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Abstract Several regions of the brain which represent

kinematic quantities are grouped under a single state-esti-

mator framework. A theoretic effort is made to predict the

activity of each cell population as a function of time using

a simple state estimator (the Kalman filter). Three brain

regions are considered in detail: the parietal cortex

(reaching cells), the hippocampus (place cells and head-

direction cells), and the entorhinal cortex (grid cells). For

the reaching cell and place cell examples, we compute the

perceived probability distributions of objects in the envi-

ronment as a function of the observations. For the grid

cell example, we show that the elastic behavior of the

grids observed in experiments arises naturally from the

Kalman filter. To our knowledge, the application of a

tensor Kalman filter to grid cells is completely novel.

Keywords Hippocampus � Place cell � Entorhinal �
Grid cell � State estimation � Kalman filter

Introduction

The encoding of space and time coordinates is a basic

problem which the brain must solve. Multiple (perhaps

most) brain regions are involved in this problem. At a basic

level, primary sensory afferents must relay a topographic

map from the mechanoreceptor sites to the primary

somatosensory cortices. At a more abstract level, associa-

tion cortices must build and update geometrically complex

models of the environment to direct accurate behavior.

Specific anatomic regions have been selected by

experimentalists to study space–time reasoning. ‘‘Arm-

reaching’’ neurons in the parietal cortex of primates have

been used to study how visual cues are transformed from

eye coordinates to arm coordinates (Ferraina et al. 1997).

The inferior colliculus of the bat and ferret has been used as

a model for time-interval coding (Ehrlich et al. 1997). The

hippocampal-entorhinal complex (HEC) and its neighbor-

ing regions, in particular, contain a rich array of cells tuned

to kinematic variables. These include place cells in the

hippocampus, head-direction cells in the postsubiculum,

and grid cells in the entorhinal cortex of rats (O’Keefe and

Dostrovsky 1971; Taube et al. 1990; Hafting et al. 2005).

In each of the experimental models mentioned, com-

putational models have been devised to predict how cells

will fire when the animal is exposed to a stimulus oriented

in space–time. Models for predicting cell activity for the

reaching problem have been proposed by Cisek (2006) and

Pouget and Snyder (2000). Particularly successful place

cell models have been proposed by O’Keefe and Burgess

(1996), Barry et al. (2006), and Balakrishnan et al. (1999);

countless others exist. Notable models of entorhinal grids

have been constructed by Fuhs and Touretzky (2006), Rolls

et al. (2006), and Blair et al. (2007). Extensions of the theta

phase precession theory for place cells and grid cells were

given by Igarashi et al. (2007), Baker and Olds (2007),

Wagatsuma and Yamaguchi (2007), and Takahashi et al.

(2009). It is puzzling to note that the models mentioned

differ from one brain region to the next, although the

stimuli and task in question may be indistinguishable. Take

the example of an animal reaching for an object in the

environment. According to the parietal view, we might say

that the animal transforms the object’s image on its retina

from retinal to hand coordinates to facilitate reaching;

each step in this transformation has been documented in

the parietal cortex. From the hippocampal standpoint,
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we might argue that the hippocampus has a place cell

anchored to the same object which ‘‘informs’’ the animal of

its location. It follows that two simultaneous representa-

tions of the same object must exist. We would like to pose

the question: which representation determines the animal’s

reaching behavior? The natural answer is that both repre-

sentations contribute; i.e., the two brain regions are

working on the same calculation together. If this is the

case, however, why does one need two different mathe-

matical models to perform one calculation?

The simplest answer to this problem would be to sup-

pose that all space–time calculations in the brain are car-

ried out according to a set of common rules. If one could

determine these rules, it would be unnecessary to build a

new mathematical model to explain how each new brain

region calculates space–time relations. Instead, one would

have to figure out ‘‘which part’’ of the overall calculation

the region in question was doing.

In this paper, we have attempted to group several of the

brain functions just described under a common set of rules.

The rules adopted correspond to those used by engineers to

deal with the analogous problems in robotics (Gelb 1984;

Smith et al. 1990). These rules have already been applied to

the hippocampus in several important papers (Bousquet

et al. 1999; Szita and Lorincz 2004). The author’s goal is to

show that the same scheme can be applied with equal

success to any brain region which represents space–time;

we will outline this procedure in detail for the parietal

cortex (reaching cells) and entorhinal cortex (grid cells).

We will also revisit place cells with a somewhat different

interpretation than that of Bousquet et al. (1999).

Assumptions of the Kalman Filter

The set of rules utilized in this paper will be the state

update equations of the linear Kalman filter. This filter is

useful for computations and experiments due to its sim-

plicity. However, we do not wish to create the impression

that the unity between the several problems presented

would vanish if a more generalized set of rules were used.

To this end, we will briefly review the series of assump-

tions which connect the Kalman filter to the basic rules of

probability. Analogous arguments for fuzzy sets could be

made by replacing probabilities with membership

functions.

Given a sample space containing various events, we can

define the unions and intersections of these events. A

particular type of sample space arises if we consider a

particular collection of mutually exclusive ‘‘states’’ at

multiple time points. We will refer to the states contained

within a given time point as a ‘‘frame.’’ In this type of

space, the only non-zero conditional probabilities are

between states at non-identical time points. If we further

constrain the conditional probabilities to only involve

states at adjacent time points (the Markov property), we

obtain a Markov chain.

A Markov chain of particular value to the neuroscientist

is the hidden Markov model (HMM), which is used to

incorporate the effect of observations on the probability

distribution of a hidden stochastic process. Denoting the

initial state vector by psi
; the state transition probabilities

by psisj
; and the state emission probabilities by osi

; the

probability of a given observations sequence in a HMM

can be written as:

psT
¼ ps1

ps1s2
os2

ps2s3
os3

. . .psT�1sT
osT

ð1aÞ

A key assumption in the HMM is that the observations are

independent of one another and of states outside the cor-

responding time point. This assumption is hard to justify

experimentally. We find this to be a major limitation of the

HMM, but the complexity of alternative formulations

without this assumption appears prohibitive at this time.

Special Markov chains can be obtained by restricting the

permitted types of state transitions. If the states considered

are a lattice of cubes within a volume of space, we might

permit only transitions between neighboring cubes. A

random walk has this property. Letting these cubes shrink

to infinitesimal dimensions, we obtain a random walk for

continuous variables (a diffusion process). Nonlinear filters

such as the Kolmogorov and Zakai equations, or linear

filters such as the Kalman and Wiener filters, fall into this

category (Gelb 1984).

We require the analogue of Eq. 1a for continuous vari-

ables to generate the Kalman filter. For the discrete-time

case, the system transitions (or ‘‘control inputs’’) and state

emission probabilities (or ‘‘observations’’) may be con-

sidered separately. For the system evolution model x(k) at

time-step k, we take the linear equation:

x kð Þ ¼ a kð Þx k � 1ð Þ þ b kð Þu kð Þ þ wðkÞ ð1bÞ

Here a(k) and b(k) are model parameters which we will set

equal to unity, u(k) is a control input variable, and w(k)

indicates additive random noise. Similarly, for the linear

observation model z(k) we let:

z kð Þ ¼ c kð Þx kð Þ þ v kð Þ ð1cÞ

Here c(k) is a model parameter which, again, will be set

equal to unity. The term v(k) denotes additive random

noise. The random variables w(k) and v(k) will be assumed

continuous and normally distributed, with covariance

matrices R(k) and Q(k), respectively.

Further discussion of these state equations may be found

in Gelb (1984) or Dissanayake et al. (2001).

An important concept relating to the Kalman filter is the

‘‘frame.’’ As mentioned previously, by a frame we shall

316 Cogn Neurodyn (2010) 4:315–335

123



mean the probabilities of all states at a particular time

point. Physically, we can relate a particular ‘‘state of

knowledge’’ by the observer to each time point. In the

diagrams provided throughout the paper, separate frames

are represented by separate icons.

The uncertainty between frames

It is possible to classify state estimation problems by the

number of frames of type B (brain) and W (external world)

of a system. Namely, we can permit each subset to have

one or multiple frames. This scheme yields 4 possibilities

for B/W combinations: 1/1, 1/N, N/1, N/N. These combi-

nations correspond to the 4 situations encountered by a

brain when it represents the motion of extended bodies. We

will list, for each, an experimental example:

1/1—the problem of representing one’s body position in

space (modeled as point-like) relative to a perfectly

known (or ‘‘very familiar’’) environment. The example

of place cells will be used.

1/N—the problem of representing body position in space

relative to an imperfectly-known environment, or repre-

senting the relative positions of objects in the environ-

ment. Place cells, time cells, and head-direction cells are

examples.

N/1—the problem of representing the extended body of

a subject (where uncertainties between sensors may

exist). The reaching problem (studied in the parietal

cortex) will be addressed.

N/N—a generalized case of the preceding problems. We

will not discuss it.

We will now examine each of these cases in detail. The

reader is strongly encouraged to review Appendix Eqs. 31–

34 at this time for a detailed overview of the methods used.

Owing to the space required for a full description of these

methods, we chose to omit them from the body of the text.

Body position relative to a perfectly known

environment

General results

The directed acyclic graph (DAG) for the estimation

problem 1/1 is shown in Fig. 1. This problem represents the

most basic form of the Kalman filter; we will try to gain

intuition for its properties in this section. A subject makes

observations of a single non-subject frame (we will call it

an object) while the subject performs a series of motions

through space. The relative uncertainty U in the positions

of the subject S and the object O, calculated according to

Appendix Eqs. 31 and 33, is given in Eq. 34:

Uso ¼
1

R�1
k þ 1

Qk�1þ 1

R�1
k�1
þ 1

Qk�2þ...

� �

0
BB@

1
CCA

0
BB@

1
CCA

: ð2aÞ

Here Qk and Rk represent the state evolution observation

covariances, respectively, at time step k. The corresponding

position estimates can be calculated according to the Kal-

man filter equations as shown in (34). Since the uncertainty

expressions govern the state evolution, however, we will

only give U explicitly.

The expression 2a agrees with our intuition about how

‘‘certain’’ our subject (say, a rat) is of the position of a

particular object relative to its body. If the rat makes a

perfect observation Rk = 0, then we find U = Rk = 0.

Similarly, if a very inaccurate observation Rk ? ? is

made, it follows that Un = Un-1; the new observation

makes no impact on the rat’s state estimate.

In general, a rat will never be ‘‘completely certain’’ or

‘‘completely uncertain’’ of its position in a familiar envi-

ronment. Rather, the rat’s uncertainty will tend to fluctuate

within some finite range between the 2 extremes when the

number of observations becomes large. We would like to

estimate this range. To do this, we begin by setting all the

terms Qi and Ri equal in 2a. We then take the limit of 2a

when k ? ?:

U ¼ Q

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4

R

Q

r
� 1

� �
ð2bÞ

If we let Qmax, Rmax denote the poorest (least precise)

observation and the poorest control input, and let Qmin,

Rmin equal the best values for these quantities, we can

Fig. 1 A subject makes alternating observations (with covariances

Rk) and control inputs (with covariances Qk). Evaluating the circuit

resistance between the subject at time step k and the object yields

Eq. 2a
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insert these values in 2b to get a ‘‘maximum range’’ for the

uncertainty. This is:

Umin�U�Umax:

We see that U must remain finite and nonzero if Qmax, Rmax

and Qmin, Rmin are all finite.

If the relative positions of all objects in an extended

environment are known with certainty (see IIIB2), then

Eq. 2a holds for the uncertainty of the rat with respect to

any object in the room. That is:

Uso1
¼ Uso2

¼ � � �Uson
:

In other words: if all the objects O1, O2, … On are equally

‘‘observable,’’ i.e.

Rðo1Þ ¼ Rðo2Þ ¼ � � �RðonÞ;

the rat gets the same information from observing different

objects as it does from observing only one object! We may

as well call this common uncertainty ‘‘the uncertainty of

the rat with respect to the room.’’ This is precisely the

relation which hippocampal ‘‘place’’ cells are believed to

represent. Consequently, we should be able to make pre-

dictions about place cell fields using our model. We shall

do this in the next section.

Let us consider other special cases of Eq. 2a. In the

limit, if the rat could drive U to zero, a precise point in the

rat’s body could be represented with respect to the world

(to be discussed further for the case N/1). This implies that

place cell fields can (in principle) become arbitrarily point-

like in space, provided observations become suitably

accurate. The best way for the rat to do this would be to

minimize its internal sources of error Q; for instance, it

might choose to remain roughly stationary. Setting Q = 0

in Eq. 2a, we have:

U ¼ 1
1

R1
þ 1

R2
þ � � � 1

Rn

: ð3Þ

For k roughly identical observations R this reduces to

U = R/k.

Conversely, imagine that a rat at a particular moment

knows its position with uncertainty U = U0. If we then

deprive the rat of further landmark information (perhaps by

turning off the lights), Eq. 2a gives (with Ri = 0 and k

control inputs):

U ¼ U0 þ Q1 þ Q2. . .Qk:

This situation represents ‘‘pure path integration’’ by the rat,

and results in progressive enlargement of the uncertainty

ellipsoid (Dissanayake et al. 2001). If we measured the

summed activity of a population of place cells at a par-

ticular time (we assume the distribution is Gaussian), we

might expect the distribution’s volume to increase in this

case. We are not aware of experiments which have

demonstrated such a phenomenon, although experiments

on blind rats have been conducted (see, for instance, Save

et al. 1998). This implies that the ‘‘position estimate of the

rat with respect to a particular landmark at a particular

time’’ and a ‘‘place field’’ are not equivalent quantities; we

discuss a more likely relationship between them next.

Predictions for place cell fields

Thus far, we have demonstrated that a state-estimator sat-

isfies our intuitive notions regarding that quantity which

may be called ‘‘the uncertainty of the subject with respect

to a landmark.’’ We now need to show that this quantity

actually agrees with what is known about place cells in the

HEC. To make this leap, we will need to assume a rela-

tionship between the firing-rate F of a place cell population

(or PCP) X at time t and the probability that the rat is at the

position x:

FX x; tð Þ � P x; tð Þ ¼ N x; l tð Þ; r2 tð Þ
� �

:

Here N denotes a normal distribution with mean l and

variance r2. To begin with, we need to take into account

that experiments have typically considered the sum of all

action potentials for a given PCP over some time interval

Dt: As we know, the rat’s state estimate (according to the

Kalman filter) will generally not agree with the rat’s true

position unless the rat knows its position relative to all

landmarks with perfect certainty. This implies that a given

PCP will not achieve peak firing at precisely the same

location with each visit. Thus, the ‘‘firing field’’ ~Fof a PCP

which is measured experimentally is actually the sum of

multiple, distinct position estimates made at various times:

~FX x;Dtð Þ ¼ P x;Dt1ð Þ þ P x;Dt2ð Þ � � � þ P x;Dtnð Þ:

Here Dt ¼ Dt1 þ Dt2 � � � þ Dtn: Thus, a given place field

(according to the usual experimental definition) will consist

not of a single normal distribution, but rather a sum of such

distributions.

We now wish to predict some of the place cell fields

observed by O’Keefe and Burgess (1996). This study

examined how place fields changed when a familiar rect-

angular enclosure of dimensions l 9 w was deformed to a

new configuration l0 9 w0. To initiate the Kalman filter, we

will make the following assumptions:

A1 The only landmarks are the corners of the enclosure.

The positions of the corners serve to specify the dimen-

sions of the enclosure completely.

A2 The rat possesses no memory for observations made

after the deformation. This is equivalent to the requirement

that Q ? ? in Eq. 2a for all control inputs after the

deformation. The consequence of this requirement is that

the rat’s state estimate at any moment will only depend on

318 Cogn Neurodyn (2010) 4:315–335

123



the information available at that moment and the infor-

mation acquired before the deformation.

A3 The estimates for the length l and width w of the

enclosure are uncorrelated.

With these assumptions, we initiate the Kalman filter. At

any moment the rat will observe a certain combination of

corners. If the observed corners have a configuration iden-

tical to that of the undeformed enclosure, the PCP will fire

identically in the deformed/undeformed rooms (relative to

the observed landmarks). Conversely, if the relative orien-

tations of the observed corners have changed, the rat will

need to generate some new estimate of its position relative

to them. Since there are only 4 corners total, we can easily

tabulate all possible observations. We must keep in mind

that the state estimates we write down are actually averages,

since each individual observation is subject to random error.

Let us take first a square box w 9 w which is deformed

to a rectangle w 9 l, as shown in Fig. 2 (top panel).

Tabulating all possible observations, we obtain 3 possible

state estimates.

Thus, if the ‘‘place field’’ in the square box was

Gaussian, the field in the rectangle will be (setting 1 = ab,

2 = cd, 3 = abcd):

P xð Þ ¼ N x; labð Þ þ N x; lcdð Þf g þ N x; labcdð Þ: ð4aÞ

This three-peaked field is shown in Fig. 2. We write the

labels for the rectangle in Fig. 2 (lower panel) in matrix

form:

ab abcd cdð Þ: ð4bÞ

We would expect the Gaussians in brackets (Eq. 4a) to be

of greater amplitude since their variances will be smaller

(i.e., the PCP will fire more vigorously for corner config-

urations which are not deformed than for those which have

undergone deformation). This result is in agreement with

the experimental results obtained by O’Keefe and Burgess;

in fact, it also accounts for the observed peak N x; l3ð Þ
which did not appear in the model they developed

(O’Keefe and Burgess 1996). It is worthy of note that if we

permitted the rat some post-deformation memory, the

peaks N x; l1ð Þ and N x; l2ð Þ would gradually migrate

toward N x; l3ð Þ: This accounts for the ‘‘blurring’’

observed between the 3 peaks in Fig. 2a (upper right panel)

of O’Keefe and Burgess’s paper (1996).

We give the corresponding expression for a rectangle

l 9 w which is deformed to a rectangle l0 9 w0. For con-

venience, we label the distinct Gaussian terms with respect

to the corners:

P xð Þ ¼ N a þN b þN c þN df g

þ N ab þN bc þN cd þN da þN abcd:
ð5aÞ

Here we have setN x; lrð Þ ¼ N r for brevity. Again, we see

that the terms in brackets correspond to the peaks predicted

by the model of O’Keefe and Burgess; these peaks

correspond to corner views which appear identical. This

place field is shown in Fig. 3. We give the corresponding

matrix form of the state estimates for the large square (as in

the lower panel of Fig. 3):

a ab b
ac abcd bd
c cd d

0
@

1
A: ð5bÞ

The reader can verify that all other corner combinations

yield one of the state estimates listed here. In their paper,

O’Keefe and Burgess (1996) presented the bracketed terms

of P(x) in the form:

P xð Þ ¼ N N þN E þN S þNW : ð6Þ

Although these results are promising, we were unable to

predict some of the firing-fields found by O’Keefe and

Fig. 2 A rectangular enclosure l 9 w is stretched to new dimensions

l0 9 w. Three different views of corner combinations are possible;

only one takes into account the new dimensions. The color red
denotes positions where the place cell in the top panel will continue to

fire in the bottom panel. See Table 1 and Eq. 4b

Table 1 Three possible state estimates are generated from all pos-

sible corner combinations

Corners observed State estimate (Corners cont’d) (State cont’d)

None None bc 3

a 1 bd 3

b 1 cd 2

c 2 abc 3

d 2 abd 3

ab 1 acd 3

ac 3 bcd 3

ad 3 abcd 3
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Burgess (1996) by inspection alone. This difficulty is not

unexpected, as the fields should be highly dependent on the

particular observation programmes (which were not avail-

able to the author). We would propose the method of

robotic simulation (pioneered by Burgess et al. 1997) as

best suited to this challenge: if one could record the rat’s

observations as a function of time and then enact the same

observation programme using a robot, it might be possible

to duplicate the fields with great precision. For numerical

simulations of time-dependent place field migration using

the Kalman filter, the reader may refer to the study by

Bousquet et al. (1999).

The reader will note that we are not the first to posit a

relationship between place fields and Kalman filtering. A

previous effort of this kind was made by Balakrishnan

et al. (1999). The formulation utilized by these authors

differed from ours in that they considered a system state

vector which included each PCP field explicitly. This

differs from our interpretation, where the collective

activity of the PCP is identical to the rat’s state estimate of

its position at a given time; as such, place fields need not

appear explicitly in the state vector. We cannot see a way

to predict the non-Gaussian geometry of place fields using

the scheme suggested by this group (Balakrishnan et al.

1999). Nevertheless, their work represents a major

advance in our understanding of the HEC as a state-

estimator.

Body position relative to an imperfectly-known

environment

We can consider 2 types of uncertainties for the problem

1/N. First, we have the uncertainty of the observer S with

respect to all the objects O1, O2, … On, which will call the

interaction uncertainty:

Uso1o2...on
� Uint:

Conversely, we can define the uncertainty of the objects

independently of the observer, which we will refer to as the

mapping uncertainty:

Uo1o2...on
� Umap:

We will find Uint and Umap first for the most general

(uncertain) case and then for the limiting (certain) case.

General case

Upper bound for uncertainty For the general case of the

uncertainty U12…n between N frames, we can only establish

an upper bound for the determinant according to the for-

mula (Gersho and Gray 1992):

det Cij�C11C22. . .Cnn:

Writing the uncertainty for N frames evaluated with respect

to the frame i, we have:

U12...n�Ui1Ui2. . .Uin: ð7Þ

Here Uij denotes the relative uncertainty of the frames i and

j. Using the general formula 7, we can write the upper

bound for the interaction uncertainty as:

Uint ¼ Uso1o2...on
�Uso1

Uso2
. . .Uson

: ð8Þ

That is, the subject’s uncertainty with respect to all the

objects cannot exceed the product of the individual subject-

object uncertainties. Similarly, we can write the upper

bound for the mapping uncertainty as:

Umap ¼ Uo1o2...on
�Uoio2

Uoio3
. . .Uoion

: ð9Þ

That is, the uncertainty of the all the objects with respect to

one another cannot exceed the product of all pairings with

the reference object. The formulas 8 and 9 provide a

powerful means of approximation when the covariance

matrix becomes large and difficult to evaluate.

The uncertainties for zero process noise If we set the

process noise Q equal to zero, we can find the uncertainty

Fig. 3 A rectangular enclosure Qh is stretched to new dimensions

l0 9 w0. Nine different views of corner combinations are possible; five

take into account the new dimensions. See Eq. 5b
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for N objects explicitly. We refer to Fig. 4 (top panel). We

can see that the circuit for multiple observations of each

object can be drawn in a form identical to that for one

observation of each object (bottom panel). We will find the

uncertainties for 3 objects; the results can be easily

extended. To simplify the expressions, we will set:

Uso1
¼ a;

Uso2
¼ b;

Uso3
¼ c:

We find the uncertainty between the 3 objects and the

observer to be:

Uso1o2o3
¼

a 0 0

0 b 0

0 0 c

							

							
¼ abc

¼ 1
1

R
ðo1Þ
1

þ 1

R
ðo1Þ
2

� � �

0
@

1
A 1

1

R
ðo2Þ
1

þ 1

R
ðo2Þ
2

� � �

0
@

1
A

1
1

R
ðo3Þ
1

þ 1

R
ðo3Þ
2

� � �

0
@

1
A: ð10Þ

This is the interaction uncertainty Uint defined previously. Con-

versely, we can evaluate the uncertainty between the 3 objects:

Fig. 4 (Top panel) A subject

makes observations (with

covariances Rk for object 1, R0k
for object 2, and R

00

k for object 3)

and control inputs (with

covariances all zero); numbers

denote time steps. (Bottom
panel) This circuit can be

rearranged to yield a simpler

one; the result is Eq. 10
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Uo1o2o3
¼ aþ b a

a aþ c

				
				 ¼ abþ bcþ ca: ð11Þ

This is the mapping uncertainty Umap. Extending these

formulas to 4 objects gives:

Uint ¼ abcd:

Umap ¼ abcþ bcdþ cdaþ dab: ð12Þ

The quantity Uint, as expected, goes to zero when a perfect

observation of any object is made (when the relative uncer-

tainty between the subject and one object becomes zero). As

noted in A3, to preserve the information about the remaining

N - 1 objects we must drop the zero terms from the deter-

minant. For instance, a perfect observation of one of 4 objects

will require the transition:

Uint ¼ abcd! abc:

By contrast, the quantity Umap does not go to zero fol-

lowing a perfect observation. To make this quantity go to

zero, we must make the relative uncertainty between 2 of

the objects zero. This highlights the fact that Umap is an

observer-independent quantity.

We can illustrate the objectivity of Umap in another way.

Suppose that, after observing three objects as before, the

observer executes a control input Q (Fig. 5). The interac-

tion uncertainty will now be:

Uint ¼ abcþ Q abþ bcþ cað Þ[ abc: ð13Þ

The mapping uncertainty Umap will, however, remain

unchanged. This reflects the fact that the control input Q

has not changed the observer’s knowledge about the rela-

tive position of the three objects. Note also that Umap did

not increase; this is a general property of Umap we will

explore in the next section.

Limiting case

Convergence and measurement conditions for the mapping

uncertainty Dissanayake et al. (2001) proved for the

quantity Umap the following 2 properties, valid for arbitrary

observations and control inputs in a static environment:

1. Umap is non-increasing.

2. If the number of observations n for each object

increases without bound, then Umap approaches zero.

That is:

lim
n!1

Umap ¼ 0: ð14Þ

Since we might choose to evaluate the particular

uncertainty Umap
(p) for any subset p of objects in our

overall DAG, Dissanayake’s result can be applied to this

subset as well. This allows us to ‘‘condense’’ the frames of

p into a single frame:
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The property (2) enables us to convert any multi-object

observation problem into a single-object observation

problem by achieving convergence in the sense 14. Once

convergence between objects has been reached, Eq. 2a is

sufficient to describe the subsequent Kalman filter dynamics.

The asymptotic approach of the mapping uncertainty to zero

was nicely demonstrated by Dissanayake et al. (2001) with

an autonomous motor vehicle.

Equation 14 also permits us to state the conditions for

which an experimenter can expect to measure a kinematic

tuning in the brain (note that we use the terms ‘‘tuning’’ and

‘‘convergence’’ interchangeably here). These conditions

are:

1. Subject observability If the world W is characterized

by n continuous quantities qi, a brain B may (in

principle) acquire a tuning to any coordinate element

dX of the form:

dX ¼ dq1dq2. . .dqn: ð15aÞ

Here we assume that a cell population’s tuning

corresponds to the probability P(q1, q2, …qn) of the

coordinates q1, q2, …qn for some physical process.

Fig. 5 The bottom panel of Fig. 4 is simplified and redrawn on the

left. We then add a control input which transitions the observer from

state 1 to state 2. See Eq. 13
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Thus, the cell population’s tuning (or firing rate) dT for

the coordinate element dX would be given by an

expression of the form:

dT ¼ P q1; q2; . . .qnð Þdq1dq2. . .dqn:

Since the quantities qi are characteristic of the physical

world and not necessarily of the brain, however, only

the m quantities q0i � qi (m B n) which have converged

according to 14 will appear in 15a. Thus, the

converged tuning of B is given by:

dX0 ¼ dq01dq02. . .dq0m: ð15bÞ

2. Experimenter observability Of the quantities q0i, only

the s quantities q
00
i � q0i (s B m) which are expressly

measured by the experimenter will appear in 15b.

Thus, the observed tuning of B is given by:

dX0 ¼ dq001dq002 . . .q00m: ð15cÞ

Condition (2) implies that the number of measured

tunings of a cell cannot be greater than its true number

of tunings. We now apply these conditions to the

arbitrary motion of bodies in space (their kinematics).

Kinematic convergence

1. Space–time The most general tuning which the brain

may have for kinematic quantities includes the time

coordinate, position coordinates, and angular orienta-

tion of the body in question:

dX ¼ dtð Þ dxdydzð Þ dhd/ð Þ: ð16Þ

Note that the ‘‘tuning element’’ 16 is not a volume

element which specifies not just position, but the

complete kinematics of an oriented point in space and

time. That is, 16 expresses convergence not for a static

spatial distribution, but for a static event. By a static

event, we mean an event which occurs identically (the

relative space and time intervals are the same) for each

trial. This definition agrees with our intuition; we know

we can ‘‘become familiar’’ not only with consistent

spatial distributions (positions of objects in a room) but

also consistent events (the coordinates of a friend’s face

each time he smiles). Nevertheless, the fact that the

observer’s observations for a given trial of the static

event are constrained requires us to prove that conver-

gence is possible over multiple trials; we do this in 35.

It would be possible to verify the tuning 16 experi-

mentally by measuring the appropriate cortical region

while an animal observed the relative orientations of

2 objects, with one chosen as the origin and the other

as the point in phase space Pðt; x; y; z; h;/Þ: This

experiment would be somewhat more challenging to

perform than the usual ‘‘place cell’’ experiments, given

the large number of degrees of freedom. To the author’s

knowledge, a simulation of space–time convergence

has not yet been performed. Its existence is entirely

confirmed by Dissanayake’s result and our proof;

however, the time course for convergence will gener-

ally be much longer than that for a static space.

2. Less general tunings We now consider cells which

satisfy only a portion of the tunings in 16; that is,

only some of the variables satisfy the condition (2).

We will outline measurement conditions 15c such that

dX0 ¼ dX
00
:

It is easy to see that an infinite number of such

‘‘partial’’ tunings exist; this follows from the fact that an

infinite number of ‘‘planes’’ of dimension N - 1 can be

drawn in a ‘‘volume’’ of dimension N. We will consider

only a few experimentally relevant examples here.

1. ‘‘Time’’ cells

Let us imagine some static event in which only the time

coordinate converges. A good example would be an audi-

tory pattern, where the only parameters of interest are the

particular characteristics of the sound (e.g., intensity and

pitch) and the times at which they occur. We could easily

design an experiment exactly analogous to the usual ‘‘place

field’’ experiments to test whether a rat’s ‘‘place’’ cells can

also tune to time intervals. We would merely need to play

the same auditory pattern (maybe a musical recording)

repeatedly to a rat while measuring the same cortical cells.

Instead of averaging firing-rates over all visits to a partic-

ular spatial location, we would average them over all trials

of a particular note in the pattern. We would expect to find

that different notes in the composition would be repre-

sented by different cells, just as in the spatial case. It is

known already that cell in the inferior colliculus of the bat

and ferret show time-interval tuning (Ehrlich et al. 1997); if

the HEC serves a global memory role we should expect

temporal tuning there as well.

2. ‘‘Place’’ cells

We can also imagine cells with a tuning consisting only

of the spatial variables P(x, y, z). These are exemplified by

the well-known ‘‘place’’ cells already discussed; it was

recently verified by Jeffery et al. (2008) that place cell

tunings extend to 3 dimensions. It is also known that there

exist cells with approximately 2-dimensional tuning;

entorhinal grid cells appear to obey this property (Jeffery

et al. 2008). We see that in the context of the present

theory, it is meaningless to speak of cells which represent

strictly 2D or 3D space; rather, we speak of the degree of

convergence (as expressed by 5) which a particular cortical

region exhibits for a particular coordinate. The only reason

entorhinal grid cells appear to represent the ‘‘2D space’’ of

an explored surface is that the rat’s observation behavior
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selects objects on the floor as the most useful landmarks. If

the rat were to explore a box in zero gravity (let’s assume

the rat is still ‘‘stuck’’ to the walls), grid cells would likely

adopt the normal coordinate vectors nx, ny of a given wall

as the ‘‘most natural’’ coordinate tuning. Similarly, a rat

exploring a curved surface would probably utilize normal

coordinates in its entorhinal map.

Of course, we must remember that the observed ‘‘place’’

cells represent only the relationship between 2 particular

frames: the rat and a landmark, summarized as \s, o1[
(where s denotes the subject and o1 denotes the landmark).

Since, from what has already been said, we should have

cells that can represent any frame combination of the form

\s, o1, …on[, to find the other types of place cells we

merely need to construct situations where 2 non-rat frames

execute relative motion. For example, we could place an

object in the box with the rat and compare the object’s

position relative to the box with the rat’s cortical activity;

we should find that the rat possesses ‘‘place’’ cells repre-

senting the object’s position (rather than its own). Specif-

ically, we would expect the positions of the rat and the

object to appear as 2 attractor bumps within the PCP.

3. ‘‘Head-direction’’ cells

Another possible partial tuning is that of the angular

variables P(h, /). These are exemplified by the ‘‘head-

direction’’ cells (Taube et al. 1990). All the comments

made previously for ‘‘place’’ cells pertain to them as well.

The extended body (or extended brain)

We now need to address how state estimation can be

carried out when the sensory apparatus of the observer

consists of multiple frames. In doing so, we will resolve a

paradox relating to ‘‘place’’ cell representation: which

specific part of the rat’s body is represented by the place

cell population? A similar issue arises in the study of the

‘‘reaching problem’’ in primates, since the brain appears to

represent the various frames involved (hand, subject, and

object) in various coordinate systems (Ferraina et al. 1997).

We will focus on the case where the various sensors make

measurements of a single non-observer frame (the problem

N/1); this result can easily be extended to other cases.

We can solve this type of problem by considering the

various sensors as ‘‘point observers’’ which relay their

observations to one another. As an example of this

approach, consider the ‘‘reaching problem’’ illustrated in

Fig. 6. We need to evaluate the uncertainty between the

hand and the object Uho, which is:

Uho ¼ Ro þ
1

R�1
h1 þ R�1

h2

: ð17Þ

Here denotes Ro the uncertainty of the object as viewed by

the eye, Rh1 denotes the uncertainty of the hand as viewed

by the eye, and Rh2 represents the uncertainty of the hand

relative to the eye as measured by the proprioceptive (non-

visual) system connecting the two.

We could transform between any 2 frames within the

body in this way. In other words, a ‘‘place’’ cell population

represents not a specific part of the body relative to an

external landmark, but rather all parts of the body relative

to the landmark with varying degrees of uncertainty.

We can use the same approach to extend our Eq. 2a (the

problem 1/1) to the case of an extended observer. The DAG

for an observer consisting of 2 sensors is shown in Fig. 7.

Control inputs to the hand and eye are assumed (for sim-

plicity) to be independently generated, as shown. We

cannot write down a general expression for the uncertainty

Uho; however, if we assume the control inputs Qh ? ?,

we can write:

Uho ffi
1

R�1
h1 þ R�1

h2

þ 1

R�1
k þ 1

Qk�1þ 1

R�1
k�1
þ 1

Qk�2þ...

� �

0
BB@

1
CCA

0
BB@

1
CCA

¼ Uhe þ Ueo: ð18Þ

Here we have neglected the index e for the observations

Re and control inputs Qe in the in the second term to

simplify the notation; Uhe is the hand-eye uncertainty and

Ueo is the eye-object uncertainty. We can see that the

second term is simply Eq. 2a. Thus, the uncertainty

between the hand and the target object is simply the point-

observer uncertainty Ueo plus an additive term Uhe under

this approximation.

The principle outlined in this section can be easily tested

in the HEC, preferably using primates. We might provide a

monkey with a chessboard-sized ‘‘environment’’ contain-

ing various ‘‘landmarks’’ for spatial reference; the monkey

would be encouraged to reach for objects placed at these

various landmarks (analogous to ‘‘exploration’’ of the

environment). We would then expect to find ‘‘place’’ cells

which fired only when the monkey’s hand entered a par-

ticular part of this miniature environment. Thus, we find

that place cells (hippocampus) and reaching cells (parietal

cortex) encode very similar quantities.

Metric estimation

It was recently discovered that a population of cells in the

HEC provide a spatial metric for the rat’s environment

(Hafting et al. 2005). This metric is known as the

‘‘entorhinal grid.’’ More remarkably, it has also been

shown that these grids are deformable; that is, the metric is

not always Euclidean (Barry et al. 2007). In this section,

we will show that the same estimation methods used in the
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previous section can be used to predict the dynamics of

these grids. First, however, we must define some basic

concepts of measure.

Preliminaries

Measures

Most of the day-to-day judgments we make about space

intervals and time intervals are approximate. This impreci-

sion arises from the fact that we usually do not possess pre-

cisely calibrated clocks or measuring-rods to establish the

intervals in question. For example, a subject would usually

not pull out a tape-measure to determine whether a parking-

space was wide enough for his car. Instead, he would rely on

comparisons of the desired interval with cues in the envi-

ronment to make the judgment. This means that any physical

relation in the environment might be employed as a measure.

It is equally clear from daily experience, however, that

not all measures are created equal. If, for instance, a subject

knew that the clocks in a particular building were notori-

ously unreliable, he would be better advised to consult a

(more reliable) wristwatch if he wished to know the

‘‘time.’’ Examining this example a bit more carefully, we

see that the establishment of a particular clock or mea-

suring-rod as a ‘‘reliable’’ measure must always involve its

Fig. 6 The reaching problem at

a single time point. Rois the

uncertainty of the object image

position on the retina, Rh1 is the

uncertainty of the hand image

position on the retina, and Rh2 is

the uncertainty of the hand

relative to the eye through

proprioception

Fig. 7 The reaching problem over multiple time points. In Eq. 18, we let Qh approach infinity; Qe and Ro are simply written as Q and R (k is the

time step index) in Eq. 18
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comparison with another specified, reliable measure

(preferably on multiple occasions). To use the previous

example, if by comparing the clocks in a particular build-

ing with the watch on multiple occasions the subject should

find them to consistently agree, he might as well simply

consult the building clocks to determine the ‘‘time.’’

In fact, we see that this procedure for establishing reli-

able measures is precisely analogous to Dissanayake’s

convergence result, expressed in Eq. 14. We shall therefore

use 14 to formally define what we shall mean by a standard

of measure:

Definition: A standard of measure (or SOM) is one

which has converged, in the sense of 14, relative to another

SOM.

Thus, we see that physical relations which are both

consistent and frequently observed will provide the ‘‘ideal’’

benchmarks for comparison. We also see that, if a partic-

ular measure has not converged, its use introduces error

into the conclusions derived. This error can be quantified

using the usual methods of state estimation.

The reader should note that, from here on, we will refer

only to space in our discussion (for simplicity); the argu-

ments all apply to time as well.

The subjective definition of space using measures

By displacing a physical object (or measure) through space,

we may characterize the distance relations in any part of

that space completely. That is, by a series of displacements

of a given ruler, we can assign a distance between any 2

points within the volume under consideration. This col-

lection of distance relations is called the metric for the

space. If the measures used to define the metric are perfect,

the metric estimate B (for ‘‘brain’’) corresponds perfectly to

the true metric W (for ‘‘world’’) of the physical space.

Since we live in an approximately Euclidean world, W is

always Euclidean unless we define it otherwise (for

instance, by ‘‘deforming’’ the environment from metric W

to metric W0). Conversely, if some of the measures are

imperfect, the metrics B and W will generally not coincide.

This means that B will generally not be Euclidean.

It is important to realize that the metric estimate B, like

all the subjective quantities (internal to the brain) we have

discussed in this paper, is defined exclusively in terms of

the subject’s observations. The subject’s metric B is infi-

nitely uncertain for any part of the true metric W which the

subject has not measured using a measure. By making

sufficiently detailed and concise measurements (using a

SOM) of some part of W, on the other hand, the subject can

make B approximate W as closely as he might desire.

We will assume that the metric estimate B corresponds

exactly to the tessellating pattern of the entorhinal grids.

The metric tensor and generalized Kalman equations

Mathematically, there is no difference between ‘‘metric state

estimation’’ and the ordinary state estimation procedures we

employed in earlier sections of the paper. The distinction

between the two cases instead arises from our choice of

which parts of the system will be subjected to state estima-

tion: in ordinary state estimation we assume an unbiased set

of rulers to be provided (and not subject to state estimation),

whereas in metric state estimation we do not make this

assumption. In practice, however, it is useful to introduce a

formal (mathematical) distinction as well. Since the metric

intervals of interest are part of a continuum, they are more

conveniently represented by utilizing the metric tensor gik.

This entails a slightly different derivation of the Kalman state

update equations (see ‘‘Extension of the vector Kalman filter

to the metric tensor’’) which leaves their basic structure

intact. One can visualize the transition between the vector

and tensor Kalman equations as analogous to the transition

between a large number of springs and a continuum body in

the theory of elasticity.

The metric tensor enables us to describe the infinitesimal

distance relations at any given point of space. Since a

subject cannot perform an infinite number of measure-

ments, we must keep in mind that the subject’s state esti-

mate can only approximate a continuum space. This

approximation will improve as the number of measure-

ments becomes large (as in the cases to be discussed here).

The transition of the Kalman equations from a vector

to a metric description has a useful consequence: the

‘‘probability energy’’ uikPiklmulm has the same form as the

elastic energy of a deformed body (Extension of the vector

Kalman filter to the metric tensor). If one overlooks the fact

that ‘‘action at a distance’’ is prohibited in the linear

elasticity theory (see ‘‘The relationship between the

‘‘probability’’ energy F and the energy for a linearly elastic

body’’), this analogy leads us to a useful mental picture of

how ‘‘metric deformations’’ occur. Namely, we can picture

each stage of the state estimation process as corresponding

to the stretching or relaxing of a continuous elastic med-

ium. The elastic analogy for the Kalman filter is crucial in

that it parallels the ‘‘stretching’’ and ‘‘compression’’

properties observed in entorhinal grids; we will examine

this more closely with the Barry et al. (2007) experiment.

Experience-dependent re-scaling of entorhinal grids

Simple example

Before applying the Kalman equations directly to the

experiment by Barry et al. (2007), we will consider the

simplest possible example of a ‘‘metric estimation cycle.’’

We take the situation shown in Fig. 8.
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Phase 1 We imagine a rat observes a single object, a ruler

X. Since no other objects exist in our simplified example, this

ruler defines the rat’s concept of distance. This can be seen

mathematically by noting that the rat’s estimate of the length

l of the ruler X must be derived by measuring it relative to a

set of measuring rods X, Y, … yielding length values (for the

ruler X)x, y, … and associated errors rx, ry, … according to

the general Kalman update formula 2a (which we shall

simplify by setting the Qi equal to zero):

l ¼
x
r2

x
þ y

r2
y
. . .

1
r2

x
þ 1

r2
y
. . .
: ð19Þ

In words, this equation says that the distance we denote

‘‘the length of the ruler X’’ is a weighted average of the

lengths of X with respect to ruler X, the ruler Y, and so on.

If only ruler X is available:

l1 ¼
x
r2

x

1
r2

x

¼ x: ð20Þ

Thus, no matter what physical deformation the solitary

ruler X should undergo, the rat will have no means for

recognizing that any deformation has taken place. This

fact, which runs counter to our experience, is of funda-

mental importance for understanding why entorhinal grids

deform as they do.

Phase 2 The ruler X is now deformed to some new,

physically different ruler X0 of length x0. Since the rat has

no benchmark for comparison, it perceives no change in X0

from the structure of X; rather, its internal definition of

length is deformed by a corresponding amount such that

the perceived length of the ruler is unchanged:

l2 ¼ x:

To the experimenter, it will appear that the rat’s metric has

instantaneously ‘‘stretched’’ upon observing the stretched ruler.

Phase 3 As the rat begins to explore its environment, it

will discover other sensory cues. Mathematically, we might

say that the rat discovers a new ruler Y with which to

compare the ruler X0. Using our general equation, we derive

the rat’s new estimate l3 of the length of ruler X0 by

comparison of the two rulers:

l3 ¼
x
r2

x
þ y

r2
y

1
r2

x
þ 1

r2
y

� x0: ð21Þ

If (as a special case) ruler Y is believed to be perfectly

accurate (ry = 0):

l3 ¼ y:

That is, the rat discards the length of ruler X0 relative to

itself and instead considers only the length of X0 relative to

Y. If Y is in fact perfectly accurate (i.e., its length is always

the same when it is observed), then:

l3 ¼ y ¼ x0:

As long as no perfect rulers exist, however, the rat’s

estimate of the length of X0 can only approach its true value

x0 asymptotically (on average). For instance, if all rulers

have the same variance r, then our general expression goes

into:

l ¼
x
r2 þ y

r2. . .
1
r2 þ 1

r2. . .
¼ xþ y. . .ð Þ

n
: ð22Þ

Since x is the biased length of X0, we see that x \ l \ x0.
This limiting behavior of the length estimate at (or near) its

true value corresponds with our common-sense notion that

lengths in an environment rich in sensory cues can be

determined to a high level of accuracy. In this manner, we

return to Phase 1.

Fig. 8 (Top panel) A ruler is noted to stretch from length X to X0.
According to the ruler’s reading, however, its length is still X. To

refute this, a second ruler is needed for comparison. If the second

ruler is error-prone, we should take a weighted average of X and X0

(X \ L \ X0). (Bottom panel) The same process in continuous time
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Simulation of the Barry et al. (2007) experiment

We now consider the experiment of Barry et al. (2007) in

detail. In these experiments, a rectangular box was

deformed from a configuration l 9 w to a configuration

l0 9 w0. For simplicity, we consider the case where a

square l 9 w is deformed to a rectangle l 9 w, with l [ w.

As in our earlier discussion of place cells, we will make

certain assumptions.

A1 The rat’s estimates of l and w are uncorrelated.

A2 The corners of the enclosure provide the only land-

marks for the rat. All state estimates by the rat are assumed

rectangular.

A3 The structure constants E(uikulm) have a form identi-

cal to those for a linearly elastic, isotropic body (see ‘‘The

special case of an isotropic body’’ and ‘‘The relationship

between the ‘‘probability’’ energy F and the energy for a

linearly elastic body’’).

Phase 1 The rat is permitted to become familiar with the

rectangle, such that a Euclidean metric is established by the

entorhinal grid. This metric is given by:

gik ¼ dik:

It is important to note that, by definition, the metric of a

familiar environment is always Euclidean. This is a simple

consequence of the fact that physical world is itself

Euclidean.

Phase 2 The square w 9 w is deformed to the rectangle

l 9 w in the rat’s absence, and the rat is returned to the

rectangle. When the rat first views the dimension l of the

rectangle, it concludes that the length of the rectangle is

still w (since, initially, no external benchmark for com-

parison exists). The entorhinal grid then ‘‘stretches’’ along

the long axis of the box. We can determine the resulting

grid spacing mik with the help of the equation in ‘‘Rela-

tionship between the metric estimate and the spacing of

entorhinal grids’’(see Fig. 9):

dik þ mik ¼ dik þ x0ik;

mik ¼ x0ik:
ð23Þ

That is, the rat’s grid spacing mik deforms by the same

amount as the enclosure’s ‘‘physical’’ or ‘‘objective’’

metric x0ik does. We can compute this metric easily as:

mik ¼ a
w 0

0 l

� �
: ð24Þ

Here a is some constant. The element of length for the

deformed metric is:

ds2 ¼ mikdxidxk ¼ a wdx2 þ ldy2
� �

: ð25Þ

It is not difficult to see the analogy between this initial

deformation and the stretching of a rubber sheet secured at

its boundaries to a template (identical in dimensions to our

box). If we imagine that the metric intervals dik were

painted on the sheet prior to the deformation, the post-

deformation metric would correspond to x0ik:
Phase 3 The rat, by moving about the box, obtains new

sensory information which contradicts the non-Euclidean

metric it obtained in Phase 2. Since the lengths of the two

dimensions of the box have been assumed uncorrelated, the

time-dependent ‘‘contraction’’ of the entorhinal grid redu-

ces to a one-dimensional problem. In general, we need to

solve the one-dimensional form of Eq. 19 in ‘‘Kinetics of

the spatial metric’’ to determine the metric. This equation

has an exponential family of solutions, as shown in

‘‘Kinetics of the spatial metric’’. However, for large times

after the deformation we can approximately describe the

deformation by Eq. 21 in ‘‘Kinetics of the spatial metric’’.

The grid spacing then becomes approximately:

mikðtÞ ¼ a
w 0

0 wþ l� wð Þe�bt

� �
: ð26Þ

Here a and b are constants. For t = 0, this agrees with the

result found previously. As t ? ?, the metric attains

limiting (Euclidean) form:

mik t!1ð Þ ¼ a
w 0

0 w

� �
¼ awdik: ð27Þ

In this manner, we return to Phase 1. This ‘‘relaxation’’

phase is not unlike the relaxation of our stretched rubber

sheet once the template is removed from it.

This exponential nature of the relaxation phase explains the

curious fact, noted by Barry et al. (2007), that when a box

w 9 l is compressed to a rectangle w0 9 l0 by the experi-

menter, the rat’s grid spacing mik(t) undergoes a lesser degree

of compression along the same axis. The experimenters were

not aware that the rat’s metric estimate mik(t) changes expo-

nentially during the first few minutes of rat exploration in the

compressed environment. As we discussed previously for

place cell fields, time averaging procedures are not strictly

applicable to such time-varying brain states. In other words,

time-averages were applied to a large part of Phase 1 (Fig. 8),

thus obscuring the exponential behavior. If we wish to capture

the entorhinal grid spacing mik(t) at its complete compression

stage (t = 0), we must average over only the very first few

seconds of Phase 1 in Fig. 8. In general, smaller time windows

will yield a more accurate description of entorhinal grid

kinetics (Fig. 9).

In conclusion of our simulation, we note that a numer-

ical simulation is of critical importance for determine

whether the more complex ‘‘elastic relaxations’’ predicted
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by our model agree with experiments. Of course, our

equations also require the setting of several boundary

conditions (e.g., the observation matrix) which will prob-

ably have to be determined empirically.

More generally, we must remember the limitations of

the basis used by us. Equation 26 is an approximation of

the Kalman filter. The Kalman filter is itself an approxi-

mation to the phenomena in question (as discussed in

‘‘Assumptions of the Kalman Filter’’). We should expect

our approximate models to break down for times very close

to time zero. This ‘‘time zero crisis’’ can be solved only by

a more generalized theory which our theory approximates.

Comments regarding the generalized equations

in ‘‘Extension of the vector Kalman filter to the metric

tensor’’ and ‘‘The special case of an isotropic body’’

Structure of the deformed metric

The precise structure of the deformed metric is determined

by minimizing the energy:

F ¼ uikulm

EðuikulmÞ
: ð28Þ

Here we have set:

uik ¼ zik � Hiklmulm: ð29Þ

Here zik denotes the observed metric, Hiklm denotes the

observation matrix, and uik represents the metric estimate.

E(uikulm) refers to the expected value of the square of the

metric estimate. The origin of these expressions is further

discussed in ‘‘Extension of the vector Kalman filter to the

metric tensor’’. Using 28, we can understand the

deformation in an intuitive way. For instance, the metric

within a familiar object (a near-SOM) will be expected to

remain the same:

E u
oð Þ

ik u
oð Þ

lm

� �
! 0:

Consequently, a deformation of this object will make large

contribution to the energy (the ratio 28 will be very large).

The subject would be very ‘‘surprised’’ if the familiar

object were to change its shape. In analogy with linear

elasticity, a familiar object constitutes a ‘‘rigid body.’’

Conversely, if some part of the environment W1 has

received very few observations, the error associated with

its metric (relative to the metric of any other part W2, where

W1 may equal W2) is very large:

E u
w1ð Þ

ik u
w2ð Þ

lm

� �
!1:

Consequently, we can drop all terms containing W1 in 28

since their contribution to the energy is zero anyway.

Recalling our earlier discussion of entorhinal grids in

IIB2b, we see that this explains why a rat exploring a 2D

service constructs a nearly-2D metric for the environment.

If we assume that the metric correlations E(uikulm) are

constrained to infinitely-near points in space (see ‘‘The

relationship between the ‘‘probability’’ energy F and the

energy for a linearly elastic body’’), the ‘‘deformation of

entorhinal grids’’ reduces exactly to the deformation of a

2D elastic sheet! By testing entorhinal grid deformation for

rooms of various starting/ending geometries, this ‘‘elastic

sheet’’ hypothesis might be put to the test. The corre-

sponding equations can be derived as specializations of

those already presented.

Extension to space–time

All the results we have cited here for space can be applied

to space–time. Since the deformation process described

here is time-dependent, however, it is easy to see that the

time dimension imposes a constraint on the system

observability. This constraint functions the same way a

constraint on the observation of spatial variables of W0

would (previous example).

Discussion and conclusions

In the first section of the paper, the vector Kalman filter (KF)

was applied to hippocampal place cells, parietal reach cells,

and several other cell types in brief. It was shown that place

cell populations most likely represent the relative uncer-

tainty between the subject’s body position and a particular

object in the external environment. It was demonstrated that

place cell fields can be best reconciled with the KF (which

requires Gaussian probability distributions) by making

the assumption that the time bins in present experiments

are too large to capture the instantaneous population activity.

Fig. 9 The grid spacing is given not by the metric estimate, but rather

its opposite (see Eq. 36). As the metric estimate expands, the grid

spacing contracts
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A simulation to verify this claim is critical to our assertion (in

the introduction) that space–time computations are per-

formed by a common set of rules throughout the brain.

The author then considered the problem of how maps of

the external environment are actually formed (the case 1/N).

Neither the case 1/1 nor the case N/1 addresses this prob-

lem. This problem is most important when a subject is first

placed in a new environment, and creates great difficulties

for the experimenter due to the complexity of the input data.

It was shown by us that the computational demands on the

subject are also considerable during this period, but can be

reduced by minimizing control inputs on the part of the

subject. We then presented Dissanayake et al. (2001) con-

vergence result for a static environment, which proves that a

subject can build a perfect (or converged) map of the

environment from imperfect control inputs and observa-

tions. This result was used to show that the brain can acquire

any kinematic tuning. Specific examples of place cells, time

cells, and head-direction cells were mentioned. If we are

correct in considering all these cells to share the same

computational apparatus, they should also share the well-

known probability distributions and time course of the KF.

For the case N/1, the parietal reaching problem was

considered, and it was shown that this problem is just a

variant of the place cell problem when the KF is applied.

This fits with the intuitive notion, stated in the introduction,

that these two problems are physically the same.

In the second section of the paper, the KF was further

applied to the grid cells of the entorhinal cortex. The vector KF

was reformulated so that it applied to tensor quantities; this

development was necessary since the grid cells encode a dense

array of environmental cues which is better accommodated by

a spatial metric than a position vector. The update expressions

for the tensor KF are closely analogous to the deformation

expressions for an elastic body. The significance of this

analogy can be found in the experiment of Barry et al. (2007),

which demonstrated that entorhinal grids ‘‘stretch’’ and

‘‘compress’’ when a familiar environment is deformed. The

equations presented are consistent with experience; for

example, if a room is deformed in a rat’s absence, the

dimensions of familiar objects in the room will change min-

imally even as the rat observes the deformed room boundaries.

It is expected that a KF interpretation will be particularly

fertile for future experiments in this area of research.

The major limitions of the approach adopted here are (1)

the assumptions used to derive the KF (discussed earlier) and

(2) the need for further implementation and simulation of the

stated results. The theoretic results presented in the paper have

been expressed in single-variable form (without matrices) and

do not include the observation/state transition matrices

explicitly. The Kalman filter is also rarely implemented in the

‘‘pure’’ form used here, since the covariance matrix rapidly

becomes large in complex environments. A more important

question is of how the various constants and parameters in the

KF equations should be assigned to yield meaningful pre-

dictions about neural population activity, given information

about the subject and environment. This question must be

addressed partly by parameter-fitting with experimental data

and partly by a search for the deeper theory which ours

approximates. In some cases (as for place cells) animal

experiments may be less useful than robotic simulations.

Appendix

State evolution and observation equations

For the system evolution model x(k), we take:

x kð Þ ¼ a kð Þx k � 1ð Þ þ b kð Þu kð Þ þ wðkÞ: ð30Þ

Here a(k) and b(k) are model parameters which we will set

equal to unity, u(k) is a control input variable, and w(k)

indicates additive random noise. Similarly, for the

observation model z(k) we let:

z kð Þ ¼ c kð Þx kð Þ þ v kð Þ: ð31Þ

Here cðkÞ is a model parameter which, again, will be set

equal to unity. The term v(k) denotes additive random

noise. The random variables w(k) and v(k) will be assumed

continuous and normally distributed.

Further discussion of these state equations may be found

in Gelb (1984) or Dissanayake et al. (2001).

Propagation of uncertainty for continuous, normally

distributed (CND) random variables

In the following, we will make use of the following 2

identities for CND random variables:

(1) If Z = X ? Y, where PðXÞ ¼ N lx; r
2
x

� �
;PðYÞ ¼

N ly; r
2
y

� �
and X and Y are independent, then:

P Zð Þ ¼ N lz; r
2
z

� �
¼ N lx þ ly; r

2
x þ r2

y

� �
: ð32Þ

(2) If P(Z) = P(X)P(Y), where P(X) and P(Y) are as

before, then:

P Zð Þ ¼ N lz; r
2
z

� �
¼ N

lx

r2
x
þ ly

r2
y

1
r2

x
þ 1

r2
y

;
1

1
r2

x
þ 1

r2
y

 !
: ð33Þ

Since we have defined the state update x(k) as the sum of

CND variables x(k - 1) and u(k), we can write:

x nð Þ ¼ x 1ð Þ þ u 1ð Þ þ u 2ð Þ � � � þ u nð Þð Þ
þ w 1ð Þ þ w 2ð Þ � � � þ w nð Þð Þ:

Equation 32 then holds for x(n). If we have two inde-

pendent sources of information X and Y about a given

frame, then Eq. 33 enables us to combine this information.
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As the Eq. 32 demonstrates, we have for a series of control

inputs the following variance expression (Ri = ri
2):

R ¼ R1 þ R2 þ R3. . . ð34Þ

Similarly, for a fusion of a series of independent observations

of a particular parameter, we have from Eq. 33:

1

R
¼ 1

R1

þ 1

R2

þ 1

R3

. . . ð35Þ

The rules 34 and 35 constitute what is called the circuit

analogy for combination of variances (or circuit analogy).

Thus, Kalman state transition diagrams can be conve-

niently reduced using the familiar rules of circuit reduction.

A more thorough discussion of the circuit analogy is pre-

sented in Smith et al. (1990).

The uncertainty U

The invariants of an arbitrary matrix Cij are given by a

basic formula from linear algebra (Shilov 1977):

C11 � k � � � C1n

..

. . .
. ..

.

Cn1 � � � Cnn � k

							

							
¼ �1ð Þnkn þ trCij �1ð Þn�1

þ � � � det Cij:

Of these invariants, we use the determinant (following the

practice of Dissanayake et al. 2001) as our measure of

‘‘uncertainty’’ for 2 reasons:

1. Evaluating the determinant does not require us to

determine the eigenvalues of the matrix Cij.

2. The determinant has a direct relationship to the

‘‘volume of the uncertainty ellipsoid’’ (Dissanayake et al.

2001) of the normal probability distribution:

P xð Þ ¼ 1

2pð Þ
n
2

ffiffiffiffiffiffi
Cj j

p e�
1
2

x�lð ÞC�1 x�lð ÞT½ �:

This can be seen from the normalization condition:

PðxÞdx ¼ 1:

This gives us the non-normalized volume V of the

distribution:

V ¼
Z

e�
1
2

x�lð ÞC�1 x�lð ÞT½ �dx ¼ 2pð Þ
n
2

ffiffiffiffiffiffi
Cj j

p
:

Since V and C are simply increasing functions of one

another, we shall use the determinant rather than V itself to

simplify matters. We shall refer to the determinant det C as

the uncertainty, or U.

The determinant’s significance as the volume of the

uncertainty ellipsoid has an important implication. If we let

the relationship between any 2 frames be known with cer-

tainty, the determinant will go to zero. This is analogous to the

collapse of an N-dimensional object to an (N - 1)-dimen-

sional object. This means that a zero value for the determinant

does not imply that the relationships between all frames are

known with certainty. To preserve the information about the

other non-zero relationships following a collapse, we must

consider the (N - 1)-dimensional determinant.

Evaluation of the terms of the covariance matrix (CM)

Procedure

The circuit analogy can be used to evaluate the CM for any

set of frames in a given DAG. We now provide a simple

procedure for doing this.

First, we choose any subset of M frames (from the

complete set of N frames contained in a given DAG, so that

M B N) whose relative uncertainty U we wish to evaluate.

We specify this subset by its CM:

Cij ¼
C11 � � � C1m

..

. . .
. ..

.

Cm1 � � � Cmm

0
B@

1
CA:

Second, we choose one of the M frames in the CM as a

frame of reference (FOR). Since the form of the CM will

depend on which FOR we choose, we denote ‘‘the CM with

respect to frame k’’ by Cij/k. In our circuit analogy, we

denote this by placing a current input at the FOR.

Third, we evaluate each term Cij/k by placing current

outputs at the frames i and j (maintaining k as our FOR).

We call the frames i and j ‘‘frames of evaluation,’’ or FOEs.

For the diagonal terms of the CM, we have one FOR and

one FOE. The resistance through which we pass current

(between the FOR and FOE) can be evaluated using

Eqs. 34 and 35, exactly like an electrical resistance. For the

cross-covariance terms, we have one FOR and 2 FOEs (one

input and 2 outputs). We are interested in the common

resistance of the circuit, which we define to be ‘‘the

resistance through which the common current passes.’’ The

common current is defined as ‘‘that part of the total current

which is directed to both FOEs.’’ The common resistance

can always be found by reducing the circuit (using Eqs. 34

and 35) to a Y-circuit. The resistance of the arm of the

Y-circuit which carries current en route to both frames i

and j is the common resistance; the resistances of the other

2 arms of the ‘‘Y’’ are omitted. In the CM calculated by the

above procedure, the column and row corresponding to the

FOR will be zero. We will always delete this column to

avoid a zero value for the determinant; the nonzero minor

of the complete CM is also invariant when we transform

between any of the M FORs.

Fourth, we evaluate the determinant.
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Example

We take as our example the DAG shown in Fig. 10. We

will take as our covariance matrix the frames\2, 3, 4[or:

Cij ¼
C22 C23 C24

C32 C33 C34

C42 C43 C44

0
@

1
A:

We will choose frame 2 as our FOR. We denote this in

Fig. 10 by placing an input current at frame 2. We denote

the CM with respect to frame 2 as Cij/2. We will first

evaluate the diagonal term C33/2. To do this, we place an

output current at the FOE (frame 3). We then evaluate the

resistance between the input and output terminals (result

shown below). We will now evaluate the cross-covariance

term C34/2. We place output current arrows at the 2 FOEs

(frames 3 and 4), as shown in Fig. 11. We then determine

the amount of current which passes to both FOEs from the

FOR (zero in this case). Using the same procedure for the

other terms, we obtain:

Cij=2 ¼
0 0 0

0 b 0

0 0 c

0
@

1
A:

Eliminating the zero-valued row and column, we get:

Cij=2 ¼ b 0

0 c

� �
:

We can carry out the same procedure by choosing frames 3

or 4 as our FOR; the results are:

Cij=3 ¼ b b
b bþ c

� �
;Cij=4 ¼ c c

c bþ c

� �
:

It is easy to see that the determinant with respect to any

frame of the CM is the same:

det Cij=2 ¼ det Cij=3 ¼ det Cij=4 ¼ bc:

Kalman filter

Using the state Eqs. 30 and 31 along with the propagation

rule (32) and the combination rule (33), it is possible to

describe a general algorithm for computing the most prob-

able state of a changing system as new observations are

made. This algorithm, when recursively formulated, is called

the Kalman filter (KF). We will only summarize it here; the

reader is directed to Gelb (1984) for a more complete dis-

cussion. The reader will note when comparing our expres-

sion with those in Gelb (1984) that we have set the model

operators (the control input matrix and the observation

matrix) equal to unity (see ‘‘State evolution and observa-

tionequations’’). The KF defines the covariance update P?

(with net pre-measurement covariance P- and new mea-

surement covariance R) as:

Pþ ¼
1

1
P�
þ 1

R

:

This is just Eq. 35. The corresponding state update l?

(with pre-measurement mean l- and measurement value z)

is defined as:

lþ ¼
l�
P�
þ z

R
1

P�
þ 1

R

:

This is just the mean update of Eq. 33.

The inter-measurement covariance extrapolation (based

on the process model with update covariance Q) is:

Fig. 10 An input current at frame 2 and an output current at frame 3

are placed to determine C33

Fig. 11 Output currents at frames 3 and 4 are placed to determine the

cross-covariance term C34
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Pþ kð Þ ¼ P� k � 1ð Þ þ Q k � 1ð Þ:

This can be obtained from Eq. 30. Similarly, the inter-

measurement state extrapolation is:

lþ kð Þ ¼ l� k � 1ð Þ:

We give, for reference, the formulae for the mean and

covariance after k applications of the Kalman filter. For the

covariance, we have:

Pþ kð Þ ¼ 1

R�1
k þ 1

Qk�1þ 1

R�1
k�1
þ 1

Qk�2þ...

� �

0
BB@

1
CCA

0
BB@

1
CCA

:

For the mean, we introduce the notation:

þk½ � ¼ R kð Þ
R kð Þ þ P� kð Þ; ½�k� ¼ P� kð Þ

R kð Þ þ P� kð Þ:

Setting l_(1) = z0, we can write the mean for any number

of observations according to Table 2. This table is read as

follows:

lþ 1ð Þ ¼ þ1½ �z0 þ �1½ �z1

¼ R 1ð Þz0

R 1ð Þ þ P� 1ð Þ þ
P� 1ð Þz1

R 1ð Þ þ P� 1ð Þ:

lþ 2ð Þ ¼ þ1½ � þ2½ �z0 þ �1½ � þ2½ �z1 þ �2½ �z2:

lþ 3ð Þ ¼ þ1½ � þ2½ � þ3½ �z0 þ �1½ � þ2½ � þ3½ �z1 þ �2½ � þ3½ �z2

þ ½�3�z3:

In this way, we can obtain the state estimate for an arbitrary

number of observations.

Convergence for a static event

Let us consider a static event of dimensions X ¼
R

dVdt:

We can slice this ‘‘space–time volume element’’ along the

time axis into events of infinitesimal duration, for which

the spatial coordinates vary only infinitesimally:

X ¼ X1 þ X2. . .þ Xn:

Since the values of the space coordinates do not change

within each of these elements, we can obtain spatial

convergence for any one of them simply by verifying that

it is observed an infinite number of times, with each

observation being independent of the others. This means

that the observer must be free to choose a different

observation programme for each trial of the event. If this

independence holds, we have for k trials (the upper index

denotes the trial):

Xð1ÞþXð2Þ ���þXðkÞ

¼ Xð1Þ1 ���þXð1Þn

� �
þ Xð2Þ1 ���þXð2Þn

� �
���þ XðkÞ1 ���þXðkÞn

� �

¼ Xð1Þ1 ���þXðkÞ1

� �
þ Xð1Þ2 ���þXðkÞ2

� �
þ Xð1Þn ���þXðkÞn

� �
:

The terms in brackets on the second line are the converged

spatial elements. This proves that a static event is com-

pletely observable.

Metric estimation

Extension of the vector Kalman filter to the metric tensor

The formal derivation of the vector Kalman filter (which

we have referred to thus far in the paper) is presented in

Gelb (1984). We shall only highlight the starting assump-

tions of its derivation.

The state estimate l of the Kalman filter is derived by

choosing the most probable value of the true state x, given

the observations z. This means we wish to maximize the

probability distribution:

Pr xjzð Þ ¼ ke� z�Hxð ÞP z�Hxð ÞT½ �: ð36Þ

Here P ¼ E�1 z� Hxð Þ z� Hxð ÞT

 �

; and H denotes the

observation matrix. This problem is equivalent to finding

the extreme value of the exponent of 36, which we will call

the ‘‘energy’’ F:

F ¼ z� Hxð ÞP z� Hxð ÞT : ð37aÞ

To extend the vector Kalman filter to a 2-tensor, we

simply need to write down the 2-tensor expression

analogous to 37a. This is:

F ¼ uikPiklmulm: ð37bÞ

Here we have set:

uik ¼ zik � Hiklmxlm;Piklm ¼ E uikulmð Þ: ð38Þ

The terms in (38) have the same meanings as in 36.

Following the procedure described in Gelb (1984), one

obtains for the Kalman gain matrix:

Table 2 Tabulated coefficients for the expansion of the mean esti-

mate for the Kalman filter

z0 z1 z2 z3 …

l? (1) ?1 -1 0 0 0

l? (2) ?2 ?2 -2 0 0

l? (3) ?3 ?3 ?3 -3 0

l? (4) ?4 ?4 ?4 ?4 -4

… ?5 ?5 ?5 ?5 ?5

The table can be expanded indefinitely by induction. See text for

method of reading
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Kiklm ¼
PiknoHnopq

HpqrsPrstuHtulm þ Rpqlm
: ð39Þ

Here we have set:

Riklm ¼ E vikvlmð Þ:

Recall that vik is the noise associated with the observation

(see Eq. 31). Using (39), we can write the Kalman update

from a prior covariance P�iklm to a new covariance Pþiklm:

Pþiklm ¼ Iikpq � KiknoHnopq

� �
P�pqlm:

Here Iiklm = dildkm is the unit 4-tensor. We can also write

the state update from a prior metric estimate gik
- to a new

metric estimate gþik:

gþik � g�ik
� �

¼ Kikpq zpq � Hpqvwg�vw

� �
:

The special case of an isotropic body

We will state the results of the previous section for the

special case of an isotropic body. We first derive the energy

F. By analogy with the theory of linear elasticity, we know

that the Piklm must take the form:

Pijkl ¼ Kdijdkl þ l dikdjl þ dildjk �
2

3
dijdkl

� �
: ð40Þ

Inserting (40) in (37b), we have for the energy F:

F ¼ l uik � dikullð Þ2þK

2
ullð Þ2: ð41Þ

Using the relations:

kiiii ¼ 9K; kijij ¼ 9l i 6¼ jð Þ;

we can rewrite (41) in the more perspicuous form:

F ¼ m2
ik

E m2
ik

� �þ 1

2

n2
ll

E n2
ll

� �: ð42Þ

Here we have set:

mik ¼ uik �
1

3
dikull; nll ¼ ull:

We can also obtain the Kalman gain matrix Kiklm for the

isotropic case. To simplify the result, we will set:

Hiklm ¼ Iiklm: ð43Þ

We will also separate the ‘‘pure compression’’ and ‘‘pure

shear’’ terms of (40) as follows:

Pijkl ¼Kdijdkl þ l dikdjl þ dildjk �
2

3
dijdkl

� �

� KAijkl þ lBijkl:

ð44Þ

Similarly, we set:

Rijkl ¼ K 0Aijkl þ l0Bijkl: ð45Þ

Inserting (43, 44, and 45) in (39), we get:

Kiklm ¼
KAikpq þ lBikpq

K þ K 0ð ÞApqlm þ ðlþ l0ÞBpqlm
: ð46Þ

The relationship between the ‘‘probability’’ energy F

and the energy for a linearly elastic body

There exists an important difference between the metric

deformations uik as they are utilized here and in the linear

elasticity theory. To demonstrate this, we consider an

undeformed elastic body divided into a large number of

equal material volume elements, each with a particular

position-vector xl and metric gik tied to it.

In the elasticity theory, the energy F associated with a

material point is considered to be determined only by the

metric deformation uik in its infinitesimal vicinity (well

within the volume elements considered here), whereas in

the present theory interactions between any set of material

points may occur. Consequently, we must write:

gik ¼
g1

ik

..

.

gn
ik

0
B@

1
CA;

E uikulmð Þ ¼
E u1

iku1
lm

� �
. . . E u1

ikun
lm

� �

..

. . .
. ..

.

E un
iku1

lm

� �
. . . E un

ikun
lm

� �

0
B@

1
CA: ð47Þ

In the special case where interactions are constrained to

distances within the volume elements, the covariance

matrix is reduced to its diagonal elements:

E uikulmð Þ ¼
E u1

iku1
lm

� �
� � � 0

..

. . .
. ..

.

0 � � � E un
ikun

lm

� �

0
B@

1
CA:

The energy F = uikPiklmulm in this case reduces to the form:

F ¼ 1

2

Xn

a¼1

ua
ikk

aa
iklmua

lm:

This is just the energy of an elastic body in its usual form.

Kinetics of the spatial metric

We now examine how the quantities uik must evolve over

time in the continuous formulation. We will solve the

problem for the vector Kalman filter and then generalize

the result. The vector evolution is given by (Gelb 1984):

d

dt
x� lð Þ ¼ F � KHð Þ x� lð Þ � Gwþ Kv: ð48Þ

Here x is the true state of the system, lis the state estimate,

F is the control input matrix, K is the Kalman gain matrix,

H is the observation matrix, w is the process noise (and G

its gain), and v is the observation noise.
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If the rat has been observing the deformed environment

for a long time, then the Wiener conditions (Gelb 1984) are

approximately satisfied (F, H, G and K are nearly con-

stant). Solving (48) for these conditions, we get:

x� lðtÞð Þ ¼ Kv� Gw

KH � F
� Ce� KH�Fð Þt: ð49Þ

Here C is a constant. Since w and v have zero mean and are

uncorrelated with the time, (49) takes on average the form:

x� l tð Þð Þ ¼ x� l 0ð Þð Þe�ðKH�FÞt: ð50Þ

Extending this to the metric deformation, we get:

xik � gikðtÞð Þ ¼ xlm � glm 0ð Þð Þe� KikpqHpqlm�Fiklmð Þt: ð51Þ

Here we have replaced the mean l with the metric estimate

gik.

Relationship between the metric estimate

and the spacing of entorhinal grids

It is easy to obtain the spacing of the entorhinal grids in

terms of the metric estimate using the formula:

gik þ mik ¼ xik þ x0ik: ð52Þ

Here gik is the metric estimate of the subject, mik is the

entorhinal grid spacing, xik is the true undeformed

(Euclidean) metric of the world, and x0ik: is the true

deformed metric of the world (i.e., the metric defined by

the observable landmarks which have moved relative to

one another).
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