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Abstract
The methylation status of CpG islands are highly correlated with gene expression. Current methods
for computational prediction of DNA methylation only utilize DNA sequence features. In this study,
besides 35 DNA sequence features, we added 4 histone methylation marks to predict the methylation
status of CpG islands, and improved the accuracy to 89.94%. Also we applied our model to predict
the methylation pattern of all the CpG islands in the human genome, and the results are consistent
with the previous reports. Our results imply the important roles of histone methylation marks in
affecting the methylation status of CpG islands. H3K4me enriched in the methylation-resistant CpG
islands could disrupt the contacts between nucleosomes, unravel chromatin and make DNA
sequences accessible. And the established open environment may be a prerequisite for or a
consequence of the function implementation of zinc finger proteins that could protect CpG islands
from DNA methylation.
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Introduction
In vertebrates, DNA methylation occurs at the cytosine residue in the context of CpG
dinucleotide by virtue of DNA methyltransferases [1]. DNA methylation and histone
modifications are two main categories of epigenetic alterations, which are responsible for
potentially stable and heritable changes in gene expression (hence in cellular phenotype)
without changes of DNA [2]. These epigenetic alterations play important roles in orchestrating
some key biological activities, including differentiation, imprinting and silencing
chromosomal domains [3].
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About 70−80% of CpG dinucleotides are methylated in human somatic cells [4]. Unmethylated
CpGs tend to reside in regions called CpG islands (CGIs), which are characterized by high
CpG density [5]. According to Gardiner-Garden sequence criteria, a CGI is defined as a region
≥ 200bp with a G+C content ≥ 50% and the observed/expected CpG ratio ≥ 0.6 [6]. Over 50%
of human genes include CGIs in their promoter regions [7]. In the classical viewpoint, CGIs
are typically methylation-resistant [5]. However, a substantial proportion of CGIs have recently
been reported to undergo methylation during imprinting, X-chromosome inactivation, and even
in normal tissues [8]. The methylation status of CGIs in the promoter regions are highly
correlated with the gene expression [1]. Aberrant methylation of promoter CGIs has been
reported to be a key factor of some tumorigenesis [9].

Because of the biological implication of CGIs, it becomes more and more interesting to predict
the methylation status of CGIs. We had constructed a computational method (MethCGI) to
predict the methylation status of CGI fragments (segments of CpG islands chopped into
identical lengths) based on DNA sequence features [10]. For the task of predicting the
methylation status of whole CGIs, three major methods can be found in the literature [11-13].
[11] and [12] only considered DNA sequence features. In [16], Bock et al used predicted
epigenetic state and chromatin structure features which are also inferred from DNA sequences.
Although they realized the importance of epigenetic features in the prediction, there are mainly
two problems in their method. Firstly, the epigenetic states and chromatin structures were
inferred from DNA sequences. It is still a matter of debate about to what extent the sequence
preferences of histone modifications and higher-order chromatin structure will be. Secondly,
they use more than 800 attributes in the classification which makes the classifier complicated.
Based on a study of the recent genome-wide high-resolution profiling of histone methylations
in the human genome [14], we found 4 histone methylation marks that are highly correlated
with the DNA methylation status of CGIs. This supports the previous reports that some histone
modification enzymes may physically interact with DNA methylases [15-17]. In this study,
we built a Support Vector Machine (SVM) model for classifying the methylation status of
CGIs with 35 DNA sequence features and 4 extra features of histone methylation marks. This
model was trained on CGI methylation data of the CD4 T cells extracted from the Human
Epigenome Project (HEP)[18] and got an accuracy of 89.94% assessed with Leave-One-Out
Cross-Validation (LOOCV), which shows a significant improvement over the accuracy
(85.01%) achieved with only the DNA sequence features. It illustrates that the histone
methylation features play important roles in predicting the methylation status of CGIs. We
compared our model with Epigraph [13] (an online server for CGI methylation status
prediction) on CGI data from human brain[19], and observed noticeable improvement. We
applied the proposed classification model on the human genome and predicted the methylation
status of all the CGIs.

DNA methylation and histone modifications form a complex regulatory network that
modulates chromatin structure and genome function [20]. But a mechanistic understanding of
how histone modifications effect DNA methylation is still lacking. It has been shown that CGIs
could be protected from DNA methylation when specific zinc finger proteins bind to their
flanking sequences [21,22]. Since histone modifications can regulate TF binding by remodeling
the chromatin structure [23], we predict that the extent to which the zinc finger proteins could
protect CGIs from methylation must be partly affected by the intensity of methylated lysine 4
in histone H3.

Materials and Methods
Datasets

The DNA methylation dataset is from the HEP [18], which aims to identify, catalogue and
interpret genome-wide DNA methylation patterns of all human genes in all major tissues.
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Currently 1.9 million CpG methylation values are obtained across chromosomes 6, 20 and 22
from 12 different tissues including human CD4 T cell. We mapped the detected CpG
dinucleotides to the human genome, and extracted CGIs (Gardiner-Garden sequence criteria)
more than 10% of whose CpGs are with methylation value (value ranges from 0 to 100). The
methylation value of CGI is calculated as the mean of detected CpGs. CGIs with methylation
value larger than 50 were regarded as M-CGIs, while less than 10 were U-CGIs. We got 367
U-CGIs and 100 M-CGIs from T cell.

The histone methylation dataset was published by Barski et al [14]. It provides the first genome-
scale high-resolution profiling of 20 histone methylations of human T cells. They detected the
number of tags for each nucleosome by direct sequencing analysis of ChIP DNA samples using
ChIP-Seq. We mapped these methylation tags to CGIs and treated the number of tags as the
modification intensity.

For validation, we applied DNA methylation data from Rollins et al [19], which detects the in
vivo DNA methylation profile of human brain. They digested the sequences with McrBC and
another five restriction endonucleases, and identified 4240 methylation-resistant domains and
3518 methylation-prone domains respectively. We extracted 301 U-CGIs and 192 M-CGIs
according to Gardiner-Garden et al's definition.

Features used in the classifier
Previous results have indicated that many DNA sequence features are distinguishing between
U-CGIs and M-CGIs. In this study, we used 3 types of DNA sequence features: (1) the CGI
characteristics: the length, G+C content and CpG ratio; (2) the count of AluY repetitive
elements, extracted by RepeatMasker [24]; (3) the count of Transcription Factor Binding Sites
(TFBSs), extracted by MATCH [25]. TFBSs used here are the 214 non-redundant vertebrate
TFBSs from TRANSFAC 11.2 [26]. We filtered some uninformative TFBSs. The overall
variances of the count of these uninformative TFBSs are less than 0.01. 31 TFBSs were left.

To investigate the intensity distribution of the 20 histone methylation marks between U-CGIs
and M-CGIs, we counted the number of each modification in the U- and M-CGIs and their
1000bp flanking sequences. In the 1000bp flanking regions, we counted the number of each
modification in a 200bp-window sliding with 10bp offset. Inside the CGIs, we normalized the
length of all the CGIs to get 200 counts (arbitrarily chosen). In each count, we got the number
of each modification in a 200bp-window, and the sliding offset is adjusted according to CGIs'
length. The intensity number was normalized to the counts per million tags.

Support Vector Machine
SVM has been widely used in classification problems of many fields of computational biology.
Its basic principle is: given a training set of n samples, {xi, yi}, i = 1,..., n, where xi ∈ Rd are
the feature vectors of d dimension and yi ∈{+1, −1} are class labels. In this study, y = +1 is for
U-CGIs and y = −1 for M-CGIs. SVM obtains a decision function by minimizing the predictive
errors and maximizing the separation margins on training data. We used the linear SVM
provided in the LibSVM package [27] to implement the algorithm. The classification
performances (SP, SE, ACC and CC) were evaluated by LOOCV (See Supplementary
material).
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Results
Discriminating DNA sequence features and histone methylation marks between U- and M-
CGIs

Recently we and other researchers found that certain DNA sequence features are highly
predictive of CGI methylation [10,12,13]. In this study, we only selected 35 DNA sequence
features for the discrimination of U-CGIs vs. M-CGIs, including the length, G+C content and
the CpG ratio of CGIs, and the count of AluY and 31 TFBSs, after filtering the uninformative
TFBSs from the original 214 non-redundant vertebrate TFBSs of TRANSFAC 11.2 [26].

Barski et al's [14] profiling of 20 histone methylations in human T cells is the first and was
then the only such genome-scale high-resolution data available. We investigated the intensity
distribution of these histone methylation marks between U-CGIs and M-CGIs by counting the
number of each modification in the U- and M-CGIs and their flanking sequences. Among the
20 histone methylation marks, H3K4me1, H3K4me2, H3K4me3 and H3K9me1are
differentially distributed between U-CGIs and M-CGIs. Therefore, we adopted the counts of
these 4 histone methylation marks in CGIs and their flanking regions as the 4 extra histone
modification features in our classification model. Figure 1 shows the intensity distribution of
H3K4me (H3K4me1, H3K4me2, H3K4me3) and H3K9me1 in U- and M-CGIs, and in their
1000bp flanking regions. One can see that the intensities of H3K4me1 (Figure 1(A)), H3K4me2
(Figure 1(B)) and H3K9me1 (Figure 1(D)) are much higher in the flanking regions of U-CGIs
than the flanking regions of M-CGIs, while the plateaus of H3K4me3 (Figure 1(c))
modification is much more pronounced within the U-CGI regions.

Prediction of methylation status of CGIs
We constructed an SVM classifier for the U-CGIs vs. M-CGIs with the 35 informative DNA
sequence features and 4 histone methylation intensities. In order to investigate the effect of the
flanking sequence length in the prediction, we experimented the SVM classifier with features
extracted from flanking sequences of different lengths and found that the best performance in
LOOCV is reached when the length was set to 500bp (Figure 2). The AluY count, the count
of TFBSs and histone methylation intensities were extracted in CGIs and their 500bp flanking
regions in our final classifier. The LOOCV accuracy corresponding to this flanking length is
89.94% , with specificity of 94.28% and sensitivity of 74%.

In order to check the contribution of histone methylation marks in prediction, we compared
this result with the result of the same method using only the 35 DNA sequence features. Figure
3 shows the ROC curves of the SVM classifiers with and without the 4 histone methylation
features. We can see that the histone methylation features have substantially improved the
prediction accuracy.

Performance comparison with other methods
Currently there are three published methods for predicting the methylation status of whole
CGIs. Feltus et al constructed a model to predict the methylation status of CGIs based on in
vitro experimental data using SVM [11]. We are unable to get their program or data to do any
comparison. Using 918 DNA sequence related features, Bock et al applied SVM on a dataset
of 132 CGIs on chromosome 21 measured in human peripheral blood lymphocytes [12]. Then
adding the predicted epigenetic state and chromatin structure features, they also applied SVM
on the same dataset with 847 sequence based features and provided an online server named
Epigraph [13] . In order to make a fair performance comparison, we also built the Epigraph
model with the same CGIs from T cells and compared our performance with theirs on an
independent data. The data are from human brain including 301 U-CGIs and 192 M-CGIs
[19]. The predictive results of our model (both with and without histone methylation features)
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and Epigraph are shown in Table 1. One could see that the 4 extra histone methylation marks
could significantly improve the accuracy and correlation coefficient, and using the epigenetic
features directly from biological experiment is more reliable than the predicted epigenetic
states.

Methylation status profiling of all CGIs on the human genome
We predicted the methylation status of all CGIs on the human genome using our classification
model. The CGIs were downloaded from UCSC browser (Hg18). We got 27,639 CGIs after
filtering the CGIs located in clones that are not yet finished or cannot be placed with certainty
at a specific place on the chromosome. The distributions of the number of CGIs in
chromosomes and in promoters, intragenic and intergenic regions are shown in Figure 4.
Promoter regions are defined as the regions located between 1kb upstream of Transcription
Start Site (TSS) and 200bp downstream of TSS. The predictive results are available at
http://bioinfo.au.tsinghua.edu.cn/member/sfan/MethStateCGI.html, one can also access the
results via the UCSC browser from that link. Based on this predicted profile, 34.22% of the
CGIs are prone to methylation, which is consistent with Yamada et al's observation that almost
a third of CGIs undergo DNA methylation[8]. Also we showed the proportion of methylation-
prone CGIs in each chromosome (red bar in Fig 4(A)), and in promoters, intragenic and
intergenic regions (red bar in Fig 4(B)). Around 60% of CGIs located in chrX and chrY are
methylation-prone. Only ∼13 % of the CGIs located in promoters are methylated. Such results
are consistent with current reports that many genes are repressive in sex chromosomes [28]
and CGIs located in promoter regions are seldom methylated [1].

Discussion
Takai and Jones proposed another definition of CGIs as a region ≥ 500bp with a G+C content
≥ 55% and the observed/expected CpG ratio ≥ 0.65 [29]. In order to check whether our
conclusions are sensitive to these thresholds, we used the same procedures on CGIs with this
definition (See Supplementary material). One could also see the important roles of the 4 histone
marks in the accuracy increase.

The tissue specificity of histone modifications
Currently it is unclear to what extent the histone modification profiles differ in various tissues.
In the ENCODE project, it is indicated that there are modest to strong correlations between the
modification data from 5 cell lines for some modifications, such as H3K4me2 and H3K4me3
[30]. In our analysis, we could get satisfactory predicting results on CGIs from human brain
(Rollins et al's data) by using the histone methylation features derived from human T cells,
which also suggests that the histone methylation profiles of CGIs in different tissues may be
highly correlated.

Relationship between enriched histone methylations and U-CGIs
H3K4me2 has been reported to be elevated in CpG-rich promoters in the human genome
[17]. In our data, we found that all H3K4me are enriched in U-CGIs or their flanking regions.
H3K4me are positively correlated with gene expression [31]. The co-enrichment of the three
forms of histone H3 lysine 4 methylation provides another evidence that some modifications
may combine redundantly to ensure robust chromatin activation [32]. The other enriched
histone methylation mark-H3K9me1, has been reported to implicate in the transcription
repression in some literatures [33]. On the other hand, it was also reported to be associated
with transcription activation in Barski et al's genome-wide histone methylation data of human
T cells [14]. H3K9me1 may offer a potential mechanism for genes to shift between transcription
repression and activation in different environmental or physiological conditions.
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Certain zinc finger proteins (such as Sp1 and CTCF) have been reported to protect CGIs from
methylation by actively binding to CGIs' flanking sequences [21,22]. Also it is known that
histone modifications such as H3K4me could regulate TF binding [23]. Based on these
understanding, we propose the hypothesis that H3K4me can recruit some remodeling proteins
to modify chromatin structure and provide DNA access, then the zinc finger proteins bind to
DNA sequences to block the spreading of DNA methylation and protect CGIs from
methylation. The extent to which the zinc finger proteins could protect CGIs from methylation
can be partly affected by the intensity of H3K4me. This may antagonize DNMT3L and BHC80/
LSD1 that only recognize H3 tails that are unmethylated at lysine 4 [34,35].

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1. The intensity distribution of four histone marks in U- and M-CGIs, and in their 1000bp
flanking regions
On the x-axis, fragments inside the two ‘0’s correspond to the CGIs, and other coordinates
indicate the location in the flanking sequences. The y-axis measures the intensity of a specific
histone modification. One can see that H3K4me1 (A), H3K4me2 (B), H3K4me3 (C) and
H3K9me1 (D) are all differentially distributed between U-CGIs and M-CGIs.
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Figure 2. The prediction accuracies with different length of the flanking regions
We extracted the count of AluY, the count of TFBSs and the intensity of histone methylation
marks within different flanking regions and found that the best performance is reached when
the length of the flanking region is 500bp.
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Figure 3. The ROC prediction results with and without histone methylation features
The solid red line: prediction results with both DNA sequence features and the 4 extra histone
methylation features; the dashed dark line: prediction results with only DNA sequence features.
One can see that the histone methylation features could largely improve the prediction
accuracy.
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Figure 4. The distribution of CGIs and methylation-prone CGIs
(A) The distribution of the number of CGIs in chromosomes (blue bar) and the proportion of
methylation-prone CGIs in each chromosome (red bar). One can see that there are the most
CGIs in chr19 and the least CGIs in chrY, and more than 80% of the CGIs located in chrY are
prone to DNA methylation, while 33.16% in autosome are methylation-prone. (B) The
distribution of the number of CGIs in promoters, intragenic and intergenic regions (blue bar),
and the proportion of methylation-prone CGIs located in promoters, intragenic and intergenic
regions (red bar). One can see that less than 13% of the CGIs located in promoter regions are
prone to DNA methylation.
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Table 1.

The predictive results of our model and Epigraph on the human brain data. One could see that our model with
the histone marks could get much better results.

SP (%) SE (%) ACC (%) CC

Our method
(with histone marks)

82.39 76.56 80.12 0.59

Our method
(without Histone marks)

95.35 21.35 66.53 0.26

Epigraph 94.68 38.54 72.82 0.43
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