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Abstract A functional model of biological neural net-

works, called temporal hierarchical probabilistic associa-

tive memory (THPAM), is proposed in this paper. THPAM

comprises functional models of dendritic trees for encoding

inputs to neurons, a first type of neuron for generating spike

trains, a second type of neuron for generating graded sig-

nals to modulate neurons of the first type, supervised and

unsupervised Hebbian learning mechanisms for easy

learning and retrieving, an arrangement of dendritic trees

for maximizing generalization, hardwiring for rotation-

translation-scaling invariance, and feedback connections

with different delay durations for neurons to make full use

of present and past informations generated by neurons in

the same and higher layers. These functional models and

their processing operations have many functions of bio-

logical neural networks that have not been achieved by

other models in the open literature and provide logically

coherent answers to many long-standing neuroscientific

questions. However, biological justifications of these

functional models and their processing operations are

required for THPAM to qualify as a macroscopic model (or

low-order approximate) of biological neural networks.

Keywords Neuron model � Hebb learning � Spike train �
Unsupervised learning � Dendritic tree model

Abbreviations

ECM Expanded correlation matrix

FSI Feature subvector index

GECM General expanded correlation matrix

GOE General orthogonal expansion

NXOR Not-exclusive-or

OE Orthogonal expansion

PU Processing unit

PU(n) Processing unit on feature subvector index n

RTS Rotation, translation and scaling

SPD Subjective probability distribution

THPAM Temporal hierarchical probabilistic associative

memory

XOR Exclusive-or

Introduction

Biological neural networks are known to have such struc-

tures as hierarchical networks with feedbacks, neurons,

denritic trees and synapses; and perform such functions as

supervised and unsupervised Hebbian learning, storing

knowledge in synapses, encoding information by dendritic

trees, and detecting and recognizing spatial and temporal

multiple/hierarchical causes. However, descriptions of

these structures and functions are mostly fragmental and

sometimes controversial in the literature on neuroscience

(Arbib 2003; Dayan and Abbott 2001; Kandel et al. 2000;

Koch 1999; Levitan and Kaczmarek 1993; Stuart et al.

2008) (Two examples related with this paper are logic

gates vs. low-order polynomials in dendritic processing

(Mel 1994), Hebbian vs. not Hebbian in learning (Mel

2002)) and on artificial neural networks (Bishop 2006;

Dayan and Abbott 2001; Hawkins 2004; Hecht-Nielsen

2007; Hecht-Nielsen and McKenna 2003; Principe et al.

2000; Rieke et al. 1999; O’Reilly and Munakata 2000;

Hassoun 1993; Hinton and Anderson 1989; Kohonen
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1988). A single mathematical model that provides an

integration of these structures and functions, and explains

how the structures interact to perform the functions may

shed some light to what processing operations might be

required for each structure and function, suggest corre-

sponding experiments to perform, and thereby enhance

understanding of biological neural networks as systems

whole. In fact, neuroscientists have long hypothesized a

common cortical algorithm, and researchers on artificial

neural networks have long searched for an ideal learning

machine that learns and retrieves easily, detects and rec-

ognizes multiple temporal and spatial causes, and gener-

alizes adequately on noisy, distorted, occluded, rotated,

translated and scaled patterns. A common cortical algo-

rithm and, more often than not, an ideal learning machine

is intended to be a single mathematical model. To the best

of this author’s knowledge, the former was first mentioned

by Vernon Mountcastle (1978) and the latter was first

suggested by John von Neumann (1958).

This paper is intended to provide such a mathematical

model. The model, called temporal hierarchical probabilistic

associative memory (THPAM), comprises novel models of

dendritic trees; neurons communicating with spike trains; a

mechanism for unsupervised and supervised learning; a

structure for detecting and recognizing noised, distorted and

occluded patterns; hard-wiring for detecting and recognizing

rotated, translated and scaled patterns; and feedback neural

fibers for processing temporal data. Although biological

justifications of these models have not been established,

these models are logically coherent and integrate into the

model, THPAM, of biological neural networks. Before the

biological justifications are obained, THPAM can only be

termed a functional model rather than a macroscopic model.

Derivation of THPAM is guided by the following four

neurobiological postulates:

1. The biological neural networks are recurrent multi-

layer networks of neurons.

2. Most neurons output a spike train.

3. Knowledge is stored in the synapses between neurons.

4. Synaptic strengths are adjusted by a version of the Hebb

rule of learning. (In his 1949 book, The Organization of

Behavior, Donald Hebb posited: ‘‘When one cell

repeatedly assists in firing another, the axon of the first

cell develops synaptic knobs (or enlarges them if they

already exist) in contact with the soma of the second

cell.’’ A natural extension of this (alluded to by Hebb as

the decay of unused connections) is to decrease the

synaptic strength when the source and target neurons are

not active at the same time.) [http://www.en.

wikipedia.org/wiki/Hebbian_theory].

As a matter of fact, in the development of artificial

neural networks, Postulates 1 and 3 led to multilayer

perceptrons and recurrent multilayer perceptrons (Rieke

et al. 1999; O’Reilly and Munakata 2000; Dayan and

Abbott 2001; Hecht-Nielsen and McKenna 2003; Hawkins

2004; Hecht-Nielsen 2007; Principe et al. 2000; Bishop

2006; Haykin 2009), and Postulates 3 and 4 led to asso-

ciative memories (Kohonen 1988; Hinton and Anderson

1989; Hassoun 1993). However, multilayer perceptrons

exclude Postulates 2 and 4; and associative memories

exclude Postulate 1. As useful as multilayer perceptrons

and associative memories are in engineering, they have

limited capabilities and offer little insight into the inner

workings of biological neural networks.

The construction of a functional model of biological

neural networks based on all the four postulates has broken

the barriers confining the multilayer perceptrons and the

associative memories. A first contribution of this paper lies

in each of the following features of THPAM (temporal

hierarchical probabilistic associative memory) that such

existing models as the recurrent multilayer perceptron and

associative memories do not have:

1. a recurrent multilayer network learning by the Hebb

rule;

2. fully automated unsupervised and supervised Hebbian

learning mechanisms (involving no differentiation,

error backpropagation, optimization, iteration, cycling

repeatedly through all learning data, or waiting for

asymptotic behavior to emerge);

3. dendritic trees encoding inputs to neurons;

4. neurons communicating with spike trains carrying

subjective probability distributions;

5. masking matrices facilitating recognition of corrupted,

distorted, and occluded patterns; and

6. feedbacks with different delay durations for fully

utilizing temporally and spatially associated

information.

A second contribution of this paper lies in the integra-

tion of not only the above unique features but also the

following additional features in a single model of biolog-

ical neural networks:

1. detecting and recognizing multiple/hierarchical causes;

and

2. hard-wired learning for detecting and recognizing

rotated, translated and scaled patterns.

A third contribution of this paper is providing logically

coherent answers jointly to the following long-standing

questions by using a single functional model of biological

neural networks:

1. What is the information that neurons communicate by

spike trains?

2. How do spike trains carry this information?
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3. In what form is this information stored in the

synapses? How are the synapses updated to learn this

information in supervised learning and unsupervised

learning in accordance with the Hebb rule of learning?

4. How is this information stored in synapses retrieved

and converted into spike trains?

5. How does a biological neural network generalize on

corrupted, distorted or occluded input?

6. What enables a biological neural network to recognize

rotated, translated or scaled patterns?

7. How do the spike generation and travel times affect the

network processing?

8. What are the functions of dendritic nodes and trees?

How are dendritic nodes connected into trees to

perform their function?

However, we note that even if all its component models

are biologically justified, THPAM is only a ‘‘first-order

approximate’’ of biological neural networks, which is not

intended to explain all the biological structures and phe-

nomena observed in biological neural networks. Some

biological structures or phenomena can undoubtedly be

found that are seemingly or apparently missing in THPAM.

Nevertheless, the 16 numbered list items above are like 16

pieces of a jigsaw puzzle. The fact that they fit together

nicely into one piece whole for the first time indicates that

THPAM is worth pursuing further as a candidate macro-

scopic model.

The components and processing operations in THPAM

can be viewed as hypotheses about the macroscopic

properties of biological neural networks. Some issues that

need to be resolved to biologically justify or dismiss these

hypotheses are mentioned in this paper. In recent years, we

have seen rapid progress in technology for measuring

dendritic, synaptic and neuronal quantities, and we expect

to see more. It is hoped that those outstanding issues will

soon be resolved in one way or another. (It may be

appropriate to recall that when it was first published, the

special theory of relativity was not more than a set of

logically coherent mathematical results. The claims of

bizarre space/time relativity and mass-energy conversion

had not even been thought of, much less experimentally

confirmed. Yet the theory led to experiments, and the

bizarre space/time relativity and mass-energy conversion

were eventual proven to be true.)

A current major research thrust on learning machines is

the development of those with a deep architecture such as

the convolutional networks (LeCun et al. 1989, 1998;

Simard et al. 2003), deep belief networks (Hinton et al.

2006; Hinton and Salakhutdinov 2006) and deep Boltzmann

machines (Salakhutdinov and Hinton 2009). Better versions

and good understandings have been reported in (Bengio and

LeCun 2007; Ranzato et al. 2007; Bengio et al. 2007;

Desjardins and Bengio 2008; Erhan et al. 2010). The deep

belief networks and their improved version, the deep

Boltzmann machines, can learn without a supervisor by a

ingenious technique called greedy layer-wise learning

strategy. The convolutional networks capture the spatial

topology of the input images and can recognize translated

patterns very well. All these deep learning machines have

good generalization capabilities for recognizing distorted,

rotated and translated patterns. On the well-known and

widely used ‘‘MNIST Database’’ of handwritten digits, the

deep Boltzmann machine achieved an error rate of 0.95% in

recognizing handwritten digits (without using training

tricks such as supplementing the data set with lightly

transformed versions of the training data) (Salakhutdinov

and Hinton 2009). After about 20 years of evolution, the

convolutional networks’ latest version, ‘‘LeNet-6? unsu-

pervised training,’’ achieved a recognition error of 0.39%

on the same ‘‘MNIST Database’’ (Bengio and LeCun 2007).

Performances of these deep learning machines are expected

to continue improving even further, especially when feed-

back structures are added in them.

To appreciate these performances, we note that the error

rate of human performance in recognizing handwritten

numerals is 1.56% at about 1 digit per second (Wilkinson

et al. 1992) and 0.91% (0.56% rejection and 0.35% error)

in two rounds with no time limit in the second round (Geist

et al. 1994). Nevertheless, none of the deep learning

machines existing in the open literature has any of the first

seven features listed above.

Several models of cortical circuits, which attempt to

integrate neurobiological findings into a model of the

cortex, have been reported (Martin 2002; Granger 2006;

Grossberg 2007; George and Hawkins 2009). Martin

(2002) states: ‘‘It is clear that we simply do not understand

much of the detailed structure of cortical microcircuits or

their relation to functions.’’ (Granger 2006) provides a

computational instruction set to establish a unified for-

malism for describing human faculties ranging from per-

ception and learning to reasoning and language. Grossberg

(2007) explains how laminar neocortical circuits, which

embody two computational paradigms—complementary

computing and laminar computing, give rise to biological

intelligence. George and Hawkins (2009) describes how

Bayesian belief propagation in a spatio-temporal hierar-

chical model can lead to a mathematical model for cortical

circuits. The models of cortical circuits in (Granger 2006;

George and Hawkins 2009) exhibit interesting pattern

recognition capabilities in certain numerical examples.

However, they have not been tested or compared with

learning machines on those widely used databases. Granger

(2006), Grossberg (2007) contain no numerical results.

None of the models of cortical circuits has any of the first

six features listed above.
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A brief summary of the results on THPAM together with

the organization of this paper follows: THPAM can be

viewed as an organization of a biological neural network

into a recurrent multilayer network of processing units

(PUs). Section ‘‘A recurrent multilayer network of pro-

cessing units’’ briefly describes this network and establishes

notations of the inputs and outputs of PUs in the network.

The first two questions are answered in ‘‘Information

carried by spike trains’’. It is argued that the ideal infor-

mations for neurons to communicate are the subjective

probability distributions (SPDs) of the labels of patterns

appearing in the receptive domains of neurons. Therefore,

we hypothesize that the SPDs are said ideal informations to

facilitate our derivation of THPAM. The resulting integrity

of THPAM and impossibility to replace SPDs suggests that

the hypothesis is likely to be valid. It is further argued that

under the four postulates, the SPD is the average frequency

of the spikes in the spike train.

A processing unit (PU) is a two-layer pattern recognizer,

which learns and generates aforementioned SPDs. To

achieve these, the PU uses not-exclusive-or (NXOR) logic

gates to transform its input vectors into general orthogonal

expansions (GOEs). GOEs are described in ‘‘Orthogonal

expansion’’. The transformation by a large number of

NXOR gates can be looked upon as a functional model of

the dendritic trees of the neurons in the PU.

By a crude version of the Hebb rule, outer products of

the GOEs (general orthogonal expansions) and their

respective labels are accumulated to form general expan-

sion correlation matrices (GECMs), which are the synaptic

strengths stored in the PU (processing unit). GECMs are

discussed in ‘‘Expansion correlation matrices’’. Simple

multiplication of the GECMs and the GOE of the input

pattern and simple manipulation of the resultant products

yield the SPD of the label of the input pattern. This gen-

eration of SPDs together with an example is given in

‘‘Representations of probability distributions’’.

Each processing unit (PU) uses a masking matrix to

automatically select a maximum number of components of

its input feature subvector that matches those of a stored

feature subvector and determine the SPD of the label

involved. The masking matrix and how it works is

described in ‘‘Masking matrices’’. The masking matrix can

be viewed as mathematical idealization and organization of

a large number of overlapped and nested dendritic trees.

As shown in Fig. 2, a processing unit (PU) comprises an

Orthogonal Expander, a label SPD (subjective probability

distribution) Estimator, a Spike Generator, a GECMs

(general expansion correlation matrices) Adjuster, and a

storage of CðnÞ and DðnÞ. A PU has essentially two

functions, retrieving ‘‘point estimates’’ of the label of a

feature subvector xsðnÞ from the memory (i.e., GECMs)

and learning a feature subvector and its label that is either

provided from outside the PU (in supervised learning) or

generated by itself (in unsupervised learning). The struc-

tural diagram of an example PU is shown in Fig. 3. Both

supervised and unsupervised learning by the PU follow a

crude version of the Hebb rule. Spike trains generated by

each PU facilitate unsupervised learning. This simple novel

modeling of the Hebbian unsupervised learning in biolog-

ical neural networks is a major underpin of THPAM as a

functional model of biological neural networks. The PU

and its functions of retrieving and learning are explained in

‘‘Processing units and supervised and unsupervised

learning’’.

The brain is known to be able to recognize rotated,

translated and scaled patterns. To achieve this, each PU in

THPAM learns a rotation, translation and scaling suite of

its input feature subvector. Such suites are described in

‘‘Learning to recognize rotated, translated or scaled pat-

terns’’. Some translations, rotation, compression and

expansion of an example pattern are shown in Fig. 4.

Spike trains propagated among the PUs are one of the

postulates leading to THPAM. In ‘‘Spike trains for each

exogenous feature vector’’, the necessity of spike trains for

the foregoing parts of THPAM to work properly is dis-

cussed. So is how the spike trains are feedbacked with

delays. Typical feedback connections with delays are

shown in Fig. 5.

A recurrent multilayer network of processing units

The temporal hierarchical probabilistic associative memory

(THPAM) can be looked upon as an organization of a

biological neural network into a recurrent hierarchical

network of PUs (processing units). Each PU is a pattern

recognizer that comprises dendritic trees, neurons of two

types, synaptic weights, and a learning mechanism for

updating these synaptic weights by a version of the Hebb

rule in unsupervised or supervised learning.

Spike trains propagating through biological neural net-

works are assumed to be sequences of unipolar binary

numbers, 0’s and 1’s. A group of M spike trains can be

viewed as a sequence of M-dimensional unipolar binary

vectors, vt, t = 1, 2,…, where vt ¼ vt1 vt2 . . . vtM½ �0.
In this paper, we convert vt, t = 1, 2,…, into a sequence of

M-dimensional bipolar binary vectors, xt, t = 1, 2,…, by

xtm = 2vtm -1, for m = 1,…, M and t = 1, 2,…. We will

use xt to simplify our description and discussion in this

paper. Since xt is only a mathematical representation of vt,

and xtm can easily be converted back into vtm by

vtm = (xtm ?1)/2, we also call the components of xt,

t = 1, 2,…, spike trains with the understanding that they

are mathematical representations of the ‘‘biological’’ spike

trains, vt, t = 1, 2,….
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A vector input to THPAM is called an exogenous fea-

ture vector, and a vector input to a layer of PUs is called a

feature vector. A feature vector input to a layer usually

contains not only feedforwarded outputs from a preceding

layer but also feedbacked outputs from the same or higher

layers with a time delay. A feature vector may contain

components from an exogenous feature vector. For sim-

plicity, we assume that the exogenous feature vector is only

input to layer 1 and is thus a subvector of a feature vector

input to layer 1. These vectors over time form groups of

spike trains.

A subvector of a feature vector that is input to a PU is

called a feature subvector. Trace the feedforward connec-

tions backward from neurons of a PU to a subvector of the

exogenous feature vector. This feature subvector is called

the receptive domain of the PU. The collection of neurons

in layer l -1 that have a feedforward connection to a

neuron in a PU in layer l and the delay devices that hold a

feedback for direct input to the same PU in layer l are

called the immediate receptive domain of the PU.

The feature vector input to layer l at time or numbering t

is denoted by xl�1
t , and the output from the layer at t is

denoted by xfyl
tg, where yl

t and x yl
t

� �
are specified in more

detail later in this section. An exogenous feature vector is

denoted by xex
t . It is a subvector of x0

t , which may contain

feedbacked components. For notational simplicity, the

superscript l -1 in xl�1
t and dependencies on l -1 or l in

other symbols are sometimes suppressed in the following

when no confusion is expected.

Let xt, t = 1, 2,…, denote a sequence of M-dimensional

feature vectors xt ¼ xt1 . . . xtM½ �0, whose components

are ternary numbers. Let n ¼ n1 . . . nk½ �0 be a sub-

vector 1 . . . M½ �0 such that n1\ � � �\nk. The subvec-

tor xtðnÞ :¼ xtn1
. . . xtnk

½ �0 of xt is a feature subvector of

the feature vector xt. n is called a feature subvector index

(FSI), and xtðnÞ is said to be a feature subvector on the FSI

n or have the FSI n. Each PU is associated with a fixed FSI

n and denoted by PU ðnÞ. Using these notations, the

sequence of subvectors of xt, t = 1, 2,…, that is input to

PU(n) is xtðnÞ, t = 1, 2,…. The FSI n of a PU usually has

subvectors, nðuÞ, u = 1,…, U, on which subvectors

xtðnðuÞÞ of xtðnÞ are separately processed by PU(n) at first.

The subvectors, nðuÞ, u = 1,…, U, are not necessarily

disjoint, but all inclusive in the sense that every component

of n is included in at least one of the subvectors nðuÞ.
Moreover, the components of nðuÞ are usually randomly

selected from those of n.

The PUs in layer l have FSIs (feature subvector indices)

denoted by 1l, 2l,…,Nl. Upon receiving a feature vector

xl�1
s by layer l, the feature subvectors, xl�1

s ð1lÞ,
xl�1
s ð2lÞ,…,xl�1

s ðNlÞ, are formed and processed by the

PUs, PUð1lÞ, PUð2lÞ,…,PUðNlÞ, to compute yl
sð1lÞ,

yl
sð2lÞ,…,yl

sðNlÞ first and then generate xfyl
sð1lÞg,

xfyl
sð2lÞg,…,xfyl

sðNlÞg, respectively. Here yl
s nl
� �

denotes a

representation of the subjective probability of the label

rl�1
s nl
� �

of xl�1
s nl
� �

, and x yl
s nl
� �� �

denotes the output of

PU nl
� �

based on yl
s nl
� �

. These representations and outputs

are grouped into the representation yl
s of subjective prob-

abilities and the output vector x yl
s

� �
of layer l as follows:

yl
s ¼ yl0

s 1l
� �

yl0
s 2l
� �

. . . yl0
s Nl
� �� �0

x yl
s

� �
¼ x0 yl

s 1l
� �� �

x0 yl
s 2l
� �� �

. . . x0 yl
s Nl
� �� �� �0

The components of a feature vector xl�1
s input to layer l at

time (or with numbering) s comprise components of ternary

vectors generated by PUs in layer l -1 and those generated

at a previous time by PUs in the same layer l or PUs in

higher layers with layer numberings l ?k for some positive

integers k. The time delays may be of different durations.

Once an exogenous feature vector is received by

THPAM, the PUs perform functions of retrieving and/or

learning from layer to layer starting with layer 1, the lowest

layer. After the PUs in the highest layer, layer L, complete

performing their functions, THPAM is said to have com-

pleted one round of retrievings and/or learnings (or mem-

ory adjustments). For each exogenous feature vector,

THPAM will continue to complete a certain number of

rounds of retrievings and/or learnings.

We note that retrieving and learning by a PU are per-

formed locally, meaning that only the feature subvector

input to the PU and its label are involved in the processing

by the PU. In ‘‘Orthogonal expansion, Expansion correla-

tion matrices, Representations of probability distributions,

7, 8 and Learning to recognize rotated, translated or scaled

patterns’’, the subscripts t and s denote the time or num-

bering of a feature vector or subvector that is input to a

layer or a PU, whereas, in ‘‘Spike trains for each exogenous

feature vector’’, they denote the time or numbering of an

exogenous vector that is input to THPAM.

Information carried by spike trains

Since the immediate receptive domain (defined in Section

‘‘A recurrent multilayer network of processing units’’) of a

PU may be shared by more than one cause (or pattern) or

may contain parts from more than one cause, and may

contain corruption, distortion, occludion or noise from the

PU’s receptive domain (defined in Section ‘‘A recurrent

multilayer network of processing units’’) or the sensor

measurements, image pixels, or sound recordings that are

transformed into the receptive domain; the PU’s immediate

receptive domain can completely be described or repre-

sented only by a probability distribution (or a relative

frequency distribution). Therefore, probability distributions
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are the most desirable information for the PUs to com-

municate among them. Since probability distributions can

be learned by the PU only from ‘‘experiences,’’ they must

be subjective probability distributions (SPDs). As will be

seen in ‘‘Representations of probability distributions’’,

SPDs of the labels of a PU’s immediate receptive domain

can be generated by the PU.

There are three possible ways spike trains can carry an

SPD: (1) The SPD is carried by the shapes of the spikes. (2)

The spike trains at an instant of time form a binary rep-

resentation of the SPD. (3) The SPD is represented by the

frequencies of spikes in spike trains.

Shapes of the spikes cannot be learned by the Hebb rule.

Besides, SPDs output from a layer of PU are input to the

next layer of PUs. In the process of learning, such SPDs for

causes or patterns change. The learning and retrieving

mechanisms of PUs must be able to tolerate such changes.

It is not clear how changes in spike shapes can be tolerated.

Hence, way (1) is ruled out for PUs in THPAM.

In way (2), each SPD is represented by a certain number of

bits (or tets), the number depending on the level of accuracy

required. The higher the accuracy level, the larger the

dimensionality of the output vector of the processing unit.

Again, in the process of learning, the SPD for a certain

cause changes. For the learning and retrieving mechanisms

to tolerate changes in the codes for the SPDs, the codes

must vary gradually as the SPD changes gradually. Such

codes are known to consist of large numbers of bits,

requiring a large dimensionality of the output vector of the

PU. Furthermore, it is not clear how unsupervised learning

can be performed with such binary codes by the Hebb rule.

For instance, when feature subvectors (or their variants)

that have not been learned are input to a PU, the SPDs

output by the PU are the same, namely the uniform dis-

tribution, which is therefore represented by the same binary

code and giving all such input vectors the same label in

Hebbian learning, failing to learn to distinguish different

feature subvectors without supervision.

Way (3) can be easily obtained by using a pseudo-ran-

dom number generator to convert a subjective probability

into a ?1 spike with said subjective probability and a

mathematical -1 spike (i.e., biological 0) otherwise. Using

this representation, the rate of ?1 spikes in a spike train is

on the average the subjective probability generated by the

PU that outputs the spike train. The dimensionality of this

representation is the dimensionality of the label. At any

instant of time, the spike trains output by the processing

units in a layer form an image of ?1, -1 and 0 (for sim-

plicity in certain cases). Gradual change in the subjective

probabilities changes the distribution of the ternary digits

in the image gradually, which can be tolerated by the use of

the masking matrices to be described in ‘‘Masking matri-

ces. When a feature subvector (or a variant thereof) that has

never been learned is input to a PU, a random label is

assigned to the vector. Different new input feature sub-

vectors are usually assigned different labels in unsuper-

vised learning. Occasional coincidences of different feature

subvectors assigned with the same label do not cause a

problem, if the label is used as part of a feature subvector

input to a higher-layer PU. For example, ‘‘loo’’ as a part of

‘‘look,’’ ‘‘loot,’’ and ‘‘loop’’ does not cause confusion.

Therefore, under the four postulates, the subjective

probability of a component of a label being ?1 is represented

by the average spike rate of a spike train. It follows that if the

dimensionality of the label is at most R, R neurons form a

group whose R spike trains carry the SPD of the label.

Orthogonal expansion

As discussed in the preceding section, SPDs (subjective

probability distributions) are the most desirable informa-

tion for PUs to communicate among themselves. Can SPDs

be learned and retrieved by PUs under the four postulates?

Subjective probabilities are relative frequencies. We need

to find out whether and how relative frequencies can be

learned and retrieved.

Orthogonal expansion of ternary vectors from the cod-

ing theory (Slepian 1956) plays an important role in

learning and retrieving of the relative frequencies. The

following example motivates and explains the definition of

orthogonal expansion of bipolar vectors.

Example 1 Given 2-dimensional bipolar vectors, a ¼
a1 a2½ �0 and b ¼ b1 b2½ �0, let

�a ¼ 1 a1 a2 a2a1½ �0
�b ¼ 1 b1 b2 b2b1½ �0

By simple algebra, �a0 �b ¼ 1þ a1b1 þ a2b2 þ a2b2a1b1 ¼
ð1þ a1b1Þð1þ a2b2Þ. It follows that �a0 �b= 1, if a = b; and

�a0 �b ¼ 0, if a = b. �a and �b are therefore called orthogonal

expansions of a and b. Generalizing this idea of orthogonal

expansion yields the following definition.

Definition Given an m-dimensional ternary vector

v ¼ v1 . . . vm½ �0, define �v recursively by

�vð1Þ ¼ 1 v1½ �0

�vð1; . . .; jþ 1Þ ¼ �v0ð1; . . .; jÞ vjþ1�v0ð1; . . .; jÞ½ �0

for j ¼ 1; . . .;m� 1

�v ¼ �vð1; . . .;mÞ

ð1Þ

�v is called the orthogonal expansion of v.

The above definition is justified by the following

theorem.
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Theorem 1 Let a ¼ a1 . . . am½ �0 and b ¼
b1 . . . bm½ �0 be two m-dimensional ternary vectors. Then

the inner product �a0 �b of their orthogonal expansions, �a and �b,

can be expressed as follows:

�a0 �b ¼
Ym

j¼1

ð1þ ajbjÞ ð2Þ

which have the following properties:

1. If akbk = -1 for some k [ {1,…, m}, then �a0 �b ¼ 0.

2. If akbk = 0 for some k [ {1,…, m}, then

�a0 �b ¼
Qm

j¼1;j 6¼k

ð1þ ajbjÞ.
3. If �a0 �b 6¼ 0, then �a0 �b ¼ 2a0b.

4. If a and b are bipolar vectors, then �a0 �b ¼ 0 if a = b;

and �a0 �b ¼ 2m if a = b.

Proof Applying the recursive formula (1), we obtain

�a0ð1; . . .;jþ1Þ�bð1; . . .;jþ1Þ
¼ �a0ð1; . . .;jÞ ajþ1�a0ð1; . . .;jÞ½ � �b0ð1; . . .; jÞ bjþ1

�b0ð1; . . .;jÞ
� �0

¼ �a0ð1; . . .;jÞ�bð1; . . .;jÞþajþ1bjþ1�a0ð1; . . .; jÞ�bð1; . . .;jÞ
¼ �a0ð1; . . .;jÞ�bð1; . . .;jÞð1þajþ1bjþ1Þ

The formula in (2) follows. The four properties above are

easy consequences.

We remark that if some components of a are set equal to

zero to obtain a vector c and the nonzero components of c

are all equal to their corresponding components in b, then

we still have �c0 �b 6¼ 0: This property is used to construct

masking matrices in ‘‘Masking matrices’’ for learning and

recognizing corrupted, distorted and occluded patterns and

for facilitating generalization on such patterns.

Expansion correlation matrices

In this section, it is shown how orthogonal expansions of

subvectors of feature subvectors input to a PU are used to

construct synaptic weights in the PU, and how such syn-

aptic weights, in the form of matrices, are adjusted in the

PU to learn feature subvectors.

Let the label of xtðnÞ be denoted by rtðnÞ, which is an R-

dimensional ternary vector. All subvectors, xtðnðuÞÞ, u =

1,…, U, of xtðnÞ share the same label rtðnÞ. In supervised

learning, rtðnÞ is provided from outside THPAM, and in

unsupervised learning, rtðnÞ is generated internally in the

PU itself.

The pairs (xtðnðuÞÞ, rtðnÞ), t = 1, 2,…, are learned by

the PU to form expansion correlation matrices (ECMs),

DðnðuÞÞ and CðnðuÞÞ on nðuÞ. After the first T pairs are

learned, these matrices are

DðnðuÞÞ ¼ K
XT

t¼1

KT�trtðnÞ�x0tðnðuÞÞ ð3Þ

CðnðuÞÞ ¼ K
XT

t¼1

KT�t�x0tðnðuÞÞ ð4Þ

where �xtðnðuÞÞ are orthogonal expansions of xtðnðuÞÞ, K is a

scaling constant that is selected to keep all numbers involved

in THPAM manageable, kT-tI is a weight matrix, where I is

the identity matrix, and k(0 \ k\ 1) is a forgetting factor.

Other matrix WtðnðuÞ; TÞ can be used as the weight matrix

instead. Note that the matrix CðnðuÞÞ has only one row.

The ECMs, DðnðuÞÞ and CðnðuÞÞ, are adjusted as fol-

lows: If rtðnÞ 6¼ 0,

DðnðuÞÞ  KDðnðuÞÞ þ KrtðnÞ�x0tðnðuÞÞ ð5Þ

CðnðuÞÞ  KCðnðuÞÞ þ K�x0tðnðuÞÞ ð6Þ

If rtðnÞ ¼ 0, then DðnðuÞÞ and CðnðuÞÞ are unchanged.

These update formulas are discussed in terms of supervised

and unsupervised Hebbian learning in ‘‘Processing units and

supervised and unsupervised learning’’. We note here that

learning an input feature subvector using the above formulas

is instantaneous. No differentiation, backpropagation, iter-

ation, optimization, cycling repeatedly through training

material or waiting for asymptotic convergence is required.

Orthogonal expansions (OEs) �xtðnðuÞÞ and ECMs,

DðnðuÞÞ, CðnðuÞÞ, u = 1,…, U, are assembled into a

general orthogonal expansion (GOE) �xtðnÞ and general

expansion correlation matrices (GECMs), DðnÞ and CðnÞ,
for PUðnÞ (the PU on the FSI n) as follows:

�xtðnÞ ¼ �x0tðnð1ÞÞ �x0tðnð2ÞÞ . . . �x0tðnðUÞÞ½ �0 ð7Þ
DðnÞ ¼ Dðnð1ÞÞ Dðnð2ÞÞ . . . DðnðUÞÞ½ � ð8Þ
CðnÞ ¼ Cðnð1ÞÞ Cðnð2ÞÞ . . . CðnðUÞÞ½ � ð9Þ

Note that while dim �xtðnÞ ¼
PU

u¼1 2dim xtðnðuÞÞ, the

dimensionality of the orthogonal expansion of xtðnÞ is

2dim xtðnÞ. The former can be made much smaller than the

latter by setting dim xtðnðuÞÞ small. If the components of a

subvector nðuÞ of the feature subvector index (FSI) n are

selected from the FSI n at random, then the components of

xtðnðuÞÞ are a random sample of xtðnÞ, and xtðnðuÞÞ is a

‘‘lower-resolution’’ representation of xtðnÞ. Hence, a

sufficient number U of xtðnðuÞÞ, which may have common

components, can sufficiently represent xtðnÞ. Since

subvectors nðuÞ are all inclusive, xtðnÞ ¼ xsðnÞ if and only

if xtðnðuÞÞ ¼ xsðnðuÞÞ for u = 1,…, U. However, even if

xtðnÞ 6¼ xsðnÞ; xtðnðuÞÞ may still be equal to xsðnðuÞÞ for

some values of u. Therefore, the use of the GOE �xtðnÞ has not

only the advantage of having the much smaller

dimensionality of �xtðnÞ and thereby the much smaller

dimensionality of the GECMs, but also the advantage of
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helping enhance the generalization capability of the PU.

This advantage is further discussed in ‘‘Masking matrices’’.

Note that the components of �xtðnðuÞÞ are actually all the

products that can be obtained from those of xtðnðuÞÞ. Each

product is obtained by successive two-factor multiplica-

tions. For example,

1 ¼ x2
tiðnðuÞÞ

xtiðnðuÞÞxtjðnðuÞÞxtkðnðuÞÞ ¼ xtiðnðuÞÞ xtjðnðuÞÞxtkðnðuÞÞ
� �

Because of commutativity and associativity of multiplica-

tion, the successive two-factor multiplication for a com-

ponent of xtðnðuÞÞ is not unique. Missing or repeating

components in �xtðnðuÞÞ in the GECMs, DðnÞ and CðnÞ, or

in the GOE of the input feature subvectors �xsðnðuÞÞ cause

only graceful degradation of subjective probability distri-

bution representation psðnÞ.
Each two-factor multiplication can be looked upon as an

NXOR operation on the two factors involed. Note that

NXOR operations can be replaced with XOR operations

without affecting the generation of subjective probability

distribution representation psðnÞ. XOR gates were found in

dendritic trees by Zador et al. (1992), Fromherz and Gaede

(1993), and the existence of logic gates and low-order

polynomials in dendritic trees were discussed in Mel (1994).

Representations of probability distributions

How the expansion correlation matrices are used to gen-

erate representations of SPDs (subjective probability dis-

tributions) is shown in this section. The following example

illustrates the idea.

Example 2 Given two different feature subvectors, u ¼
u1 u2½ �0 and v ¼ v1 v2½ �0, which are 2-dimensional

bipolar vectors. Then, �u0�u = 4, �u0�v ¼ �v0�u = 0, and �v0�v ¼ 4. Let

a training data set consists of 8 copies of u with label ?1 and 2

copies of u with label -1; and 3 copies of v with label ?1 and

27 copies of v with label -1. This training data set is learned

by a PU with K ¼ K ¼ 1 [in (3) and (4)] to form the GECMs

(general expansion correlation matrices) with U = 1:

D ¼ ð8� 2Þ�u0 þ ð3� 27Þ�v0

C ¼ ð8þ 2Þ�u0 þ ð3þ 27Þ�v0

By simple algebra, D�u ¼ 6ð4Þ, C�u ¼ 10ð4Þ, D�v ¼ �24ð4Þ,
C�v ¼ 30ð4Þ. It follows that ðD�uþ C�uÞ=ð2C�uÞ = 8/10 is the

relative frequency that u has been learned with label ?1 by

the PU; and 1� ðD�uþ C�uÞ=ð2C�uÞ ¼ 2=10 is the relative

frequency that u has been learned with label -1 by the

PU. Similary, ðD�vþ C�vÞ=ð2C�vÞ ¼ 3=30 is the relative

frequency that v has been learned with label ?1; and

1� ðD�vþ C�vÞ=ð2C�vÞ ¼ 27=30 is the relative frequency

that v has been learned with label -1.

We now generalize the idea illustrated in Example 2 in

the following. Let us first define the symbols dsðnðuÞÞ,
csðnðuÞÞ, asðnðuÞÞ:

dtðnðuÞÞ :¼ DðnðuÞÞ�xtðnðuÞÞ ð10Þ
ctðnðuÞÞ :¼ CðnðuÞÞ�xtðnðuÞÞ ð11Þ

atðnðuÞÞ :¼ 1

2
ðICðnðuÞÞ þ DðnðuÞÞÞ�xtðnðuÞÞ ð12Þ

and the symbols dsðnÞ, csðnÞ, asðnÞ:

dsðnÞ :¼ DðnÞ�xsðnÞ ¼
XU

u¼1

DðnðuÞÞ�xsðnðuÞÞ

¼
XU

u¼1

dsðnðuÞÞ ð13Þ

csðnÞ :¼ CðnÞ�xsðnÞ ¼
XU

u¼1

CðnðuÞÞ�xsðnðuÞÞ ¼
XU

u¼1

csðnðuÞÞ

ð14Þ

asðnÞ :¼ 1

2

XU

u¼1

ðICðnðuÞÞ þ DðnðuÞÞÞ�xsðnðuÞÞ

¼
XU

u¼1

asðnðuÞÞ ð15Þ

where �xtðnÞ is a general orthogonal expansion (GOE) and

DðnÞ and CðnÞ are general expansion correlation matrices

(GECMs) for PUðnÞ. It is easy to see that asðnðuÞÞ ¼
ðIcsðnðuÞÞ þ dsðnðuÞÞÞ=2, and asðnÞ ¼ ðIcsðnÞ þ dsðnÞÞ=2:

As a special case, Example 2 shows that asiðnÞ=csðnÞ ¼
ð1þ dsiðnÞ=csðnÞÞ=2 is an approximate of the subjective

probability that the i-th component of the label of asðnÞ is

?1. The general case is examined in the following.

Assume that all xtðnÞ and xsðnÞ are bipolar binary vec-

tors. By (11), (12), (3) and (4),

asjðnðuÞÞ ¼ K
X

t2GsjðnðuÞ;þÞ
2dim nðuÞKT�t

csðnðuÞÞ ¼ K
X

t2GsðnðuÞÞ
2dim nðuÞKT�t

where

GsjðnðuÞ;þÞ ¼ ft 2 0; T½ �jxtðnðuÞÞ ¼ xsðnðuÞÞ; rtjðnÞ ¼ 1g
GsðnðuÞÞ ¼ ft 2 0; T½ �jxtðnðuÞÞ ¼ xsðnðuÞÞg

Assume further that dim nðuÞ, u = 1,…, U are all the same.

Then if csðnÞ 6¼ 0,

asjðnÞ
csðnÞ

¼
PU

u¼1

P
t2GsjðnðuÞ;þÞ K

T�t

PU
u¼1

P
t2GsðnðuÞÞ K

T�t
ð16Þ

For example, if k and U are set equal to 1, the above

expression becomes
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asjðnÞ
csðnÞ

¼ jGsjðnð1Þ;þÞj
jGsðnð1ÞÞj

where jGsjðnð1Þ;þÞj is the number of xtðnð1ÞÞ’s with

rtjðnÞ ¼ 1 that have been learned and are equal to xsðnð1ÞÞ,
and jGsðnð1ÞÞj is the number of xtðnð1ÞÞ’s that have been

learned and are equal to xsðnð1ÞÞ. Hence, the ratio

asjðnÞ=csðnÞ is a relative frequence that the input feature

subvector xsðnð1ÞÞ has a label with its j-th component

rtjðnÞ ¼ 1. The example also shows that if k equal to 1, the

memory, DðnÞ and CðnÞ, never degrades. However, in this

case, if learning continues, the memory can get saturated,

causing memory ‘‘overflow.’’

The closer k is to 1 and the smaller U is, the closer

the above expression (16) approximates the subjective

probability that the label rsjðnÞ ¼ 1, based on the GECMs,

CðnÞ and DðnÞ ¼ 2AðnÞ � CðnÞ; which are constructed

with pairs ðxtðnðuÞÞ; rtðnÞÞ; t = 1, 2,…, T. Here I ¼
1 . . . 1½ �0 with R components. (note that I is not the

identify matrix I.) The forgetting factor k de-emphasizes

past pairs gradually. It does not have to be applied each

time a feature subvector xtðnÞ is learned by PU(n) as

above. It can be applied once after a certain number, say

1,600 of feature subvectors are learned by the PU.

All the statements concerning a probability in this paper

are statements concerning a subjective probability, and the

word ‘‘subjective’’ is sometimes omitted. If csðnÞ 6¼ 0; then

asjðnÞ=csðnÞ is approximately the probability psjðnÞ that the

j-th component rsjðnÞ of the label rsðnÞ of xsðnÞ is ?1

based on DðnÞ and CðnÞ. If csðnÞ ¼ 0, then we set psjðnÞ =

1/2. The vector

psðnÞ ¼ ps1ðnÞ ps2ðnÞ . . . psRðnÞ½ �0

is a representation of a probability distribution of the label

rsðnÞ of the feature subvector xsðnÞ input to PU(n). Since

DðnÞ ¼ 2AðnÞ � ICðnÞ, if csðnÞ 6¼ 0, the ratio dsjðnÞ=csðnÞ
is equal to 2psjðnÞ � 1: If csðnÞ ¼ 0, set 2psjðnÞ � 1 ¼ 0.

Denote 2psjðnÞ � 1 by ysjðnÞ. Then the vector ysðnÞ ¼
2psðnÞ � I satisfies

ysðnÞ ¼ 2ps1ðnÞ � 1 . . . 2psRðnÞ � 1½ �0

¼ ds1ðnÞ=csðnÞ ds2ðnÞ=csðnÞ . . . dsRðnÞ=csðnÞ½ �0

and is also a representation of a probability distribution of

the label rsðnÞ of the feature subvector xsðnÞ. Here,

I ¼ 1 1 . . . 1½ �0.
A point estimate of the label rsðnÞ can be obtained by

converting each component ysjðnÞ of ysðnÞ into a ternary

number xfysjðnÞg by the following steps: For k = 1, R, set

psjðnÞ ¼ ðysjðnÞ þ 1Þ=2, and generate a pseudo-random

number in accordance with the probability distribution of a

random variable v : Pðv ¼ 1Þ ¼ psjðnÞ and Pðv ¼ �1Þ ¼
1� psjðnÞ, and set xfysjðnÞg equal to the resultant pseudo-

random number. Assemble xfysjðnÞg, j = 1,…, R, into

xfysðnÞg ¼ xfys1ðnÞg xfys2ðnÞg . . . xfysRðnÞg½ �0,
which is a point estimate of the label rsðnÞ.

Masking matrices

Let a feature subvector that deviates from each of a group of

feature subvectors that have been learned by the PU due to

corruption, distortion or occlusion be presented to the PU. If

the PU is able to automatically find the largest subvector of

the presented subvector that matches at least one subvector

among the group and generate the SPD of the label of the

largest subvector, the PU is said to have a maximal gener-

alization capability. This capability is achieved by the use

of masking matrices described in this section.

Let a subvector xsðnðuÞÞ be a slightly different (e.g.,

corrupted, distorted, occluded) version of xnðnðuÞÞ, which

is one of the subvectors, xtðnðuÞÞ, t = 1, 2,…, T, stored in

ECMs, DðnðuÞÞ and CðnðuÞÞ, on nðuÞ. Assume that

xsðnðuÞÞ is very different from other subvectors stored in

the ECMs. Since �x0nðnðuÞÞ�xsðnðuÞÞ ¼ 0, the information

stored in DðnðuÞÞ and CðnðuÞÞ about the label rnðnÞ cannot

be obtained from dðnðuÞÞ ¼ DðnðuÞÞ�xsðnðuÞÞ and

cðnðuÞÞ ¼ CðnðuÞÞ�xsðnðuÞÞ. This is viewed as failure of

dðnðuÞÞ and cðnðuÞÞ to generalize. Because of property 2 in

Theorem 1, if the corrupted, distorted and occluded com-

ponents in xsðnðuÞÞ are set equal to zero, then the infor-

mation stored in the ECMs about the label rnðnÞ can be

obtained in part from the remaining components of

xsðnðuÞÞ. This observation motivated masking matrices.

Let us denote the vector v ¼ v1 v2 . . . vn½ �0 with its

i1-th, i2-th,…, and ij-th components set equal to 0 by

vði�1 ; i�2 ; . . .; i�j Þ, where 1 B i1 \ i2 \ ���\ ij B n. For

example, if v ¼ 1 �1 �1 1½ �0, then vð2�; 4�Þ ¼
1 0 �1 0½ �0. Denote the n-dimensional vector

1 1 . . . 1½ �0 by I (not the identity matrix I) and

denoting the orthogonal expansion of v(i1
-, i2

-,…, ij
-) by

�vði�1 ; i�2 ; . . .; i�j Þ. We note that v(i1
-, i2

-,…, ij
-) = diag

(I(i1
-, i2

-,…, ij
-)) v and �vði�1 ; i�2 ; . . .; i�j Þ ¼ diagðIði�1 ; i�2 ; . . .;

i�j ÞÞ�v, where �vði�1 ; i�2 ; . . .; i�j Þ and �Iði�1 ; i�2 ; . . .; i�j Þ denote

the orthogonal expansions of v(i1
-, i2

-,…, ij
-) and

Iði�1 ; i�2 ; . . .; i�j Þ respectively (not the orthogonal expan-

sions of v and I with their i1-th, i2-th, and ij-th components

set equal to 0).

Using these notations, a feature subvector xðnðuÞÞ with

its i1-th, i2-th, and ij-th components set equal to 0 is

xtðnðuÞÞði�1 ; i�2 ; . . .; i�j Þ, and the orthogonal expansion of

xtðnðuÞÞði�1 ; i�2 ; . . .; i�j Þ is diagð�Iði�1 ; i�2 ; . . .; i�j ÞÞ�xtðnðuÞÞ.
Hence, the matrix diagð�Iði�1 ; i�2 ; . . .; i�j ÞÞ, as a matrix

transformation, sets the i1-th, i2-th, and ij-th components of

xt(n(u)) equal to zero in transforming �xtðnðuÞÞ (i.e., in

diagð�Iði�1 ; i�2 ; . . .; i�j ÞÞ�xtðnðuÞÞ).
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Two important properties of the matrix

diagð�Iði�1 ; i�2 ; . . .; i�j ÞÞ are the following:

1. If diagð�Iði�1 ; i�2 ; . . .; i�j ÞÞ�xtðnðuÞÞ ¼ diagð�Iði�1 ; i�2 ; . . .;

i�j ÞÞ�xsðnðuÞÞ, then �x0tðnðuÞÞdiagð�Iði�1 ; i�2 ; . . .; i�j ÞÞ
�xsðnðuÞÞ ¼ 2dim nðuÞ�j:

2. If diagð�Iði�1 ; i�2 ; . . .; i�j ÞÞ�xtðnðuÞÞ 6¼ diagð�Iði�1 ; i�2 ; . . .;

i�j ÞÞ�xsðnðuÞÞ, then �x0tðnðuÞÞdiagð�Iði�1 ; i�2 ; . . .; i�j ÞÞ
�xsðnðuÞÞ= 0.

The following example illustrates how such matrices

diagð�Iði�1 ; i�2 ; . . .; i�j ÞÞ can be used by a PU (processing

unit) to generalize.

Example 3 Consider a cube shown in Fig. 1. The coor-

dinate vectors of its eight vertices, xt, t = 1, 2,…, 8, and

their corresponding labels, rt, t = 1, 2,…, 8, are shown at

the vertices and in the squares, respectively, where the

question marks indicate unknown labels. The training data

consists of the pairs, (xt, rt), t = 1, 2, 3, 7, 8.

The pairs, ð�x0t; rtÞ, t = 1, 2, 3, 7, 8, are listed as rows in

the following table:

�x0t 1 xt1 xt2 xt2xt1 xt3 xt3xt1 xt3xt2 xt3xt2xt1 rt

�x01 1 -1 -1 1 -1 1 1 -1 -

1

�x02 1 1 -1 -1 -1 -1 1 1 1

�x03 1 -1 1 -1 -1 1 -1 1 1

�x07 1 -1 1 -1 1 -1 1 -1 1

�x08 1 1 1 1 1 1 1 1 1

Assume U = 1 and K ¼ K ¼1 in (5), (6), (3) and (4) in

a PU (processing unit). The general expansion correlation

matrices, D and C, of the PU is the following:

D ¼ 3 1 3 �3 1 �1 1 3½ � ð17Þ
C ¼ 5 �1 1 �1 �1 1 3 1½ � ð18Þ

Let

Ið1�Þ ¼
0

1

1

2

64

3

75; Ið2�Þ ¼
1

0

1

2

64

3

75; Ið3�Þ ¼
1

1

0

2

64

3

75

Orthogonal expansion of them yields

�Ið1�Þ ¼ 1 0 1 0 1 0 1 0½ �0

�Ið2�Þ ¼ 1 1 0 0 1 1 0 0½ �0

�Ið3�Þ ¼ 1 1 1 1 0 0 0 0½ �0

We introduce the following matrix

M ¼ I þ 2�8diagð�Ið1�Þ þ �Ið2�Þ þ �Ið3�ÞÞ

¼ I þ 2�8diag 3 2 2 1 2 1 1 0½ �
ð19Þ

where the weight 2-8 is selected to de-emphasize the effect

of the second term above as compared with the first term.

The orthogonal expansion of the three vertices of the cube

in Fig. 1 that are not included in the training data are listed

as follows:

�x0t 1 xt1 xt2 xt2xt1 xt3 xt3xt1 xt3xt2 xt3xt2xt1

�x04 1 1 1 1 -

1

-1 -1 -1

�x05 1 -1 -1 1 1 -1 -1 1

�x06 1 1 -1 -1 1 1 -1 -1

From the following examples,

diagð�Ið1�ÞÞ�x4 ¼ 1 0 1 0 �1 0 �1 0½ �0

diagð�Ið2�ÞÞ�x6 ¼ 1 1 0 0 1 1 0 0½ �0

diagð�Ið3�ÞÞ�x5 ¼ 1 �1 �1 1 0 0 0 0½ �0

we see that diagð�Iðk�ÞÞ sets the k-th component xtk of �xt

equal to 0 for t = 1,…, 8, k = 1, 2, 3.

Simple matrix-vector multiplication yields D�xt ¼ 0 and

C�xt ¼ 0 for t = 4, 5, 6. Hence no information is provided on

xt by D�xt and C�xt for t = 4, 5, 6. This shows that if xt has not

been learned, then no information on it is provided by the

general expansion matrices. Recall that if csjðnÞ = 0, the

subjective probability psjðnÞ ¼ ðdsjðnÞ=csjðnÞ þ 1Þ=2,

where dsjðnÞ ¼ DsjðnÞ�xs and csjðnÞ ¼ CsjðnÞ�xs. With M,

we will use dsjðnÞ ¼ DsjðnÞM�xs and csjðnÞ ¼ CsjðnÞM�xs

instead.
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Fig. 1 Data for training and testing the PU (processing unit) in

Example 3 and Example 4 are shown as the vertices of a cube. Their

bipolar binary labels are the numbers or question marks for unknown

labels in the squares at the vertices. x4, x5, x6 are unavailable in the

data set for Example 3. They are learned one by one without

supervision (i.e., with labels generated by the PU) in Example 4
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Assume that x1 is input to the PU with the above D and

C. By matrix multiplication,

DM�x1 ¼ �8þ 2�8ð9� 2� 6� 3� 2� 1þ 1Þ
¼ �8þ 2�8ð12Þ ¼ �7:9531

CM�x1 ¼ 8þ 2�8ð15þ 2� 2� 1þ 2þ 1þ 3Þ
¼ 8þ 2�8ð20Þ ¼ 8:0781

Then the subjective probability that the label of x4 is 1 is

ðDM�x1=ðCM�x1Þ þ 1Þ=2 = 0.0077, and the subjective

probability that the label of x4 is -1 is 0.9923. Note that x1

with a label of -1 has been learned. The subjective

probability that the label of x4 is -1 should be 1. The use of

M causes a very small amount of error to the subjective

probability, which can be adjusted by changing the weight,

2-8.

Assume that x4 is input to the PU with the above D and

C. By matrix multiplication,

DM�x4 ¼ 0þ 2�8ð9þ 2þ 6� 3� 2þ 1� 1Þ ¼ 2�8ð12Þ
CM�x4 ¼ 0þ 2�8ð15� 2þ 2� 1þ 2� 1� 3Þ ¼ 2�8ð12Þ

Then the subjective probability that the label of x4 is 1 is

ðDM�x4=ðCM�x4Þ þ 1Þ=2 ¼ 1. From Fig. 1, we see that all

the three vertices neighboring x4 have been learned and

have a label of 1. It is a good generalization that a label of 1

is assigned to x4.

Assume that x6 is presented to the same PU. By matrix

multiplication,

DM�x6 ¼ 0þ 2�8ð9þ 2� 6þ 3þ 2� 1� 1Þ ¼ 2�8ð8Þ
ð20Þ

CM�x6 ¼ 0þ 2�8ð15� 2� 2þ 1� 2þ 1� 3Þ ¼ 2�8ð8Þ
ð21Þ

Then the subjective probability that the label of x6 is 1 is

ðDM�x6=ðCM�x6Þ þ 1Þ=2 ¼ 1. From Fig. 1, we see that only

two vertices neighboring x4 have been learned, and they

both have a label of 1. It is a good generalization that a

label of 1 is assigned to x6.

Assume that x5 is input to the same PU. By matrix

multiplication,

DM�x5 ¼ 0þ 2�8ð9� 2� 6� 3þ 2þ 1� 1Þ ¼ 2�8ð0Þ
CM�x5 ¼ 0þ 2�8ð15þ 2� 2� 1� 2� 1� 3Þ ¼ 2�8ð8Þ

Then the subjective probability that the label of x5 is 1 is

ðDM�x5=ðCM�x5Þ þ 1Þ=2 ¼ 1=2. From Fig. 1, we see that

only two vertices neighboring x4 have been learned, and

one of them has a label of 1, and the other has a label of

-1. No generalization is possible. A label of 1 is assigned

to x6 with a subjective probability of 1/2 and that a label of

-1 is assigned to x6 with equal subjective probability.

In the general case, we combine all such matrices

diagðIði�1 ; i�2 ; . . .; i�j ÞÞ that set less than or equal to a

selected positive integer JðnðuÞÞ of components of xtðnðuÞÞ
equal to zero into the following masking matrix

MðnðuÞÞ ¼I þ
XJðnðuÞÞ

j¼1

Xdim nðuÞ

ij¼j

. . .
Xi3�1

i2¼2

Xi2�1

i1¼1

2�8j2 jdiagð�Iði�1 ; i�2 ; . . .; i�j ÞÞ
ð22Þ

where 2j is used to compensate for the factor 2-j in

2dim nðuÞ�j in the important property stated above, and 2-8j

is an example weight selected to differentiate between

different levels j of maskings. What this weight really is in

biological neural networks needs to be found by biological

experiments. So is the positive integer JðnðuÞÞ.
Let us denote MðnðuÞÞ by M here for abbreviation. Note

that for k = 1,…, R, we have the following:

• If CðnðuÞÞ�xsðnðuÞÞ = 0, then

DkðnðuÞÞ�xsðnðuÞÞ � DkðnðuÞÞM�xsðnðuÞÞ
CðnðuÞÞ�xsðnðuÞÞ � CðnðuÞÞM�xsðnðuÞÞ

• If CðnðuÞÞ�xsðnðuÞÞ ¼ 0, but CðnðuÞÞ
Pdim nðuÞ

i1¼1 diag

ð�Iði�1 ÞÞ�xsðnðuÞÞ 6¼ 0, then

DkðnðuÞÞ
Xdim nðuÞ

i1¼1

diagð�Iði�1 ÞÞ�xsðnðuÞÞ � DkðnðuÞÞM�xsðnðuÞÞ

CðnðuÞÞ
Xdim nðuÞ

i1¼1

diagð�Iði�1 ÞÞ�xsðnðuÞÞ � CðnðuÞÞM�xsðnðuÞÞ

• If CðnðuÞÞ�xsðnðuÞÞ ¼ 0, CðnðuÞÞ
Pdim nðuÞ

i1¼1 diagð�Iði�1 ÞÞ
�xsðnðuÞÞ ¼ 0, but CðnðuÞÞ

Pdim nðuÞ
i2¼2

Pi2�1
i1¼1 diagð

�Iði�1 ; i�2 ÞÞ�xsðnðuÞÞ 6¼ 0, then

DkðnðuÞÞ
Xdim nðuÞ

i2¼2

Xi2�1

i1¼1

diagð�Iði�1 ; i�2 ÞÞ�xsðnðuÞÞ

� DkðnðuÞÞM�xsðnðuÞÞ

CðnðuÞÞ
Xdim nðuÞ

i2¼2

Xi2�1

i1¼1

diagð�Iði�1 ; i�2 ÞÞ�xsðnðuÞÞ

� CðnðuÞÞM�xsðnðuÞÞ

Continuing in this manner, it is seen that

DkðnðuÞÞM�xsðnðuÞÞ and CðnðuÞÞM�xsðnðuÞÞ always use

the greatest number of uncorrupted, undistorted or

unoccluded components of xsðnðuÞÞ in estimating

dskðnðuÞÞ, csðnðuÞÞ, and askðnðuÞÞ.

Corresponding to �xtðnÞ, DðnÞ and CðnÞ defined in (7),

(8) and (9), a general masking matrix is defined as follows:

MðnÞ ¼ diag Mðnð1ÞÞ Mðnð2ÞÞ . . . MðnðUÞÞ½ � ð23Þ
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where the right side is a matrix with MðnðuÞÞ, u = 1, 2, U,

as diagonal blocks and zero elsewhere.

If the masking matrix MðnðuÞÞ is used, the symbols

asðnðuÞÞ, csðnðuÞÞ, dsðnðuÞÞ are defined as follows:

dsðnðuÞÞ :¼ DðnðuÞÞMðnðuÞÞ�xsðnðuÞÞ ð24Þ
csðnðuÞÞ :¼ CðnðuÞÞMðnðuÞÞ�xsðnðuÞÞ ð25Þ

asðnðuÞÞ :¼ 1

2
ðIcsðnðuÞÞ þ dsðnðuÞÞÞ ð26Þ

With the masking matrix MðnÞ, the symbols asðnÞ,
bsðnÞ, csðnÞ, dsðnÞ are in turn defined as follows:

dsðnÞ :¼ DðnÞMðnÞ�xsðnÞ ¼
XU

u¼1

DðnðuÞÞMðnðuÞÞ�xsðnðuÞÞ

ð27Þ

csðnÞ :¼ CðnÞMðnÞ�xsðnÞ ¼
XU

u¼1

CðnðuÞÞMðnðuÞÞ�xsðnðuÞÞ

ð28Þ

asðnÞ :¼ 1

2
ðcsðnÞ þ dsðnÞÞ ð29Þ

where �xtðnÞ is a general orthogonal expansion (GOE) and

DðnÞ and CðnÞ are general expansion correlation matrices

(GECMs) for PUðnÞ. It follows that

dsðnÞ ¼
XU

u¼1

dsðnðuÞÞ ð30Þ

csðnÞ ¼
XU

u¼1

csðnðuÞÞ ð31Þ

asðnÞ ¼
XU

u¼1

asðnðuÞÞ ð32Þ

It is easy to see that dsðnðuÞÞ ¼ 2asðnðuÞÞ � csðnðuÞÞ,
and dsðnÞ ¼ 2asðnÞ � csðnÞ. If csðnÞ ¼ 0, then we set

dsðnÞ=csðnÞ ¼ 0. If csðnÞ 6¼ 0, then dskðnÞ=csðnÞ ¼
2pskðnÞ � 1, where pskðnÞ is the probability that the k-th

component rskðnÞ of the label rsðnÞ of xsðnÞ is ?1 based on

DðnÞ and CðnÞ. It follows that

2psðnÞ � I

¼ ds1ðnÞ=cs1ðnÞ ds2ðnÞ=cs2ðnÞ . . . dsRðnÞ=csRðnÞ½ �0

is a representation of a probability distribution of the label

rsðnÞ of xsðnÞ.
It is mentioned in ‘‘Expansion correlation matrices’’ that

selecting sufficiently small subvectors nðuÞ, u = 1,…, U,

has the advantage of making dim �xtðnÞ ¼
PU

u¼1 2dim xtðnðuÞÞ

sufficiently small. The formula (22) shows that selecting

sufficiently small subvectors nðuÞ, u = 1,…, U, also has

the advantage of making the number of terms in the

formula sufficiently small. The use of subvectors nðuÞ,
u = 1,…, U, has another way to help enhancing the gen-

eralization capability of PUðnÞ: If the number of corrupted,

distorted or occluded components of a subvector xsðnðuÞÞ
of xsðnÞ exceeds JðnðuÞÞ, then xsðnðuÞÞ does not contribute

to ysðnÞ or the output xfysðnÞg of PU(n). This eliminates

the effect of a subvector xsðnðuÞÞ that contains too many

errors and allows PU(n) to produce a better estimate of the

subjective probability distribution of a label on better

subvectors of xsðnÞ.
If some terms in (22) are missing, PU(n) suffers only

graceful degradation of its generalization capability. We

hypothesize that a masking matrix is a mathematical ide-

alization and organization of a large number of nested and

overlapped dendritic trees.

Processing units and supervised and unsupervised

learning

We are ready to assemble a PU (processing unit) and see

how supervised and unsupervised learning are performed.

A processing unit, PU(n), on a feature subvector index n, is

shown in Fig. 2. It has essentially two functions, retrieving

a ‘‘point estimate’’ of the label of a feature subvector xsðnÞ
from the memory (i.e., GECMs) and learning a feature

subvector and its label that is either provided from outside

the PU (in supervised learning) or generated by itself (in

unsupervised learning). PU(n) comprises an Orthogonal

Expander, a label SPD (subjective probability distribution)

Estimator, a Spike Generator, a GECM (general expansion

correlation matrix) Adjuster, and a storage of the GECMs,

C(n) and DðnÞ: The Orthogonal Expander models dendritic

trees with NXORs (or XORs) as tree nodes, CðnÞ and DðnÞ
model the synaptic weights in a biological neural network,

and the label SPD Estimator and Spike Generator jointly

model R neurons of one type and 1 neuron of another type

in the same layer of a biological neural network. These two

types of neuron will be described below.

During retrieving, a feature subvector xsðnÞ on the FSI

(feature subvector index) n is first expanded into a GOE

(general orthogonal expansion) �xsðnÞ by the Orthogonal

Expander. �xsðnÞ is then processed by the SPD (subjective

probability distribution) Estimator, using the GECMs

(general expansion correlation matrices), CðnÞ and DðnÞ;
to obtain a representation ysðnÞ of an SPD of the label of

the feature subvector xsðnÞ. The Spike Generator converts

ysðnÞ into a ternary vector xfysðnÞg, which is the output of

the PU. This process of generating ysðnÞ and xfysðnÞg by

PU(n) is called retrieval of a label of the feature subvector

xsðnÞ by PU(n).

The SPD Estimator and Spike Generator may be viewed

as R neurons of one type and one neuron of another type
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that jointly output a ‘‘point estimate’’ xfysðnÞg of the label

of xsðnÞ. The former type is called D-neurons and the latter

C-neuron. The C-neuron does a simple multiplication

csðnÞ ¼ CðnÞM�xsðnÞ

For j = 1,…, R, D-neuron j performs the following tasks:

1. Input cðnÞ: If csðnÞ = 0, set ysjðnÞ ¼ 0; else compute

djðnÞ ¼ DjðnÞM�xsðnÞ and set ysjðnÞ equal to

dsjðnÞ=csðnÞ.
2. Compute the subjective probability psjðnÞ =

(ysjðnÞ þ 1Þ=2 that the j-th component of the label of

xsðnÞ is ?1.

3. Generate a pseudo-random number in accordance with

the probability distribution of a random variable v :
Pðv ¼ 1Þ ¼ psjðnÞ and Pðv ¼ �1Þ ¼ 1� psjðnÞ, and

set xfysjðnÞg equal to the resultant pseudo-random

number. This is a point estimate of the j-th component

of the label of xsðnÞ.

Figure 2 provides a ‘‘flow chart’’ of the general PU. A

structural diagram of an example PU is shown in Fig. 3,

where the PU is that of Example 3. Input to the PU is the

feature subvector xs ¼ xs1 xs2 xs3½ �0. An dendritic tree

encode xs into the orthogonal expansion �xs, whose com-

ponents are multiplied by the synapses, denoted by �, and

the resultant multiples are distributed to the D-neuron and

C-neuron. In learning, the general expansion correlation

matrices, D and C, are incremented by rs�x
0
sK and �x0sK,

respectively. In supervised learning of D, rs is provided

from outside the PU. In unsupervised learning of D, rs is

set equal to x{ys}, which is generated by D-neurons. C is

the accumulation of �x0tK. A possible way to perform this

accumulation by the Hebb rule is for the C-neuron to have

a second output that is always equal to the constant 1.

If a label rsðnÞ 6¼ 0 of xsðnÞ from outside the PU is

available for learning, and learning xsðnÞ and rsðnÞ is

wanted, supervised learning is performed by the PU. In

supervised learning, the class label rsðnÞ 6¼ 0 is received

through a lever represented by a thick solid line with a solid

dot at its end in Fig. 2 by the GECM Adjuster, which

receives also �xsðnÞ from the Orthogonal Expander and

adjusts ECMs by formulas (5)–(6) and assembles the

resultant ECMs, CðnðuÞÞ and DðnðuÞÞ, u = 1,…,U, into

general ECMs, CðnÞ and DðnÞ, by (8) and (9).

These CðnÞ and DðnÞ are then stored, after a one-

numbering delay (or a unit-time delay), in the storage, from

which they are sent to the SPD Estimator.

If a label rsðnÞ of xsðnÞ from outside the PU is

unavailable but learning xsðnÞ is wanted, unsupervised

learning is performed by the PU. In this case, the lever in

Fig. 2 should be in the unsupervised training position

represented by the lower dashed line with a solid dot at its

end in Fig. 2. The feature subvector xsðnÞ is first processed

by the Orthogonal Expander, SPD Estimator, and Spike

Generator as in performing retrieval described above. The

resultant bipolar vector xfysðnÞg, which is a point estimate

of the lable of xsðnÞ is received, through the lever in the

unsupervised training position, and used by the GECM

Adjuster as the label rsðnÞ of xsðnÞ. The GECM Adjuster

receives �xsðnÞ also and adjusts GECMs, CðnÞ and DðnÞ,
using the update formulas, (5)–(6), in the same way as in

supervised learning.

Let us now see how a ‘‘vocabulary’’ is created by the PU

through unsupervised learning: If a feature subvector xsðnÞ
or a slightly different version of it has not been learned by

PUðnÞ, and CðnÞM�xsðnÞ = 0; then ysðnÞ = 0 and psðnÞ = (1/

2)I, where I = 1 1 . . . 1½ �0. The SPD Estimator and

Spike Generator uses this probability vector to generate a

purely random label rsðnÞ ¼ xfysðnÞg. Once this xsðnÞ has

been learned and stored in CðnÞ and DðnÞ, if xsðnÞ is input

to PU(n) and to be learned without supervision for the

second time, then xfysðnÞg ¼ rsðnÞ and one more copy of

the pair (xsðnÞ, rsðnÞ) is included in CðnÞ and DðnÞ.
If a feature subvector xsðnÞ or a slightly different ver-

sion of it has been learned by PU(n) with different labels

for different numbers of times, then ysðnÞ 6¼ 0 and

psðnÞ 6¼ ð1=2ÞI. For example, assume that two labels, r1
s ðnÞ

and r2
s ðnÞ of the same feature subvector xsðnÞ have been

learned with relative frequencies, 0.7 and 0.3, respectively.

Since these two labels may have common components, the

point estimate of the label resembles r1
s ðnÞ with a proba-

bility of higher that 70% and resembles r2
s ðnÞ with a

probability of greater than 30%. To learn this probability, a

Fig. 2 A processing unit, PU(n), with a feature subvector index n,

comprising an Orthogonal Expander, a label SPD (subjective

probability distribution) Estimator, a Spike Generator, a GECM

(general expansion correlation matrix) Adjuster, and a storage of CðnÞ
and DðnÞ. PU(n) has essentially two functions, retrieving a ‘‘point

estimate’’ or a sequence of ‘‘point estimates’’ (i.e., spike trains) of the

label of a feature subvector xsðnÞ from the memory, GECMs, and

learning a feature subvector and its label that is either provided from

outside the PU (in supervised learning) or generated by the PU itself

(in unsupervised learning)
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number of such point estimates need to be learned. This is

one of the reasons for each PU to generate multiple spikes

for each exogenous feature vector, which is to be discussed

in ‘‘Spike trains for each exogenous feature vector’’.

If no learning is to be performed by PU(n), the lever

represented by a thick solid line with a solid dot in Fig. 2 is

placed in the neutral position, through which 0 is sent as

the label rsðnÞ of xsðnÞ to the GECM Adjuster, which then

keeps CðnÞ and DðnÞ unchanged. Here is a condition for

setting rsðnÞ = 0 to skip learning (supervised or unsuper-

vies): If ysðnÞ generated by a PU’s estimation means in

retrieving is a bipolar vector or sufficiently close to a

bipolar vector by some criterion, which indicates that the

input feature subvector xsðnÞ is adequately learned, then

the lever is placed in the middle position and no learning is

performed. This avoids ‘‘saturating’’ the expansion corre-

lation matrices with too many copies of one feature sub-

vector and its label.

We note that a well-known unsupervised learning

method based on a kind of Hebb rule is the Oja learning

algorithm that generates the principal components of the

input vectors (Oja 1982). Oja’s method gets the principal

components only asymptotically and the principal compo-

nents must taper down fast enough, which is true only if the

input vectors do not have too many major features.

We use the PU of Example 3 to illustrate unsupervised

learning in the following example.

Example 4 In this example, the PU in Example 3 with D,

C, M in (17), (18), (19) will learn x6 and then x5 without

supervision.

Recall that

�x0t 1 xt1 xt2 xt2xt1 xt3 xt3xt1 xt3xt2 xt3xt2xt1

�x06 1 1 -

1

-1 1 1 -1 -1

�x05 1 -

1

-

1

1 1 -1 -1 1

and

DM�x6 ¼ 0þ 2�8ð9þ 2� 6þ 3þ 2� 1� 1Þ ¼ 2�8ð8Þ
CM�x6 ¼ 0þ 2�8ð15� 2� 2þ 1� 2þ 1� 3Þ ¼ 2�8ð8Þ

and the subjective probability that the label of x6 is 1 is

ðDM�x6=ðCM�x6Þ þ 1Þ=2 = 1. Hence, y6 ¼ DM�x6=ðCM�x6Þ =

1 and thus the spike x{y6} generated by the PU is 1. To

learn x6 without supervision, the GECM adjuster in Fig. 2

(i.e., Hebbian learning mechanism in Fig. 3) uses this spike

as r6 in (5) and (6) and updates D and C in (17) and (18)

into

D ¼ 4 2 2 �4 2 0 0 2½ � ð33Þ
C ¼ 6 0 0 �2 0 2 2 0½ � ð34Þ

To learn x5, the SPD Estimator in Fig. 2 (i.e., D- and C-

neurons in Fig. 3) first processes it to obtain

DM�x5 ¼ 0þ 2�8ð12� 4� 4� 4þ 4þ 0þ 0þ 0Þ
¼ 2�8ð4Þ ð35Þ

CM�x5 ¼ 0þ 2�8ð18þ 0þ 0� 2þ 0� 2� 2þ 0Þ
¼ 2�8ð12Þ ð36Þ

y5 ¼ DM�x5=ðCM�x5Þ ¼ 1=3. The Spike Generator then uses

the subjective probability p5 = (y5 ? 1) /3 = 2/3 to output

the spike ?1 with probability 2/3 and -1 with probability

1/3. The resultant spike is then used as r5 in (5) and (6) to

updates D and C in (35) and (36) into

D ¼ 5 1 1 �3 3 �1 �1 3½ �
C ¼ 7 �1 �1 �1 1 1 1 1½ �

or

D ¼ 3 3 3 �5 1 1 1 1½ �
C ¼ 7 �1 �1 �1 1 1 1 1½ �

depending on whether r5 = 1 or r5 = -1, respectively.

For D and C to learn the subjective probability p5 = 2/3,

the feature subvector x5 needs to be learned a number of

times. This is one of the motivations of PUs generating

spike trains for each exogenous feature vector input to the

THPAM. Generating spike trains in a THPAM are dis-

cussed in ‘‘Spike trains for each exogenous feature vector’’.

Learning to recognize rotated, translated or scaled

patterns

In this section, we describe a method for PUs (processing

units) to learn to recognize rotated, translated and scaled

patterns. The method can be modified for PUs to learn to

recognize translated and scaled temporal patterns such as

speech and music. Since the method is valid for both

supervised and unsupervised learning, labels rtðnÞ to be

referred to may be provided from outside THPAM in

supervised learning or generated by the PUs in unsuper-

vised learning. It is assumed in this section that feature

vectors are arrays of ternary pixels.

Locations of ternary pixels in an array are assumed to be

dense relative to the locations of the pixels selected as

components of a feature subvector xtðnÞ input to a PU. We

identify the FSI (feature subvector index) n of a feature

subvector with the locations of the pixels in xtðnÞ. In other

words, the components of n are also the numberings of the

locations of the pixels included as components of xtðnÞ.
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Imagine a thin rubber disk with small holes at the

locations of the pixels of the feature subvector with the FSI

n. We translate the disk in some directions (e.g., 0, 15, 30,

45,…, 330, 345 degrees) a number of steps (e.g., 0, 1,

2,…), rotate the disk clockwise and counterclockwise a

number (e.g., 0, 1, 2,…) of angles (e.g., 0, 5, 10, 15

degrees) at each translation, and expand and compress the

rubber disk uniformly for a number of times (e.g., 0, 1,

2,…) at each translation for some percentages (e.g., 0, 5,

10%,…), to obtain other feature subvector indices of the

same dimensionality as n. Note that in using the rubber

disk to determine an FSI, if a hole in the rubber disk

contains more than one pixel in the image, the one nearest

to the center of the hole is included in the FSI.

Figure 4 shows examples of rotation, translations and

scalings in an RTS (rotation, translation and scaling) suite

of a feature subvector index n, which is shown in Fig. 4a.

The components of n are the numberings (of a feature

subvector) shown in the small circles within the retangular

box. The cross without arrow heads indicate the orientation

and position of n. Figure 4b shows a translation to the

right. Figure 4c shows a rotation of the translation in

Fig. 4b. Figure 4d and e show a compression and an

expansion of the translation in Fig. 4b. Five examples of

translations of n are shown in Fig. 4f.

Let XðnÞ ¼ fXðiÞ; i ¼ 1; . . .; jXðnÞjg be a set of FSIs

x(i) identified with such rotations, translations, and sca-

lings of n including n. XðnÞ is called a rotation/translation/

scaling (RTS) suite of n, and jXðnÞj denotes the number of

elements in XðnÞ. Notice the digit 0 in the parentheses

(e.g., 0, 1, 2,…) in the last paragraph. It indicates a rotation,

a translation, or a scaling that is the feature subvector itself.

Although x(i) is a rotation, translation, or scaling of n,

this dependence on n is not indicated in the symbol x(i) for

notational simplicity. As n is rotated, translated or scaled

into x(i), nðuÞ as a subvector of n is rotated, translated

or scaled into a subvector of x(i). This subvector of x(i) is

denoted by nðu;XðiÞÞ. The set fnðu;XðiÞÞ; i ¼
1; . . .; XðnÞj jg of such subvectors of XðiÞ; i ¼ 1; . . .; jXðnÞj,
is denoted by XðnðuÞÞ and called a rotation/translation/

scaling (RTS) suite of nðuÞ. Note that jXðnðuÞÞj ¼ jXðnÞj.
The set fxtðnðu;XðiÞÞÞ; i ¼ 1; . . .; jXðnÞjg, which is also

denoted by fxtðnðu;XÞÞ;X 2 XðnÞg, is called the rotation/

translation/scaling (RTS) suite of xtðnðuÞÞ on XðnðuÞÞ. In

. .

. . .

. . ..
a b c

de

d

Fig. 4 A receptive domain is

shown in (a), and a translation

in (b). A rotation, compression

and expansion of the translation

are shown in (c), (d), (e). (f)
shows five receptive domains

that are translations of one

another

.
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Fig. 3 The structural diagram of the PU (processing unit) in Example

3 and Example 4. The dendritic tree is the orthogonal expansion of the

input feature subvector xs. The tree nodes are NXORs. A Hebbian

learning mechanism for the D-neuron can perform supervised or

unsupervised depending on whether the label rs is provided from

outside the PU or is the output x{ys} of the D-neuron. A ‘‘pseudo-

Hebbian’’ learning mechanism for the C-neuron performs only

unsupervised learning and always uses 1 in so doing. While the D-

neuron output spike trains, the C-neuron generates graded signals to

modulate the D-neuron
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generating and summing orthogonal expansions on an RTS

suite XðnðuÞÞ, elements in the RTS suite of xtðnðuÞÞ on

XðnðuÞÞ first go through orthogonal expansion. The resul-

tant orthogonal expansions �xtðnðu;XðiÞÞÞ are then added up

to form the sum
P

X2XðnÞ �xtðnðu;XÞÞ on the RTS suite

XðnðuÞÞ of nðuÞ.
In both the supervised learning and unsupervied learn-

ing, the subvectors, xtðnðu;XÞÞ, X 2 XðnÞ, on XðnðuÞÞ are

assigned the label rtðnÞ of xtðnÞ. ECMs (expansion corre-

lation matrices), CðnðuÞÞ and DðnðuÞÞ, on XðnðuÞÞ are

defined by

CðnðuÞÞ ¼ K
XT

t¼1

KT�t
X

X2XðnÞ
�x0tðnðu;XÞÞ ð37Þ

DðnðuÞÞ ¼ K
XT

t¼1

KT�trtðnÞ
X

X2XðnÞ
�x0tðnðu;XÞÞ ð38Þ

CðnðuÞÞ and DðnðuÞÞ can be adjusted to learn a pair

ðxt; rtðnÞÞ, where k is a forgetting factor, and K is a scaling

constant. If rsðnÞ 6¼ 0, DðnðuÞÞ and CðnðuÞÞ are replaced

respectively with KDðnðuÞÞ þ KrsðnÞ
P

X2XðnÞ �x0tðnðu;XÞÞ
and KCðnðuÞÞ þ K

P
X2XðnÞ �x0tðnðu;XÞÞ. If rsðnÞ ¼ 0, then

DðnðuÞÞ and CðnðuÞÞ are unchanged.

Sums
P

X2XðnÞ �xtðnðu;XÞÞ of orthogonal expansions

(OEs), and ECMs, DðnðuÞÞ and CðnðuÞÞ, u = 1,…, U, are

respectively assembled into a general orthogonal expansion

(GOE) �xtðnÞ and general expansion correlation matrices

(GECMs), DðnÞ and CðnÞ, for PU(n) (the PU on the feature

vector n) as follows:

�x0tðn;XÞ ¼
P

X2XðnÞ �x
0
tðnð1;XÞÞ . . .

P
X2XðnÞ �x

0
tðnð2;XÞÞ

� �

ð39Þ
DðnÞ ¼ Dðnð1ÞÞ Dðnð2ÞÞ . . . DðnðUÞÞ½ � ð40Þ
CðnÞ ¼ Cðnð1ÞÞ Cðnð2ÞÞ . . . CðnðUÞÞ½ � ð41Þ

If these are used in PU(n), Fig. 2 should be modified:

�xtðnÞ should be replaced with �xtðn;XÞ. DðnÞ and CðnÞ in

Fig. 2 should denote those DðnÞ and CðnÞ above. Note that

the input feature subvector �xtðnÞ in Fig. 2 is not adequate.

It should be replaced with �xtðXðnÞÞ to provide the the RTS

suite of xtðnðuÞÞ on XðnðuÞÞ for u = 1,…, U.

Spike trains for each exogenous feature vector

Recall that a ternary vector xfysðnÞg output from a pro-

cessing unit, PU(n), is obtained by converting a represen-

tation ysðnÞ of a probability distribution of a label rsðnÞ of

a feature subvector xsðnÞ. The spike generator in PU(n)

uses a pseudo-random number generator to do the con-

version. If some components of ysðnÞ are greater than -1

and less than 1, then the corresponding components

ofxfysðnÞg generated by the pseudo-random number gen-

erator contain uncertainty (i.e., pseudo-randomness), which

reflects probabilistic information contained in ysðnÞ.
In retrieving, when a PU receives a feature subvector

with such components with uncertainty, it uses masking

matrices or general masking matrices to suppress or ‘‘filter

out’’ those components that make the received feature

subvector inconsistent with those stored in its ECMs or

GECMs and to find a match between the received feature

subvector and feature subvectors stored in those ECMs or

GECMs. Masking matrices are described in ‘‘Masking

matrices’’.

However, there is a chance for pseudo-random number

generators to generate a ternary vector xfysðnÞg that is an

outlier for the probability distribution ysðnÞ. As xfysðnÞg is

used as a label in unsupervised learning in PU(n) and is

feedforwarded or feedbacked as inputs to PUs, such an

outlier may have undesirable effects on learning and

retrieving of THPAM in spite of masking matrices. To

minimize such undesirable effects and to represent the

subjective probabilities involved in the PUs, we let a

THPAM complete a certain number of rounds of retrieving

and learning for each exogenous feature vector xex
s so that

many versions of xfysðnÞg are generated and learned by

each PU for the same xex
s .

The subscript t or s in xsðnÞ, ysðnÞ, and xfysðnÞg denote

the time or numbering of the quantities going through

PU(n) in Sections ‘‘A recurrent multilayer network of

processing units’’ and ‘‘Expansion correlation matrices to

Learning to recognize rotated, translated or scaled pat-

terns’’. In the rest of this section, assume that each exog-

enous feature vector is presented to THPAM for one unit of

time, and that during this one unit of time, there are f
spikes in each spike train. Here, the subscript t or s denotes

only the time the exogenous feature vector xex
t or xex

s arrives

at the input terminals of THPAM. For each exogenous

feature vector xex
s , f rounds of retrieving and learning are

performed by THPAM at times, s ? i/f,, i = 0, 1, f -1.

Consequently, PU(n) generates a sequence of ternary

vectors denoted by xfysþi=fðnÞg, i = 0, 1,…, f -1, for

each exogenous feature vector xex
s . This sequence consists

of R spike trains, each having f spikes each of 1/f unit of

time.

A feedback connection from layer l ?k to layer l for

k C 0 must have at least one delay device to ensure sta-

bility. Each delay device holds a spike for 1/f unit of time

before it is allowed to pass. Causes in patterns, temporal or

spatial, usually form a hierarchy. Example 1: Phonemes,

words, phrases, sentences, and paragraphs in speech.

Example 2: Notes, intervals, melodic phrases, and songs in

music. Example 3: Bananas, apples, peaches, salt shaker,

pepper shaker, Tabasco, fruit basket, condiment tray, table,

refrigerator, water sink, and kitchen in a house. Note that
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although Example 3 is a spatial hierarchy, when one looks

around in the kitchen, the images received by the person’s

retina form a temporal hierarchy.

The higher a layer in THPAM is, the higher in the

hierarchy the causes the PUs in the layer treat, and the

more time it takes for the causes to form and be recognized

by the PUs. Therefore, the number of delay devices on a

feedback connection is a monotone increasing function of

k. This requirement is consistent with the workings in a

biological neural network in the cortex. Note that it takes

time (1) for PUs to process feature subvector, (2) for spikes

to travel along feedforward connections from a layer to the

next layer, and (3) for spikes to travel along feedback

connections from a layer to the same or lower-numbered

layer. Note also that the times taken for (1) and (2) can be

ignored in the feedforward connections, because the sub-

scripts of the input vector xl�1
sþi=f and output vector xfyl

sþi=fg
of all layers are the same. However, a feedback

xfylþk
sþi=f�j=fg from layer l ?k to layer l for inclusion in

xl�1
sþi=f must have a delay j that is proportional to the sum of

the times taken for (1), (2) and (3) from the input terminals

of layer l back to the same input terminals.

For illustration, two examples are given in the

following:

Example 5 Let us set the number Nd of delay devices on

the feedback connection from layer l ?k to layer l, and the

number f of learning and retriving rounds to be equal to 1

? 2k and 8 respectively, and consider the feedback con-

nections for k = 0, 2, 3 and 7. Figure 5 shows layer l ?2

and layer l in the THPAM. The feature subvector xl�1
sþi=f

input to layer l consists xfyl�1
sþi=fg feedforwarded from layer

l -1 and feedbacks from layer l and layers above it. Only

the feedback xfyl
s�ð1�iÞ=fg from layer l and the feedback

xfylþ2
s�ð5�iÞ=fg from layer l ?2 are shown in the figure. The

boxes containing 1/f are delay devises with delay duration

1/f.

• On the feedback connection from layer l to layer l (k =

0): There is 1 delay device on the connection. At the

time s, the exogenous feature vector xex
s arrives, the

feedback xfyl
s�1=fg is the last output from layer l in

response to the preceding exogenous feature vector

xex
s�1. At time s ? i/f for i = 1,…, 7, the feedback is

xfyl
sþði�1Þ=fg, which is an output from layer l in

response to the same exogenous feature vector xex
s .

This feedback connection is shown on the right side of

Fig. 5.

• On the feedback connection from layer l ?2 to layer l

(k = 2): There are five delay devices on the connection.

At time s, the exogenous feature vector xex
s arrives at

the input terminals of THPAM, and the five delay

devices on the feedback connection holds the 5

feedbacks, xfylþ3
s�5=fg, xfylþ3

s�4=fg; . . .; xfylþ3
s�1=fg, which

are outputs from layer l ?2 in response to the preceding

exogenous feature vector xex
s�1. During the presence of

xex
s , these five feedbacks are respectively included in the

first five feature vectors, xl�1
s , xl�1

sþ1=f,…,xl�1
sþ4=f, input to

layer l. The next 3 inputs, xl�1
sþ5=f, xl�1

sþ6=f, xl�1
sþ7=f, to layer

l include respectively the feedbacks, xfylþ3
s g, xfylþ3

sþ1=fg,
xfylþ3

sþ2=fg, output from layer l ?3 in response to xex
s .

This feedback connection is shown on the right side of

Fig. 5.

• On the feedback connection from layer l ?3 to layer l

(k = 3): There are 7 delay devices on the connection. At

time s, the exogenous feature vector xex
s arrives at the

input terminals of THPAM, and the 7 delay devices on

the feedback connection holds the 7 feedbacks,

xfylþ3
s�7=fg,…,xfylþ3

s�6=fg,…,xfylþ3
s�1=fg, which are outputs

from layer l ?3 in response to the preceding exogenous

feature vector xex
s�1. During the presence of xex

s , these 7

feedbacks are respectively included in the first 7 feature

vectors, xl�1
s , xl�1

sþ1=f, xl�1
sþ6=f, input to layer l. The eighth

input xl�1
sþ7=f to layer l includes the feedback xfylþ3

s g
output from layer l ?3 in response to xex

s .

• On the feedback connection from layer l ?3 to layer l

(k = 7): There are 15 delay devices on the connection.

At time s, the exogenous feature vector xex
s arrives at

the input terminals of THPAM, and the 15 delay

devices on the feedback connection holds the 15

Fig. 5 Layer l and layer l ?2 of an example THPAM with feedback

connections from layer l to layer l and from layer l ?2 to layer l. For

each exogenous feature vector xex
s , f rounds of retrieving and learning

are performed by each PU in THPAM at times, s ? i/f,, i = 0,

1,…, f -1. The outputs of a PU form R spike trains
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feedbacks, xfylþ3
s�15=fg,…,xfylþ3

s�14=fg; . . .; xfylþ3
s�1=fg. The

first 7 of them are outputs from layer l ?7 in response

to the exogenous feature vector xex
s�2. The next 1 of

them, xfylþ3
s�8=fg, is the first output from layer l ?7 in

response to the exogenous feature vector xex
s�1. During

the presence of xex
s , these 8 feedbacks are respectively

included in the 8 feature vectors, xl�1
s , xl�1

sþ1=f; . . .; xl�1
sþ8=f,

input to layer l in response to xex
s .

During the presence of the exogenous feature vector xex
s ,

the feedbacks, output from layer l ?k in response to xex
s ,

provide spatial associative information; and the feedbacks,

output from layer l ?k in response to xex
s�1 provide less

spatial and more temporal associative information. The

further back that feedbacks are from, the less spatial and

more temporal associative information is used in process-

ing the current xex
s . Of course, if an exogenous feature

vector is presented to THPAM for a large number of time

units, all the feedbacks are actually from the same exoge-

nous feature vector, and spatial associative information is

thoroughly utilized by the use of the feedback connections.

Conclusion

The temporal hierarchical probabilistic associative memory

(THPAM), proposed in this paper, is the only single

mathematical model of biological neural networks that has

all the eight features and answers coherently all the eight

questions listed in the introductory section ‘‘Introduction’’.

John von Neumann said: ‘‘We require exquisite numerical

precision over many logical steps to achieve what brains

accomplish in very few short steps’’ in his well-known

1958 book, The Computer and the Brain (von Neumann

1958). Showing that it is possible to achieve so many

functions of biological neural networks in a few short

logical steps by a single functional model is a small but

perhaps significant step towards unraveling the brain.

THPAM’s mathematical structures, functions and their

processing operations are hypothesized to be low-order

approximates of those of biological neural networks. The

integration of them, THPAM, is hypothesized to be a low-

order approximate of the biological neural networks

themselves. These hypotheses have been under examina-

tion. Insight into the inner workings and interactions of the

components of a biological neural network is expected to

be gained through the examination.

The work reported in this paper points to three research

directions:

1. Examine the components and processing operations of

THPAM as biological hypotheses. If possible, justify

these hypotheses to establish THPAM as a macro-

scopic model or low-order approximate of biological

neuronal models.

2. Expand and modify THPAM into functional models of

the visual, auditory, somatosensory and (premotor,

primary and supplementary) motor cortices.

3. Test and apply THPAM to such applications as face

detection and recognition, radiograph reading, baggage

examination, financial time series prediction, video

monitoring, text understanding, prostheses, etc.
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