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Abstract

Background: Mycobacterium ulcerans is the causative agent of necrotizing skin ulcerations in distinctive geographical areas.
M. ulcerans produces a macrolide toxin, mycolactone, which has been identified as an important virulence factor in ulcer
formation. Mycolactone is cytotoxic to fibroblasts and adipocytes in vitro and has modulating activity on immune cell
functions. The effect of mycolactone on keratinocytes has not been reported previously and the mechanism of mycolactone
toxicity is presently unknown. Many other macrolide substances have cytotoxic and immunosuppressive activities and
mediate some of their effects via production of reactive oxygen species (ROS). We have studied the effect of mycolactone in
vitro on human keratinocytes—key cells in wound healing—and tested the hypothesis that the cytotoxic effect of
mycolactone is mediated by ROS.

Methodology/Principal Findings: The effect of mycolactone on primary skin keratinocyte growth and cell numbers was
investigated in serum free growth medium in the presence of different antioxidants. A concentration and time dependent
reduction in keratinocyte cell numbers was observed after exposure to mycolactone. Several different antioxidants inhibited
this effect partly. The ROS inhibiting substance deferoxamine, which acts via chelation of Fe2+, completely prevented
mycolactone mediated cytotoxicity.

Conclusions/Significance: This study demonstrates that mycolactone mediated cytotoxicity can be inhibited by
deferoxamine, suggesting a role of iron and ROS in mycolactone induced cytotoxicity of keratinocytes. The data provide
a basis for the understanding of Buruli ulcer pathology and the development of improved therapies for this disease.
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Introduction

Mycobacterium ulcerans is the causative agent of necrotizing skin

ulcerations known as Buruli ulcer (BU) in many West and central

African countries and in Australia [1]. M. ulcerans produces a

macrolide toxin, mycolactone, which has been identified as an

important virulence factor in ulcer formation. Mycolactone is a

12-membered macrocyclic polyketide in which a second highly

unsaturated polyketide side-chain is attached via an ester linkage.

The natural variants of mycolactone share the core ring structure

but vary in their unsaturated polyketide side chain [2], the core

structure being substantially less toxic than the intact molecule [3].

Infection with a strain of M. ulcerans expressing mycolactone is

associated with cell death and extracellular infection and

pathology in a guinea pig model while a mycolactone negative

mutant produces an intracellular granulomatous inflammatory

infection similar to that of other mycobacterial species [4].

Mycolactone is cytotoxic to fibroblasts and adipocytes in vitro

and has modulating activity on immune cell functions. Fibroblasts

undergo apoptotic cell death after 3–5 days when exposed to

mycolactone in vitro [5]. Adipocyte cell death after M. ulcerans

infection involve direct necrosis caused by mycolactone as well as

indirect apoptosis [6].

In the present study we have explored mycolactone effects on

human primary skin keratinocytes in vitro. These cells are

instrumental in the wound repair process by forming a protective

epithelial barrier over the wound bed. Our finding is a

concentration and time dependent reduction in cell numbers after

exposure of keratinocytes to mycolactone . The mechanism of

mycolactone toxicity is presently unknown. However, many other

macrolide substances have cytotoxic and immunosuppressive

activities and mediate some of their effects via production of
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reactive oxygen species [7,8,9,10,11,12,13,14,15,16]. We therefore

tested the hypothesis that the mycolactone effect on keratinocytes

is mediated by reactive oxygen species and thus would be

amenable for prevention by antioxidant treatment. To this end

we have tested different antioxidants for effects on mycolactone

mediated reduction of keratinocyte cell numbers.

Materials and Methods

Reagents
Mycolactone A/B was isolated and purified as described [17] and

provided by PL Small. A 5 mg/ml solution in ethanol was prepared

and stored at 220uC, protected from light. The antioxidants

catalase (C3155), deferoxamine (D-9539), and Tiron (Fluka 89460)

were from Sigma Aldrich (Stockholm, Sweden). TEMPOL and

Trolox were obtained from Biomol International, L.P. (Plymouth

Meeting, PA). CM-H2-DCFDA was obtained from Invitrogen

(Stockholm, Sweden) and H2O2 from Sigma Aldrich.

Cell culture
Human primary adult skin keratinocytes were obtained from

Karocell AB (Stockholm, Sweden) and cultured in keratinocyte

growth medium (Karocell AB) at 5% CO2, 37uC. The cells were

detached by treatment with 0.05% trypsin-EDTA (Gibco, Invitro-

gen, Stockholm, Sweden) followed by trypsin inhibitor (Cascade

Biologics, Invitrogen). The cells were used after 3–5 passages.

Cell growth assay
Cell growth experiments were performed in 96-well plates by

seeding 2000–10000 cells in 100 ml growth medium. The next day,

the medium was removed and replaced by 80 ml fresh medium

containing antioxidants. After 30 min at 5% CO2, 37uC, mycolac-

tone was added in 20 ml and the incubation was continued for 24–

72 h. Viable cell numbers were quantitated by adding 10 ml of the

live cell labelling agent WST-1 (Roche Diagnostics, Stockholm,

Sweden) for 20 min at 37uC, or by replacing the medium with 100 ml

0.05% neutral red (N2889, Sigma Aldrich) in growth medium and

incubating for 1 h 37uC. Neutral red was extracted in 100 ml 70%

ethanol and the plates were read in a spectrophotometric plate reader

(Molecular Devices, Sunnyvale, CA). The results are expressed as

optical density (OD) at 450 nm for WST-1 and 550 nm for neutral

red correcting for background absorbance at 650 nm.

ROS production
Intracellular ROS production was measured by labelling of

confluent keratinocyte monolayers with 5 mM of the oxidation

sensitive fluorescent probe CM-H2DCFDA for 60 min. The

medium was removed and replaced with growth medium

containing mycolactone and fluorescence (485 nm excitation/

535 nm emission) was measured in a fluorescence plate reader

Victor (Wallac) after 30–60 min.

Statistical analysis
All data reported are representative of 2–4 experiments with at

least three replicates of each condition. Differences between

treatments in individual experiments and for combined data from

four independent experiments were tested for statistical signifi-

cance using ANOVA and Student’s t-test.

Results

Mycolactone reduces keratinocyte cell numbers
Subconfluent keratinocytes were treated with mycolactone at a

concentration between 1 and 10000 ng/ml for 24–72 h. After

24 h, cell rounding and detachment were observed in cultures

containing .30 ng/ml mycolactone and a decrease in cell

numbers was observed after 48–72 h (Figure 1A). At concentra-

tions below those for which overt cytotoxicity occurred, a slight but

statistically non-significant increase in cell numbers could was

observed. When the concentration was increased to 100–300 ng/

ml, there was reduction in cell numbers of approximately 70%.

After 72 h of culture in 10,000 ng/ml of mycolactone there was a

complete elimination of viable, WST-1 reactive cells in the

cultures (Figures 1B and 1D). H2O2, which was used as a positive

control, caused an almost complete reduction in cell numbers at a

concentration of .10 mg/ml (data not shown).

Effect of mycolactone on ROS production
Effects of mycolactone on keratinocytes was similar to that of

H2O2 in two respects; (i) there was a tendency (statistically non-

significant) that low concentrations increased cell numbers, and (ii)

the concentration response curve showed a steep reduction in cell

numbers over a relatively narrow range, suggesting a threshold

dependent cytotoxic effect. Using an intracellular probe, CM-

H2DCFDA, which becomes fluorescent when reacting with free

radicals, we could demonstrate increased fluorescence after 30–60

min of treatment of keratinocytes with a cytotoxic concentration

(300 ng/ml) of mycolactone (Figure 2). The increase in fluores-

cence was prevented by addition of a combination of antioxidants;

deferoxamine and TEMPOL. As positive control we tested H2O2,

which significantly increased CM-H2 DCFDA fluorescence and

this could be prevented by catalase (data not shown). These results

suggest that mycolactone, similar to other macrolides, increases

oxidative stress levels in epithelial cells and this could be

responsible for its toxic effect on keratinocytes.

Antioxidants prevent mycolactone toxicity
We next investigated whether ROS was involved in mycolac-

tone cytotoxicity by determining whether addition of catalase

could prevent the effect of mycolactone on keratinocytes. In

addition we used cell penetrating anti-oxidants such as (i) O2
2

scavenging superoxide dismutase mimetics, TEMPOL and tiron,

(ii) the iron chelating substance deferoxamine, which prevents

production of OH2 via the Fenton reaction by, and (iii) a water

soluble vitamin E analogue, Trolox. The antioxidants were used at

concentrations reported to affect ROS production in other studies.

Figure 3A shows that deferoxamine decreased, while catalase and

trolox increase cell numbers in the control cultures. All anti-

oxidants except trolox caused a partial but statistically significant

protection against mycolactone cytotoxicity as indicated by the

higher WST-1 staining in the antioxidant treated cultures. In

order to exclude the possibility that antioxidant interference with

the redox active substrate in the WST-1 reagent disturbed the

analysis, cell quantitation with neutral red was performed, and the

effects of deferoxamine and TEMPOL were investigated further.

Deferoxamine at 100–400 mM abolished the cytotoxicity of

mycolactone (Figure 3B) while TEMPOL had no effect at

400 mM and 800 mM. TEMPOL at 1600 mM showed significant

protection in two out of three experiments. It was not possible to

distinguish any additional effect on cytotoxicity if 400 mM

TEMPOL was added to 200 mM deferoxamine.

Discussion

We have demonstrated that the M. ulcerans produced toxin

mycolactone is cytotoxic for human keratinocytes. Increased levels

of intracellular ROS were found after treatment with mycolactone

and this increase could be prevented by antioxidants. Pre-

Mycolactone and ROS
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treatment with several different antioxidants showed partial

protection against cytotoxicity. In particular, the iron chelating

agent deferoxamine could provide complete protection against

mycolactone mediated cytotoxicity.

Thus, keratinocytes, like fibroblasts and adipocytes [5,6,17], are

sensitive to mycolactone toxicity in vitro. A recent study showed

that keratinocyte stem cells and transit amplifying cells, differen-

tiated by their adherence properties, undergo apoptotic cell death

when exposed to 1–10 ng/ml mycolactone while the keratinocyte

cell line, HaCaT, required a10-fold higher concentration [18].

These results clearly demonstrate that this bacterial toxin has

effects on skin cells in vitro that may have a bearing on the

observed tissue lytic effects in BU, since non-treated BU tissue

contains biologically active mycolactone at approximately 10–

100 mg/mg tissue [19].

The mechanisms whereby mycolactone mediates its toxic and

inhibitory effects on different cells are incompletely known. We

noted a similarity between the reactive oxygen species H2O2 and

mycolactone in the way in which they affected keratinocyte cell

numbers. We therefore tested the hypothesis that mycolactone

increased ROS in keratinocytes. Using a fluorescent ROS sensitive

probe we could demonstrate a concentration dependent increase

in signal indicating increased production of ROS within 1 h of

exposure to the toxin.

Drawing on the chemical structure of the core group of

mycolactone we also speculated that mycolactone, like other

macrolides, would cause cells to increase their production of

ROS up to toxic levels. Cell toxicity dependent on ROS is

described for the immunosuppressants cyclosporine A and FK506

[7,10,12,14,20], and antimycin A, an inhibitor of cell respiration

at complex III [21,22,23]. Although it is unknown whether

macrolides have a common mechanism responsible for increased

production of reactive oxygen species, it is intriguing that a

mycobacterial macrolide immunosuppressive toxin now also

appears to share this property.

We consider it likely that mycolactone induced production of

ROS would be cell dependent and may manifest itself differently

and at different concentrations in different cell types, depending

on their capacity to produce ROS and their internal antioxidant

status. To this end, other epithelial cell lines like the embryonal

kidney derived HEK293 line is reported as being resistant to

mycolactone cytotoxicity [18]. Non-cytotoxic levels of ROS could

Figure 2. Mycolactone increases ROS production. Intracellular
ROS production was detected by intracellular CM-H2DCFDA fluores-
cence in keratinocytes after 45 min incubation in control medium or
with 100 and 300 ng/ml mycolactone. Parallel cultures were pretreated
for 30 min with a combination of deferoxamine (100 mM) and TEMPOL
(200 mM) (D+T) before CM-H2DCFDA and addition of mycolactone.
Asterisks indicate significant (p,0.05) differences in fluorescence
between treatments and their corresponding control in one represen-
tative experiment with four to six replicates (means and SD).
doi:10.1371/journal.pone.0013839.g002

Figure 1. Mycolactone is cytotoxic for keratinocytes. Mycolactone was added to sub-confluent cultures of keratinocytes and (A) cell numbers
were measured as optical density of WST-1after 24, 48 and 72 h of treatment with 1000 ng/ml of mycolactone, or (B) after 72 h at different
concentrations of mycolactone. An asterisk indicates a significant (p,0.05) reduction in WST-1 labeling as compared to the corresponding medium
control. Cell cultures of untreated controls (C) and cultures treated with 300 ng/m mycolactone (D) were photographed after 48 h. Data are from one
representative experiment showing means and SD of triplicates.
doi:10.1371/journal.pone.0013839.g001
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be responsible for inhibitory effects on immune cells. For example,

mycolactone inhibits IL-2 production by T cells [24,25] and TNF-

production by monocytes [26] . Such immunosuppressive effects

by mycolactone would prevent an immune system mediated

elimination of bacteria from infected tissue. Several studies of M.

ulcerans infected patients have reported defective IFN-c responses

to M. ulcerans antigens [27,28,29,30,31,32] as well as to other non-

mycobacterial pathogens [33]. Down regulation of immune

responses via local production of ROS has been identified as

important mechanism for prevention of an autoimmune response

in arthritis [34] and can be observed at the cellular level in

macrophages as responsible for suppression of IL-2 production by

T cells [35]. Inhibition of cytokine production by mycolactone in

peripheral blood cells has been shown to occur at 100 ng/ml,a

non-cytotoxic concentration for T cells, is manifested at the

posttranscriptional level [36] and involves activation of the Src-

family kinase Lck [37]. Interestingly, Lck activation by phosphor-

ylation is dependent on redox regulation of cellular phosphatase

activity and can be induced by treatment of T cells with H2O2

[38,39].

A recent report describes that reactive oxygen species are

involved in the defence against M. ulcerans infection based on

reduced intracellular bacterial growth in keratinocytes in vitro in

the presence of antioxidants [40]. Here, antioxidants prevented a

reactive oxygen species dependent induction by M. ulcerans of the

antimicrobial cathelicidin peptide fragment LL-37, which had an

inhibitory effect on bacterial numbers in keratinocytes. However, a

non-mycolactone producing strain of M. ulcerans was used in that

study. The overall impact of reactive oxygen species production on

M. ulcerans survival and growth in infected cells and tissue is not

known. In general, intracellular forms of mycobacteria are

considered relatively resistant to reactive oxygen species. M.

tuberculosis elicits production of reactive oxygen species by host

cells, and this contributes to their elimination. However, several

detoxifying enzyme systems have evolved which help the bacteria

to resist free radicals like H2O2, making some strains less

susceptible to elimination via this mechanism [41,42]. The M.

marinum mel2 locus is important for its ability to resist reactive

oxygen and nitrogen species in macrophages [43]. M. ulcerans has

active catalase and superoxide dismutase [44] which may aid in

resistance to host cell derived reactive oxygen species including

those that may be generated via mycolactone.

The importance of the redox balance in wound healing is

beginning to be recognized with the demonstration that low

concentrations of reactive oxygen species stimulate wound healing

and high concentrations are associated with chronic wounds [45].

There is no publicly available knowledge about the local and

systemic oxidative status in BU patients. In two other mycobac-

terial diseases, leprosy and urogenital tuberculosis, there are signs

of systemic oxidative stress that can be ameliorated by vitamin E

supplementation [46,47]. It is interesting to note that reactive

oxygen species are able to suppress T cell functions [48] and

regulate intracellular survival of mycobacteria [49]. Thus, at the

same time as being an important part of the antibacterial defense

system, reactive oxygen species may be tolerated by bacteria and

contribute to disease. NO, a nitrogen based free radical, is

implicated in the defense against mycobacteria [50] and has been

investigated as a possible means to eliminate M. ulcerans and to

improve BU healing. To this end, a small controlled trial of topical

application of a acidified sodium nitrate as nitrogen oxide donor to

BU showed significantly improved healing as compared with

placebo [50]. Acidified sodium nitrate generates nitrogen oxide

and effectively kills M. ulcerans in vitro [51]. Nitrogen oxide reacts

with O2
2 to form the reactive peroxynitrite radical which can

contribute to killing of mycobacteria [52]. Preliminary data have

shown that mycolactone cytotoxicity in vitro against primary

keratinocytes is unaffected by addition of NO, inhibition of

endogenous NO synthesis and by inhibition of the NADPH

oxidase complex (unpublished results).

We found that, deferoxamine, which indirectly acts as an

antioxidant, can mediate protection against mycolactone mediated

cytotoxicity. Our demonstration that deferoxamine, which has

iron chelating activity and thus prevents formation of OH2 via

Fenton reaction, mediated complete protection, suggests that

OH2 may be involved in the toxicity [53]. Alternatively, chelation

of iron could have a direct effect on the cytotoxicity, implying that

mycolactone cytotoxicity may be directly dependent on iron.

Interestingly, excess iron is reported to promote M. tuberculosis

infection in vitro [54] and is associated with increased suscepti-

bility to tuberculosis [55,56]. The role of iron in BU has to our

knowledge not been investigated. Anaemia is common in most

Figure 3. Antioxidant protection against mycolactone cytotox-
icity. (A) Antioxidants were added 30 min before mycolactone (300 ng/
ml) and the incubation was continued for 48 h when cell numbers were
determined by measuring WST-1color at 450 nm. Data represent means
of triplicate determinations and standard deviations from one
representative experiment out of two performed (*, p,0.05, one way
ANOVA and students t-test). (B) Deferoxamine (D) and TEMPOL were
added at different concentrations alone or in combination 30 min
before mycolactone (300 ng/ml) and the incubation was continued for
48 h when cell numbers were determined by measuring neutral red
uptake Concentrations are in mM for all substances except catalase
which is in U/ml. Data shown are means and SEM of four experiments
(*, p,0.05, ANOVA and students t-test). TEMPOL 1600 mM was not
included in the statistical analysis (N = 2).
doi:10.1371/journal.pone.0013839.g003
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sub-Saharan African countries with BU, such as Benin [57].

However, a mutation in the gene for the iron export protein

ferroportin, which is associated with mild anemia and a tendency

to iron loading, is a common polymorphism in the African

populations [58,59]. Interestingly, ferroportin 1 is regulated by M.

tuberculosis infection and is present in bacteria-containing phago-

somes [60]. Further studies will be necessary to establish the iron

status in patients with BU. [59]. Polymorphism in the gene for

another iron transporter protein, Nramp1, is associated with

susceptibility to BU [61]. The functional role of the allelic variant,

which resides in exon 15 resulting in an Glu to Asn substitution,

associated with increased susceptibility to BU, is unknown. A

mechanistic interdependence between ROS, iron ion oxidation,

and iron ion transport in the regulation of mycobacterial growth

has been proposed by van Zandt et al., [60]. In the suggested

model, Fe2+ is transported by Nramp1 into the phagosome, where

it is oxidized to Fe3+, with production of OH2 as a consequence.

The bacteria in the phagosome can then utilize Fe3+ for their

intracellular growth. The role of ferroportin 1 is to export Fe3+

from the phagosome thus limiting the access of iron for bacteria

residing in this compartment.

In conclusion, we have identified a novel mechanism whereby

the M. ulcerans toxin mycolactone exerts its cytotoxic activity on

keratinocytes. The mechanism is suggested to involve ROS and

can be inhibited by the iron chelating agent deferoxamine.

Whether these findings can be extended to encompass all effects of

mycolactone operating during infection with M. ulcerans should be

the subject of further investigations. Identification of safe and

effective anti-toxins may provide a basis for development of more

effective treatment of Buruli ulcers.
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