of the small GTPases Rac1 and Cdc42, which in turn

regulate WAVE2 and N-WASp activity [22]. While these reported

discrepancies regarding cortactin function in lamellipodia have yet

to be fully reconciled, it is clear that cortactin is an important

regulator for normal and tumor cell migration in many cell

systems [11,23]. An unambiguous role for cortactin has been

shown in invadopodia, where removal of cortactin by RNA

interference ablates invadopodia formation in multiple invasive

tumor cell types [24,25,26].

Besides regulating Arp2/3-based cortical actin networks by

direct interactions, cortactin also functions as a key mediator in

several kinase-based signal transduction cascades that indirectly

govern Arp2/3 activity and cell movement. Cortactin is a well-

defined target for Src kinase [27], phosphorylating human

cortactin on tyrosine residues Y421, Y470 and Y486 within the

proline-rich (PR) carboxyl-terminal domain [28]. Several other

receptor and cytoplasmic tyrosine kinases target these residues,

including Fyn [29], Fer [30], Arg/Abl [31], c-Met [32] and Erb2

[33]. The diverse array of tyrosine kinases that phosphorylate

cortactin at Y421/Y470/Y486 indicates that these sites collec-

tively serve as a point of convergence for multiple signaling

pathways. Cortactin phosphorylated at tyrosines 421, 470 and/or

486 localizes within lamellipodia [34], creating Src homology

(SH)2 docking sites that facilitate binding of tyrosine kinases and

adaptor proteins indirectly responsible for regulating cortical actin

dynamics and subsequent cell movement through N-WASp-

mediated Arp2/3 activity [35,36,37].

Besides tyrosine phosphorylation, cortactin is a target for

multiple serine/threonine kinases [38]. Stimulation of tumor cells

with epidermal growth factor (EGF) leads to phosphorylation of

serine residues 405 and 418 within the PR domain, coincident

with a characteristic shift in cortactin electrophoretic mobility

from 80 kDa to 85 kDa in SDS-PAGE [39,40]. The mobility shift

and phosphorylation of S405/S418 are impaired by pharmaco-

logic inhibition of mitogen activated protein/extracellular signal

regulated kinase kinase (MEK)1/2, and biochemical evidence

indicates that the MEK effector kinases ERK1/2 directly

phosphorylate cortactin at these sites [40]. Phosphorylation of

S405/S418 enhances binding of the cortactin SH3 domain to N-

WASp, indicating a functional role in stimulating Arp2/3-

mediated actin dynamics independent of tyrosine phosphorylation

[15]. This is supported by studies expressing phosphorylation-null

and phosphomimetic point mutant constructs in cells, suggesting

that S405/S418 phosphorylation plays a critical role in regulating

cellular actin polymerization necessary to promote cell migration

[41] and invadopodia function [26]. In addition, p21 activated

kinase 1 (PAK1) phosphorylates cortactin at S405/S418, serving

to stimulate N-WASp activity required for clathrin-independent

endocytosis [42]. While studies to date implicate cortactin S405/

418 phosphorylation in promoting N-WASp-mediated Arp2/3

actin structures, the subcellular localization of phosphorylated

S405/418 cortactin, as well as the precise role S405/418

phosphorylation plays in regulating lamellipodia dynamics have

not been evaluated.

In this study, we have generated site-specific antibodies against

phosphorylated cortactin S405 and S418 to determine the spatial

and temporal localization of cortactin in dynamic actin structures

and human tumors, and to evaluate signaling interplay between

cortactin tyrosine and serine phosphorylation events. We also

determined the effects of S405/418 cortactin phosphorylation on

EGF-induced cell migration, adhesion and lamellipodia dynamics

in carcinoma cells.

Methods

DNA Constructs and siRNA
For Myc-tagged human cortactin expression constructs, the

wild-type human cortactin cDNA subcloned into pcDNA

FLAG2AB [43] was used as a template for producing point

mutants by site-directed mutagenesis (QuickChange; Stratagene,

La Jolla, CA). Codon alterations in human cortactin were: S405A,

S418A, S405A/S418A, Y421F, Y470F, Y486F, Y421F/Y470F/

Y486F and W492K. Cortactin cDNAs were amplified by PCR as

BamHI-EcoRI fragments and subcloned into BamHI-EcoRI

digested pRK5Myc [44]. Murine GFP-tagged expression con-

structs were produced using pcDNA3FLAG2AB wild-type murine

cortactin [12] as the template for mutagenesis, then subcloned as

EcoRI-KpnI PCR fragments into pAcGFP-C1 (Clontech, Moun-

tain View, CA). The temperature-sensitive vSrc LA29 construct

was previously described [45]. mCherry-b-actin was obtained

from D. Schafer (University of Virginia), with the parent construct

produced by R. Tsien (University of California, San Diego). Small

interfering (si)RNA targeting rodent cortactin (59-GCTTCGA-

GAGAATGTCTTC-39) was purchased from Thermo Scientific

(Waltham, MA).

Cell lines and Transfection
The HNSCC cell lines 1483 [46], UMSCC1 and UMSCC2

[47] were maintained as described [48]. SYF cells were obtained

from the American Type Culture Collection (Manassas, VA) and

maintained according to the supplied protocol. The rat mammary

adneocarcinoma line MTLn3 was maintained in alpha-MEM

supplemented with 10% fetal bovine serum, 1% L-glutamine and

1% penicillin-streptomycin. Transient transfections were conduct-

ed with 36106 cells and two micrograms of plasmid construct or

siRNA using the Nucleofector I device (Amaxa Biosystems, Berlin,

Germany).

Antibodies
Antibodies against phosphorylated serine 405 (pS405) and serine

418 (pS418) of human cortactin were produced by 21st Century

Biochemicals (Marlboro, MA). Synthetic phosphorylated cortactin

peptides containing the sequences NH2-KTQTPPV[pS]PAPQPTC-
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COOH (cortactin pS405) and NH2-TEERLPS[pS]PV-COOH

(cortactin pS418) were produced, conjugated to keyhole limpet

cyanine and injected into rabbits. Immune serum was screened by

enzyme-linked immunosorbent assay against the appropriate phos-

phorylated cortactin peptide coupled to bovine serum albumin. High-

titer bleeds were identified for each peptide, and immune serum was

passed two successive times through chromatography columns

containing agarose beads coupled to the equivalent non-phosphor-

ylated peptide. The flow through material for each peptide was

subsequently passed twice through chromatography columns con-

taining beads conjugated to the matched phosphorylated cortactin

peptide. After extensive washing, bound antibodies for each

phosphorylation site were eluted, concentrated and screened for

specificity by Western blotting against recombinant cortactin mutant

proteins harboring alanine-serine point mutations at serine 405 or

418, respectively (Fig. 1A). The anti-pS405 and anti-pS418 cortactin

antibodies are currently available through Protea Biosciences

(Morgantown, WV). Anti-cortactin (4F11) was used as described

[48]. Anti-pY421 cortactin and anti-pY418 Src were from Invitrogen

(Carlsbad, CA). Anti-ERK1/2 and pERK1/2 were from Cell

Signaling (Danvers, MA). Anti-Myc epitope tag (4A6) was from

Millipore (Billerica, MA). Anti-GFP (JL-8) was from Clontech

(Mountain View, CA) and anti-beta-actin was from EMD4Bios-

ciences (San Diego, CA).

Western blotting and Immunoprecipitation
Western blotting was conducted as described [48]. Primary

antibody dilutions used were: anti-pS405 cortactin (1:4000), anti-

pS418 cortactin (1:500), anti-cortactin (1:1000), anti-pY421

cortactin (1:2000), anti-ERK1/2 (1:2000), anti-pERK (1:2000),

anti-pY418 Src, anti-GFP (1:1000) and anti-beta-actin (1:5000).

Immunoprecipitations were performed as described [34] using five

micrograms of precipitating antibody captured with 40 microliters

of a 50% Protein A/G bead slurry (Thermo Fisher Scientific,

Pittsburgh, PA). In some cases cells were treated with selumetinib

(AZD6244; ARRY-142886) or saracatinib (AZD0530) for 24 h

prior to immuoprecipitation and Western blotting analysis.

Microscopy
UMSCC2 cells were plated on fibronectin-coated coverslips (10

micrograms/ml; Sigma, St Louis, MO) and allowed to attach

before serum starvation for 16 h. Cells were stimulated with 100

nanograms/ml EGF (Millipore) for 1 h before fixation. UMSCC1

cells plated on FITC-gelatin (Sigma) for 8 h were processed for

confocal microscopy using Zeiss LSM 510 Meta system (Thorn-

wood, NY) as described [43]. Anti-pS418 cortactin was used at

1:1000, 4F11 at 1:500 and rhodamine-conjugated phalloidin at

1:1000 (Invitrogen, Carlsbad, CA).

For immunohistochemistry, HNSCC tissue blocks were ob-

tained from the West Virginia University Tissue Bank and used

under approval of the West Virginia University Institutional

Review Board. Five-micrometer sections from formalin-fixed,

paraffin-embedded blocks were processed for immunostaining

using the Discovery XT automated staining system (Ventana,

Tucon AZ). Briefly, after deparaffinization and antigen retrieval,

sections were incubated with monoclonal rabbit anti-cortactin

(Novus, Littleton, CO) at 1:2000, anti-pS418 cortactin at 1:25 and

anti-pERK1/2 at 1:100 dilutions. All primary antibodies were

incubated in Dako diluent (Dako, Carpinteria, CA) for 1 h.

Primary antibodies were detected with the Omnimap antibody

horseradish peroxidase kit (Ventana). Slides were counterstained

with hematoxylin and post-counterstained with bluing reagent

(Ventana). Images were visualized with an Olympus AX70

microscope and captured using the MicroBrightfield system

(Williston, VT).

Live cell imaging was conducted using MTLn3 cells starved for

3 h with serum-free media prior to stimulation with 100

nanograms/ml EGF. Cells were plated on delta-T4 glass bottom

dishes (Fisher) coated with 10 micrograms/ml fibronectin (Sigma).

Immediately following EGF addition, cells were imaged by

differential interference contrast microscopy using a Nikon

TE2000 inverted microscope equipped with a Roper CoolSNAP

HQ charge-coupled device camera (Photometrics, Tucson, AZ).

Images were captured every 5 s for 15 min (181 total frames). A

Nikon LiveScan SFC swept field microscope was used for imaging

cells expressing mCherry-actin using the same parameters. In all

cases, GFP-cortactin expressing cells were identified by fluores-

cence microcopy prior to imaging. Kymograms were produced by

extracting 1 pixel-width strips from each movie frame at points of

initial and maximal lamellipodia extension, and assembled using

ImageJ (v1.40).

Electric Cell Substrate Impedance Sensing
To assay cell motility and adhesion, 56105 cells were plated into

8-well electric cell substrate impedance sensing dishes (ECIS;

Applied Biophysics, Troy, NY). For motility measurements, cells

were allowed to adhere overnight on 8W1E dishes to form a

monolayer. Adhesion was assayed immediately after plating cells

onto 8W10E dishes. Measurements were conducted for 24 h at

45 kHz, with reading taken at 1 min intervals. Cells treated with

selumetinib were serum starved 24 h in the presence of drug prior

to ECIS.

Statistical Analysis
Differences in mean groups for migration, adhesion and

kymography between control and treated groups were evaluated

using one way ANOVA, followed by Student-Newman-Keuls post

hoc testing. All differences were considered significant at p#0.05.

A minimum of three experimental groups were used for all

analyses.

Results

Localization of pS418 cortactin with dynamic cortical
actin structures

We developed antibodies specific to phosphoserine 405 (pS405)

and phosphoserine 418 (pS418) of human cortactin to facilitate

analysis of these sites. To validate antibody specificity, epitope-

tagged cortactin constructs containing wild-type (WT) cortactin,

cortactin with individual serine to alanine mutations at codon 405

(S405A), codon 418 (S418A) or with both codons mutated in

tandem (S405,418A) were produced and transfected into 1483

cells. Total cell lysates were blotted with anti-pS405 or anti-pS418

antibodies (Figure 1A). The anti-pS405 antibody recognized the

WT and S418A cortactin variants, failing to blot constructs

containing the S405A mutation. Conversely, anti-pS418 blotted

WT and S405A, failing to recognize cortactin constructs with

S418A mutations. All cortactin variants were recognized by an

anti-cortactin monoclonal antibody (Figure 1A), indicating

equivalent expression of the assayed constructs. These results

indicate that the anti-pS405 and anti-pS418 antibodies specifically

recognize their cognate phosphorylated cortactin epitope, and that

no interdependence exists between phosphorylation of cortactin

S405 and S418.

To determine the subcellular localization of serine phosphor-

ylated cortactin, we conducted indirect immunofluoresence

studies on cells producing lamellipodia and invadopodia, two
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actin-based structures that depend in part on N-WASp activity.

While the anti-pS405 antibody yielded non-specific staining in

our hands (data not shown), anti-pS418 specifically labeled

lamellipodia and cytoplasmic puncta (presumably vesicles) in

UMSCC2 cells. In cells with a motile phenotype, anti-pS418

localized with cortactin and F-actin in these regions (Figure 1B,

top row). Labeling of UMSCC1 cells plated on FITC-coated

gelatin matrix with anti-pS418 indicated specific localization to

subsets of invadopodia that coincided with cortactin, F-actin and

areas of gelatin clearing indicative of matrix metalloproteinase

mediated invadopodia activity (Figure 1B, middle and bottom

rows).

Figure 1. Specificity and validation of pS405 and pS418 phospho-specific cortactin antibodies. (A) Phospho-specific recognition of anti-
cortactin pS405 and pS418 antibodies. Clarified lysates (50 micrograms) from 1483 cells transfected with Myc-tagged wild-type cortactin (WT), Myc-
cortactin S405A, Myc-cortactin S418A or Myc-cortactin S405A,S418A point mutants were immunoblotted with affinity purified anti-Cort-pS418 (left)
and anti-Cort-pS405 (right) antibodies. (B) Localization of pS418 cortactin in areas of motile and invasive actin dynamics. UMSCC2 cells (top row) were
serum starved for 16 h prior to stimulation with 100 nanograms/ml EGF for 1 h to induce lamellipodia formation, while UMSCC1 cells (middle row)
were plated on FITC-conjugated gelatin coated coverslips (pseudocolored white) for 6 h to promote invadopodia formation. Cells were fixed,
permeablized, and labeled with TRITC-phalloidin (Actin), anti-cortactin (Cort) and anti-cortactin-pS418 antibodies. Arrows denote localization of
pS418 cortactin with total cortactin and F-actin in lamellipodia (top) and to invadopodia (middle) coinciding with areas of active matrix degradation.
Bottom panels are magnified views of the indicated cellular region. Bars, 10 micrometers. (C) Localization of pS418 cortactin in HNSCC tumor tissue.
Serial sections from three different invasive HNSCC cases were processed for immunohistochemistry with control IgG (Control), pS418 cortactin, total
cortactin and phospho-ERK1/2 (pERK) antibodies. Sections were counterstained with hematoxylin. Arrowheads indicate areas of peripheral pS418
cortactin and total cortactin enrichment within each tumor sample. Bar, 100 micrometers.
doi:10.1371/journal.pone.0013847.g001
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In solid human tumors, cortactin and cortactin phosphorylated

on tyrosine 421 (pY421) localizes to invasive tumor fronts and to

cell-cell junctions [43,48]. To determine the location of pS418

cortactin in tumor tissue, head and neck squamous cell carcinoma

(HNSCC) cases were sectioned and stained with anti-pS418

(Figure 1C). Cortactin pS418 was abundant in HNSCC cell

cytoplasm and was enriched in areas of cell-cell contact, displaying

a pattern similar to sections labeled with a total cortactin antibody.

These tumor regions also contained activated ERK1/2, as

evidenced by pronounced cytoplasmic and nuclear staining of

phosphorylated ERK1/2 in serial sections (Figure 1C). Enrich-

ment of pS418 staining was not evident at margins or the invasive

front in the analyzed tumors.

Growth factor mediated phosphorylation of cortactin
S405/418 is MEK dependent

Previous biochemical work has implicated chemical inhibition

of MEK and subsequent blocking of ERK1/2 activation as a

major pathway responsible for cortactin S405/418 phosphoryla-

tion [40]. To further evaluate the role of the MEK-ERK1/2

pathway on cortactin phosphorylation, we utilized the anti-pS405

and pS418 cortactin antibodies to directly test the effects of MEK

inhibition on cortactin pS405/418. Western blot analysis of cell

extracts from EGF- and serum-stimulated UMSCC1 cells with

anti-pS405 and pS418 antibodies displayed similar phosphoryla-

tion kinetics of S405 and S418, with phosphorylation of both sites

first evident 10 min after stimulation (Figure 2A) and remaining

phosphorylated up to 2 h (data not shown). Treatment of

UMSCC1 or 1483 cells with the small molecule MEK inhibitor

selumetinib [49] reduced EGF-stimulated cortactin S405/418

phosphorylation in a dose-dependent manner, where near

elimination of phosphorylation at both serine residues occurred

at doses $1 micromolar (Figure 2B). ERK1/2 activity was also

reduced under similar dose conditions, although complete ablation

of ERK1/2 phosphorylation was observed at doses $5 micromo-

lar (Figure 2B). These data suggest that the MEK-ERK pathway is

largely responsible for growth-factor induced cortactin S405/418

phosphorylation in HNSCC cells, in agreement with previous

findings in other cell types [40].

The 80 kDa to 85 kDa cortactin conformational shift is
associated with serine and tyrosine phosphorylation

Based on sequence analysis, the largest and most prominent

cortactin isoform (cortactin ‘‘A’’ or ‘‘SV1’’) encodes a 61.5 kDa

protein [50,51]. This cortactin form frequently migrates as an 80/

85 kDa doublet in SDS-PAGE [27,52] that has been attributed to

conformational alterations within the polypeptide chain [40,53].

Shifting from the 80 kDa to 85 kDa form is seen in response to

EGF, with the resulting 85 kDa band associated with S405/418

phosphorylation [39,40]. To directly assess the presence of pS405/

418 in the two cortactin conformational isomers, serum-starved

UMSCC2 (Figure 3A) and 1483 (Figure 3B) cells were stimulated

with EGF and the cortactin forms in cell lysates were analyzed at

successive time points with anti-pS405 and anti-pS418 antibodies.

S405/418 phosphorylation was maintained in the 85 kDa

cortactin form in both cell lines following serum starvation,

Figure 2. Growth factor-stimulated Erk 1/2 activation mediates phosphorylation of cortactin at serine 405 and 418. (A) Growth factor-
induced phosphorylation of cortactin S405 and S418. Serum starved UMSCC1 cells were stimulated with EGF (left) or FBS (right) for the indicated
times. Cells were lysed and analyzed by Western blotting with anti-Cort-pS418 and anti-Cort-pS405 antibodies. Blots were stripped and reprobed
with a pan-cortactin antibody to confirm equal loading (bottom). (B) Pharmacologic MEK inhibition inhibits cortactin S405 and S418 phosphorylation.
UMSSC1 (left) and 1483 (right) cells were serum starved in the presence of the indicated selumetinib concentrations prior to stimulation with EGF for
20 min. Cortactin immunoprecipitated from cell extracts was assayed by Western blotting with anti-Cort-pS418 and anti-Cort-pS405 antibodies. Blots
were stripped and reprobed with pan-cortactin antibody as in (A) (bottom panels). Selumetinib efficacy was verified by the blotting of lyastes from
selected timepoints with phospho-ERK1/2 (pERK1/2) and pan ERK1/2 antibodies (bottom). All blots are representative images from 3–4 independent
experiments.
doi:10.1371/journal.pone.0013847.g002
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despite of the lack of ERK1/2 activity (0 min, Figure 3A and

Figure 3B). EGF stimulation resulted in complete conversion of

the 80 kDa to the 85 kDa cortactin form by 1 h after EGF

treatment in both cell lines, with a 3.6–4.7 fold increase in the

80 kDa/85 kDa ratio (Figure 3A and Figure 3B). Cortactin pS405

and pS418 was observed primarily in the 85 kDa form and

increased at both sites during the entire time course, whereas

ERK1/2 activity peaked at 15 min and rapidly declined

afterwards (Figure 3A and Figure 3B). Interestingly, the phos-

phorylation of S405 was also associated with an increase

appearance of cortactin degradation in UMSCC2 cells

(Figure 3A). It is uncertain whether these products represent

increased overall cortactin degradation, or if the net cortactin

degradation is constant but is selectively identified by the pS405

antibody in response to EGF treatment and phosphorylation.

EGF-induced Src activation and cortactin pY421 phosphorylation

was sustained throughout the entire time course in UMSCC2 cells

(Figure 3A), indicating that cortactin can be simultaneously

phosphorylated by ERK1/2 and EGFR-stimulated tyrosine

kinases. Pretreatment of UMSCC2 cells with the Src family kinase

inhibitor saracatinib at 10 micromolar or selumetinib at 1

micromolar concentrations completely impaired the cortactin shift

from 80 kDa to 85 kDa (Figure 3C). We assessed the specificity of

these inhibitors and determined that selumetinib inhibition of

MEK did not impair EGFR activity as determined by anti-

pY1068 EGFR Western blotting (Figure S1A), whereas saracatinib

did inhibit EGFR activation (Figure S1B) as shown previously

[54]. The effects of saracatinib on blocking the EGF-mediated

80 kDa to 85 kDa cortactin conversion may therefore be due to

EGFR inhibition, which in turn would inhibit activation of MEK

as well as Src. The exclusive presence of pS405 and pS418 in the

EGF-induced 85 kDa cortactin form, as well as the ability of MEK

inhibition to impair the cortactin shift is consistent with results

obtained from previous work [40].

Cortactin serine phosphorylation in vivo is independent
from tyrosine phosphorylation

EGF treatment of UMSCC2 cells resulted in phosphorylation of

cortactin S405/418 and cortactin pY421 (Figure 3A). A previous in

vitro study evaluating the impact of cortactin phosphorylation on N-

WASp activation determined that S405/418 phosphorylation by

ERK1/2 enables the cortactin SH3 domain to stimulate N-WASp

Arp2/3 activation, while Src phosphorylation downregulates N-

WASp activity and counteracts the effects of S405/418 phosphor-

ylation [15]. This proposed ‘‘on-off switch’’ postulates that cortactin

serine and tyrosine phosphorylation are mutually exclusive events

governing the ability of cortactin to regulate N-WASp activity

and downstream actin reorganization [55]. Using the available

antibodies reactive against cortactin pS405 and pY421, we sought

to determine if these two different classes of phosphorylation events

are interdependent in any manner. Cortactin depleted SYF

fibroblasts (null for Src, Yes and Fyn kinases) were co-transfected

with the temperature-sensitive vSrc construct tsLa29-GFP [45] to

activate the Src and ERK1/2 signaling pathways, along with

Figure 3. EGF-induced conversion of cortactin from 80 kDa to 85 kDa is impaired by Src and MEK1/2 inhibition. EGF induces the
p80 kDa to p85 kDa shift in HNSCC cells. Serum starved UMSCC2 (A) and 1483 (B) cells were treated with 100 nanograms/ml EGF for the indicated
times. Clarified lysates were assayed by Western blotting with anti-cortactin, anti-Cort-pS418, anti-cort-pS405, anti-Cort-pY421, anti-Src-pY418, anti-
pErk1/2 and total Erk1/2 antibodies as indicated. Red bars denote the position of the 85 kDa cortactin form; black bars denote the 80 kDa form. The
ratio of the 80 kDa and 85 kDa cortactin forms are denoted at the bottom of each set of blots. (C) Saracatinib and selumetinib treatment of EGF-
stimulated cells inhibits the cortactin ‘‘shift’’. UMSCC2 cells were treated with vehicle (DMSO), saracatinib, or selumetinib for 16 h in serum free media.
Cells were stimulated with 100 nanograms/ml EGF for 1 h, lysed and analyzed by Western blot analysis with an anti-cortactin antibody.
doi:10.1371/journal.pone.0013847.g003
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constructs encoding wild-type cortactin or the following Myc-tagged

cortactin mutants: Y421F, Y470F, Y486F, Y421/Y470/Y486F

(TPM), S405A, S418A, S405/418A (Figure 4A). A W492K

cortactin mutant was also included, as this mutant abolishes the

ability of the cortactin SH3 domain to interact with corresponding

SH3 binding proteins [56]. After shifting to 35uC for 2 h to activate

tsLa29-GFP, the serine and tyrosine cortactin mutants were

analyzed for phosphorylation at Y421 and S405 by SDS-PAGE

and Western blotting (Figure 4B). Mutations to S405 and S418

alone and in combination did not impact the ability of these

constructs to be phosphorylated on Y421 (Figure 4B). Similarly,

mutations to Y421, Y470, and Y486, alone and in combination

(TYM) did not affect the ability of these constructs to be

phosphorylated on S405. These data indicate that cortactin can

be simultaneously phosphorylated at S405 and Y421 downstream of

vSrc activation, suggesting in this system that phospho-regulation of

cortactin SH3 domain function is not solely governed in vivo by the

serine-tyrosine ‘‘on-off switch’’ mechanism proposed from previous

in vitro experimentation [15,55].

S405/418 phosphorylation is required for efficient tumor
cell motility and adhesion

To evaluate the role of cortactin S405/418 phosphorylation on

carcinoma cell migration, 1483 and UMSCC1 cells were treated

with selumetinib and assayed for effects on motility by ECIS

(Figure 5). Selumetinib treatment impaired the motility of both cell

types in a dose-dependent manner, corresponding to the observed

decreases in S405/418 phosphorylation (Figure 2B). Since MEK

inhibition likely impaired the phosphorylation of other proteins

involved in motility in addition to cortactin, we directly assessed

the impact of cortactin S405/418 phosphorylation on cell

migration using phosphorylation-null cortactin expression con-

structs. MTLn3 rat mammary adneocarcinoma cells were initially

transfected with a siRNA targeted against rodent cortactin,

followed by transfection with GFP-tagged human wild-type

(WT), S405A, S418A and S405/418A cortactin constructs.

Cortactin siRNA reduced endogenous cortactin levels to .90%,

having no impact on expression of the human GFP-labeled

variants (Figure 6A). MTLn3 cells with cortactin knockdown (si)

displayed a 29% reduction in motility compared to control (Ctl)

(Figure 6B), similar to previous findings in MTLn3 cells and other

cell types [18,21,57]. Expression of wild-type human GFP-

cortactin (WT) led to a 2-fold increase in motility, presumably

due to increased expression of this variant over endogenous (Ctl)

levels (Figure 6A). Expression of S405A, S418A or S405,418A

cortactin resulted in an 49% average decrease in cell migration for

each cortactin mutant compared to Ctl, indicating that phosphor-

ylation of S405 and S418 are vital in maintaining optimal

carcinoma cell motility (Figure 6B). Since lamellipodia formation is

Figure 4. Cortactin tyrosine and serine phosphorylation resultant of v-Src activation are not interdependent. (A) Schematic diagram of
the cortactin point mutant constructs assayed for phosphorylation. Mutated codons are denoted on the left and displayed with the corresponding
mutant amino acid at the appropriate position within cortactin in red. (B) Murine fibroblasts lacking endogenous Src, Yes and Fyn (SYF) were
transfected with murine-specific cortactin siRNA and cultured for 48 h to deplete endogenous cortactin. Cells were subsequently co-transected with
the temperature-sensitive v-Src construct La29 (tsLa29) and wild-type or the indicated myc-tagged human cortactin point-mutant constructs at 41uC
(non-permissive temperature). TPM; triple point mutant consisting of Y-F mutations at positions 421, 470 and 486. After transfection, cells were
cultured at 41uC, then shifted to 35uC (permissive temperature) for 2 h to promote v-Src activation. Recombinant cortactin proteins were assayed by
immunoblotting with anti-cortactin-pY421, anti-cortactin-pS405, anti-myc, anti-cortactin, and anti-beta-actin antibodies. Note that the inability of
cortactin to be phosphorylated on Y421 does not impact its ability to be phosphorylated on S405, nor does lack of S405 phosphorylation impact
Y421 phosphorylation.
doi:10.1371/journal.pone.0013847.g004
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required for detached cells to adhere to the ECM, we conducted

ECIS assays to determine the effects of cortactin S405/418

phosphorylation on cell adhesion. MTLn3 cells lacking cortactin

expression (si) exhibited a 50% decrease in cell adhesion compared

to control (Ctl) cells. Expression of wild type (WT) GFP-cortactin

restored adhesion to levels similar to Ctl, whereas expression of

S405A, S418A or S405/418A cortactin mutants all reduced

adhesion to levels 42–58% of Ctl, failing to restore adhesion to

levels above cortactin si cells (Figure 6C). These results suggest that

cortactin S405/418 phosphorylation contributes to carcinoma cell

motility and adhesion, representing an important pro-migratory

substrate targeted by the MEK-ERK1/2 pathway.

Cortactin S405/418 phosphorylation is required for
carcinoma cell lamellipodia persistence

Given the localization of pS418 cortactin within lamellipodia

(Figure 1B) and the effects of cortactin S405/418A expression on

cell motility (Figure 6B), we evaluated the impact of cortactin

S405/418 phosphorylation on lamellipodia dynamics using live-

cell imaging and kymographic analysis. Serum-starved MTLn3

cells expressing mCherry-beta-actin and containing endogenous

cortactin knockdown alone (si), rescued with human GFP- wild

type cortactin (si+WT) or with GFP-cortactin S405/418A

(si+S405,418) were stimulated with EGF for 15 min. Lamellipodia

dynamics were monitored by time-lapse video microscopy (Video

S1, Video S2, Video S3 and Video S4) and assayed by

kymography (Figure 7A). EGF-stimulated MTLn3 cells produced

an initial dominant lamellipodia that reached maximal extension

between 1.5 and 3 min, and retracted to the point of origin

between 5–7 min [58,59]. Control MTLn3 cells containing

mCherry-beta-actin displayed similar extension-retraction kinetics

when assayed by kymography (Figure 7B and Video S1). While no

differences were observed in lamellipodia protrusion rates in any

of the assayed cellular conditions (Figure 7A), cortactin knockdown

(si) increased lamellipodia extension by an average of 5.8 mm over

the maximum extension length observed in control cells (Figure 7A

and B). Lamellipodia formed in cortactin si cells failed to

effectively retract, demonstrating a ,2-fold increase in average

lamellipodia persistence over control levels (Figure 7A and Video

S2). These results are consistent with the observed increase in

lamellipodia extension and persistence observed when MTLn3

cells contact EGF-coated bead matrices [21]. These effects are

fully rescued to control levels upon expression of WT GFP-

cortactin (si+WT; Figure 7A, Figure 7B and Video S3). Although

expression of GFP-cortactin S405/418A in cortactin si cells did

not impact EGF-induced lamellipodia extension, average lamel-

lipodia persistence was reduced by 46%, from 195 sec in si+WT

cells to 106 sec in si+405,418 cells (Figure 7A). The lamellipodia in

si+405,418 cells displayed series of multiple short extensions and

retractions, had enhanced ruffling and appeared more labile than

control or si+WT cells (Figure 7B: Videos S1 and S3 compared to

Video S4). These results suggest that S405/418 phosphorylation is

critical in regulating lamellipodia actin dynamics responsible for

proper protrusive behavior.

Discussion

While the effects of cortactin phosphorylation at S405 and

S418 by ERK1/2 have been studied at the biochemical and

functional level in several systems [15,26,40,41], the spatial and

temporal evaluation of S405 and S418 phosphorylation have been

hampered due to the lack of suitable reagents to directly study

these sites in cellular and tissue contexts. Our development of

anti-pS405 and anti-p418 cortactin antibodies allowed us to

examine the localization and signaling pathways regulating these

cortactin phosphorylation events. These antibodies, coupled with

the use of phosphorylation-null mutant constructs, allowed us to

validate and extend previous findings implicating these sites in the

regulation of carcinoma cell motility and associated lamellipodia

dynamics.

The localization of pS418 cortactin in carcinoma lamellipodia

and invadopodia is consistent with the defined and emerging roles

cortactin plays in regulating actin dynamics within these structures

[10,23]. To date, all studies designed to evaluate the cellular effects

of pS405/418 phosphorylation have relied on the use of

phosphorylation null or phosphomimetic (S405/418D) constructs.

In pancreatic tumor cells, S405/418A and S405/418D both

promote lamellipodia protrusion over control levels, whereas

S405/418A inhibits and S405/418D promotes cell motility [41].

While the ability of S405/418A to promote lamellipodia

protrusion in these studies is unclear, the remaining results are

consistent with an activating role for S405/418 phosphorylation in

lamellipodia dynamics and motility. Similar results were obtained

in the analysis of S405/418 on invadopodia function, with S405/

418A expression impairing and S405/418D promoting ECM

Figure 5. Targeted inhibition of MEK1/2 inhibits HNSCC cell motility. 1483 and UMSCC1 cells (56105) were starved for 24 h in the presence
of vehicle (DMSO) or increasing concentrations of selumetinib as indicated. Cells were assayed for motility by electric substrate impedance sensing
(ECIS) following stimulation with complete media containing the matched selumetinib concentration for 24 h. Data is displayed as slope values
calculated from the linear part of ECIS tracings. Bars represent mean 6 SE. *, p,0.05 compared to DMSO treated control cells.
doi:10.1371/journal.pone.0013847.g005
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degradation activity [26]. Phosphorylation of cortactin S418

within lamellipodia and invadopodia (Figure 1B) supports these

results.

In HNSCC and several other tumor types, cortactin is present

in the cytoplasm and is enriched at cell-cell junctions [48,60,61].

The localization of pS418 cortactin at regions of HNSCC cellular

Figure 6. Cortactin phosphorylation at serine 405 and 418 regulates carcinoma cell migration and adhesion. (A) Expression of GFP-
cortactin constructs in MTLn3 cells. MtLn3 cells were transfected with murine-specific cortactin siRNA (Si) for 48 h to silence endogenous cortactin
expression. Cells were subsequently transfected with the indicated human GFP-tagged cortactin wild-type and the various Erk1/2 phosphorylation-
null point mutant constructs. Following transfection, cell lysates were immunoblotted with anti-cortactin, anti-GFP and anti-beta-actin antibodies.
Solid arrowheads indicate the position of GFP-tagged cortactin variants; open arrowheads denote the position of endogenous cortactin. (B) Serine
405 and 418 phosphorylation is required for efficient carcinoma cell motility. MTLn3 cells transfected as in (A) were analyzed for cell migration by
ECIS. Cell impedance versus time plots for each transfected line are shown on the left; slope values calculated from the linear region of each plot are
displayed on the right. (C) Carcinoma cell spreading requires phosphorylation of cortactin S405 and S418. Transfected MTLn3 cells were plated, with
rates of spreading were monitored by ECIS tracings over time left. Slope values from the linear regions are shown on the right. Bars represent mean 6
SE for three independent experiments. *, P,0.05 compared to control (ctl) cells.
doi:10.1371/journal.pone.0013847.g006
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contact within tumors resembles the localization pattern of pY421

cortactin in this tumor type [62]. The staining pattern of cortactin

and its tyrosine phosphorylated form is reminiscent of that found

in two-dimensional epithelial monolayers, where cortactin has

been shown to be essential for Arp2/3-mediated actin remodeling

resultant from E-cadherin homoligation and subsequent Src

activity [63,64]. The presence of pS418 cortactin at these regions

may suggest additional functional roles for cortactin in E-cadherin-

mediated actin regulation within solid tumors.

Selumetinib inhibition of cortactin S405/S418 phosphorylation

reinforces the MEK-ERK1/2 pathway as the main signaling route

responsible for phosphorylating these cortactin sites in tumor cells

[26,40]. In addition to MEK, PAK1 has recently been shown to

phosphorylate cortactin at S405/418 [42]. PAK1 is activated

primarily by binding to active Cdc42 or Rac1 [65], which in turn

binds and activates MEK to stimulate ERK1/2 activation [66].

Since MEK inhibition largely ablates S405/418 phosphorylation,

the impact of PAK1 activity on S405/418 phosphorylation may be

context dependent, with direct PAK1 phosphorylation of cortactin

S405/418 regulating actin polymerization required for endosomal

trafficking in contrast to impacting lamellipodia actin dynamics.

While the current understanding regarding the interrelationship

between PAK1 and MEK in governing cortactin S405/418

phosphorylation is incomplete, it is clear that the PAK-MEK-

ERK1/2 signaling nexus impinges on cortactin to regulate actin

dynamics involved in several membrane-based cellular processes.

Consistent with other reports [39,40], we observed the MEK-

dependent EGF-induced shifting of cortactin from the 80 kDa to

85 kDa form by Western blotting. The shift in cortactin Mr is not

attributable to bulk addition of phosphate, since phosphatase

Figure 7. Cortactin phosphorylation at serine 405 and 418 is required for lamellipodia persistence. (A) Kymographic analysis of MTLn3
lamellipodia. Serum starved MTLn3 cells (Ctl) or cells transfected with the indicated cortactin siRNA and cortactin constructs were monitored for
dominant lamellipodia formation by live cell imaging following EGF stimulation. Quantification of lamellipodia protrusion rates, length of extension,
and time of lamellipodia persistence are shown for each experimental condition. $10 cells were analyzed for each group from $3 independent
experiments. (B) Representative kymograms of each cell type. Kymograms were constructed from 1-pixel wide lines drawn from the initial leading
edge and in the direction of the dominant lamellipodia. Cells were visualized by fluorescent microscopy using mCherry-beta-actin as the lamellipodia
marker. Images were captured every five sec for a period of 15 min. Black lines denote the baseline position of the leading edge prior to EGF
stimulation. Bar; 5 micrometers.
doi:10.1371/journal.pone.0013847.g007
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treatment of cortactin immunoprecipitates from EGF-treated cells

failed to reconvert the 85 kDa form to 80 kDa (data not shown).

While the distinct 80 kDa and 85 kDa bands represent different

post-translationally modified cortactin forms associated with

pS405/418 phosphorylation, mutations at these sites have no

effect on 80/85 kDa cortactin ratios, with the S405/418A mutant

displaying a similar cortactin electrophoretic pattern to wild type

cortactin (Figure 4). This suggests that S405/418 cortactin

phosphorylation, while associated with the shift from 80 to

85 kDa, is not necessary for generation of the 85 kDa cortactin

form. This is supported by the presence of 80 kDa and 85 kDa

cortactin forms produced in kinase-free systems [27,67] and by the

existence of a single 85 kDa form when analyzed by urea

denaturing SDS-PAGE [67].

The lack of detailed structural data for cortactin has hampered

understanding conformational changes cortactin undertakes in

response to post-translational modifying events. The existence of

cortactin in a ‘‘closed’’ versus ‘‘open’’ form regulated by S405/418

phosphorylation has been proposed to explain the observed 80 to

85 kDa shift [15,40]. These studies propose that the ‘‘closed’’ non-

phosphorylated cortactin form assumes an autoinhibitory confor-

mation where the SH3 domain binds back to an unidentified site

within helical proline-rich (HP) domain to prevent binding to N-

WASp and other SH3 ligands. Phosphorylation of S405/418 is

proposed to liberate the SH3 domain, where it binds and

stimulates N-WASp activation. This is supported by expression

of cortactin S405/418D phosphomimetic forms in cells resulting in

increased branched actin networks in actin tails associated with

cytoplasmic vesicles [41]. Initial assessments of cortactin structure

by electron microscopy revealed the protein as a rod shaped

monomer 220 Å in length [68]. Recent biophysical studies

utilizing chemical crosslinking and small angle x-ray scattering

indicates that cortactin exists primarily in a globular form, with the

carboxyl terminal HP and SH3 domains folding back onto the

amino terminal actin binding region, supporting a ‘‘closed’’

conformation [69]. Additional evidence for an inhibitory function

of the amino terminus can be inferred from the ability of the

cortactin carboxyl terminal domain to promote N-WASP-

dependent cell motility as effectively as wild type cortactin [16].

In the ERK-Src ‘‘switch’’ model, cortactin tyrosine phosphor-

ylation by Src serves to downregulate N-WASp activity promoted

by S405/418 phosphorylation [15]. This model therefore suggests

that serine and tyrosine phosphorylation of cortactin function in a

reciprocal manner to govern N-WASp activation [55]. Our data

with site-specific phosphorylation antibodies indicates that S405/

418 and Y421 can be co-phosphorylated, and analysis of point

mutant cortactin constructs does not indicate a reciprocal

influence between cortactin serine and tyrosine phosphorylation

events. These data suggest that cortactin function is not exclusively

regulated by a serine-tyrosine ‘‘switch’’ mechanism. While our

data do not rule out scenarios where such a mechanism may be

employed to some degree at the cellular level, they are consistent

with biochemical and cellular studies demonstrating positive

effects of cortactin tyrosine phosphorylation on N-WASp-mediat-

ed Arp2/3 activation [35,37]. The ability of cortactin to be

simultaneously phosphorylated at S405/418 and Y421/470/486

may therefore provide cells with the ability to fine-tune the level of

N-WASp activation and subsequent actin remodeling in response

to diverse upstream stimulatory input.

Inhibition of carcinoma cell motility by MEK blockade and

S405/418A expression indicates that S405/418 cortactin phos-

phorylation is important in promoting and maintaining cell

migration. While similar results were observed in wound healing

assays [41], we extend these findings by evaluating the effects of

pS405/418 on lamellipodia dynamics. The inability of MTLn3

cells expressing S405/418A cortactin to maintain EGF-stimulated

dominant lamellipod persistence implies that the actin networks

within these cells fail to maintain proper Arp2/3 nucleation, or are

more labile following lamellipodia extension. While N-WASp

activation and Arp2/3 mediated actin polymerization has been

shown to be important in governing motility in multiple cell types

[16,41], WAVE2 and formin proteins, not N-WASp, are

responsible for lamellipodia protrusion in MTLn3 cells [70].

These results would therefore rule out a role for direct N-WASp

activation by pS405/418 cortactin in MTLn3 lamellipodia

extension. In addition to N-WASp, the cortactin SH3 domain

interacts with several other actin-regulatory proteins (reviewed in

[10]). In particular, the cortactin SH3 domain activates faciogen-

ital dysplasia protein 1 (FGD1) [71,72], a potent activator of

Cdc42 [44]. Cdc42 activity is required for localization of WAVE2

and its activator IRSp53 to the cell membrane, where it mediates

lamellipodia extension [73]. FGD1 also activates the MEK-

ERK1/2 pathway [44], providing the potential of a positive

feedback loop in stimulating cortactin S405/418 phosphorylation

through continuous cortactin SH3-mediated FGD1 activity.

Whether such an FGD1-based regulatory circuit or other modes

of potential pS405/418 cortactin regulation of WAVE2 exist in

MTLn3 cells remains to be evaluated.

Previous studies on lamellipodia dynamics in other cells types

indicate that cortactin removal decreases lamellipodia persistence,

which can be rescued by re-expression of a cortactin amino

terminal fragment lacking the carboxyl terminal region [18] and

therefore eliminating contributions from pS405/418 in this

system. These results differ from our work in MTLn3 cells, where

cortactin removal results in enhanced persistence. These differ-

ences may be due to a combination of different cell types,

chemotatic cues, and analysis of the dominant, initial lamellipodia

versus steady-state lamellipodia dynamics [10]. Interestingly,

inhibition of ERK1/2 signaling during macrophage lamellipodia

extension results in decreased lamellipodia stability, with similar

kymograph profiles to EGF-stimulated MTLn3 cells with S405/

418A expression [74]. These studies provide supporting evidence

for our observations.

Supporting Information

Figure S1 EGFR activation status in 1483 cells in response to

selumetinib or saracattinib treatment. 1483 cells were treated with

vehicle (DMSO), selumetinib (A), or saracatinib (B) for 16 h in

serum free media. Cells were stimulated with 100 nanograms/ml

EGF for 20 min, lysed and analyzed by Western blotting with anti-

EGFR-pY1068, anti-EGFR, anti-pErk1/2, Erk1/2, anti-Src-

pY418, and anti-Src antibodies as indicated.

Found at: doi:10.1371/journal.pone.0013847.s001 (0.23 MB TIF)

Video S1 EGF-mediated extension of MTLn3 cells. Time lapse

video microscopy of non-transfected mCherry-beta-actin trans-

fected MTLn3 cells stimulated with 100 nanograms/ml EGF.

Cells were visualized by swept-field fluorescence microscopy.

Found at: doi:10.1371/journal.pone.0013847.s002 (0.30 MB

MOV)

Video S2 Cortactin depletion enhances lamellipodia persistence

MTLn3 cells stimulated with soluble EGF. MTLn3 cells were

transfected with siRNA targeting cortactin. 48 h after transfection,

cells were transfected with mCherry-beta-actin and stimulated

with EGF. Cells were visualized by swept-field fluorescence

microscopy.
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Found at: doi:10.1371/journal.pone.0013847.s003 (0.15 MB

MOV)

Video S3 Expression of wild-type cortactin rescues siRNA-

mediated enhancement of lamellipodia persistence. MTLn3 cells

were transfected with siRNA targeting cortactin were co-

transfected after 48 h with mCherry-beta-actin and GFP-tagged

wild type cortactin. Cells were visualized by swept-field fluores-

cence microscopy. Red channel, mCherry; green channel; GFP

fluorescence.

Found at: doi:10.1371/journal.pone.0013847.s004 (4.43 MB

MOV)

Video S4 Phosphorylation of cortactin S405/418 is required for

lamellipodia persistence. MTLn3 cells transfected with siRNA

targeting cortactin were co-transfected after 48 h with mCherry-

beta-actin and GFP-labeled S405/418A cortactin. Cells were

visualized by swept-field fluorescence microscopy. Red channel,

mCherry; green channel; GFP fluorescence.

Found at: doi:10.1371/journal.pone.0013847.s005 (7.00 MB

MOV)
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