
Sequence and structure continuity of
evolutionary importance improves protein
functional site discovery and annotation

A. D. Wilkins,1,2 R. Lua,1 S. Erdin,1,2 R. M. Ward,1,2,3 and O. Lichtarge1,2,3*

1Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, 77030
2W. M. Keck Center for Interdisciplinary Bioscience Training, Houston, Texas, 77005
3Graduate Program in Structural and Computational Biology and Molecular Biophysics, Baylor College of Medicine,
Houston, Texas, 77030

Received 10 February 2010; Revised 18 April 2010; Accepted 19 April 2010
DOI: 10.1002/pro.406
Published online 27 April 2010 proteinscience.org

Abstract: Protein functional sites control most biological processes and are important targets for

drug design and protein engineering. To characterize them, the evolutionary trace (ET) ranks the

relative importance of residues according to their evolutionary variations. Generally, top-ranked
residues cluster spatially to define evolutionary hotspots that predict functional sites in structures.

Here, various functions that measure the physical continuity of ET ranks among neighboring

residues in the structure, or in the sequence, are shown to inform sequence selection and to
improve functional site resolution. This is shown first, in 110 proteins, for which the overlap

between top-ranked residues and actual functional sites rose by 8% in significance. Then, on a

structural proteomic scale, optimized ET led to better 3D structure-function motifs (3D templates)
and, in turn, to enzyme function prediction by the Evolutionary Trace Annotation (ETA) method with

better sensitivity of (40% to 53%) and positive predictive value (93% to 94%). This suggests that

the similarity of evolutionary importance among neighboring residues in the sequence and in the
structure is a universal feature of protein evolution. In practice, this yields a tool for optimizing

sequence selections for comparative analysis and, via ET, for better predictions of functional site

and function. This should prove useful for the efficient mutational redesign of protein function and
for pharmaceutical targeting.
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Introduction

The knowledge of which amino acids mediate protein

function is necessary to unravel molecular mecha-

nisms,1,2 to redesign function rationally,3,4 and to

target drugs.5 The gold standard to identify these

residues remains systematic mutational analysis,6–8

but this approach has some high throughput limita-

tions. Inadequate choice and availability of assays

reduce sensitivity while the promiscuity of binding9

or catalysis,10 as well as poor reproducibility of the

relevant cellular context,11 reduce specificity.

This prompts complementary computational

methods to discover functional sites, their residues

and their biological roles. Approaches based on pre-

existing structure may be grouped broadly into those

using energetics,12–15 and others using structural

and geometric analysis.16–19 Here, we focus on com-

parative, or evolutionary approaches,20–26 and specif-

ically on the evolutionary trace (ET).27,28

ET maps functional hotspots on protein struc-

tures: areas of the protein where amino acids that
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impact function concentrate. In large-scale analyses,

ET ranked amino acids by evolutionary impor-

tance8,29 such that the top-ranked ones formed

structural clusters30–32 that overlapped and pre-

dicted functional sites.33,34 Case studies further

showed that bona fide ET-guided mutants could

then block, separate and even swap functions

in vitro and in vivo.35–38 ET thus predicts key func-

tional determinants and enables their rational

perturbation.

With the goal to optimize accuracy for high

throughput automated ET, this study now aims to

increase the functional consistency among ET’s

input sequences. On the one hand, this is not trivial.

Simply relying on BLAST39,40 to pool homologous

sequence often leads to functionally heterogeneous

sequence selections,41–43 and, in turn, since ET iden-

tifies the functional sites that are common to all the

proteins which it analyzes, such functional heteroge-

neity reduces accuracy. On the other hand, it is pos-

sible to optimize the selection of sequences. When

some of these homologous sequences are pruned

away so as to improve either the structural cluster-

ing of ET ranks,44,45 or their information content46

in the sequence, then the overlap between top-

ranked residues and the functional site increases.

Building on these results, the hypothesis of this

work is that basic features of the ET rank distribu-

tion can be found that inform the selection of

sequences and improve ET accuracy.

This article presents evidence that continuity of

ET ranks across adjacent residues is one such funda-

mental characteristic of evolutionary forces. One

type of test for successful ET improvement will be

whether top-ranked ET residues overlap better with

known functional sites. As this involves just a small

fraction of the known structural proteome, however,

a second, high throughput test will be whether these

improvements carry over to protein function predic-

tions via ET Annotation (ETA).47,48 In this approach,

without any prior knowledge of functional or cata-

lytic sites, ET guides the selection, in a query pro-

tein of unknown function, of a structural motif of

(six) top-ranked, neighboring, surface residues that

together define a 3D template. ETA then matches

the 3D templates to previously annotated proteins

across the PDB. Matches identify analog substruc-

tures with similar geometric and evolutionary fea-

tures that may therefore mediate identical functions,

and this is the basis for function predictions with

ETA, or with related approaches.49 Predictably, an

improved assignment of ET ranks yields better tem-

plates for functional annotation. For example,

replacing 3D template residues by presumed cata-

lytic site residues lowered prediction accuracy from

96% to 81%.50 Thus, ETA annotations depend sensi-

tively on an all-against-all comparisons of ET ranks,

and their improvement will confirm broad gains in

accuracy across the structural proteome.

Results

Quantitative features of the rank distribution

To probe features of the ET rank distributions that

are universal and that correlate with accuracy, we

define in the ‘‘Materials and Methods’’ section seven

quality measures, Qm, where the subscript m

reflects the choice in measure, see Table 1. We show

below that all of them fulfill three conditions that

are necessary and sufficient to guide the selection of

input sequences for ET: (1) they are computable

without reference to prior known functional sites; (2)

they correlate with the overlap between high ranked

residues and the known functional site, Aoverlap; (3)

and sequence selections that increase their value

also improve Aoverlap. Accordingly, each Qm can guide

Table 1. Summary of Quality Measures

Qm Formula Description

z-score based measures
Qstructure,1 f(i,j) ¼ (j � i) Structural clustering
Qstructure,2 f ði; jÞ ¼

ffiffiffiffiffiffiffiffiffi
j� i

p
Structural clustering

Qstructure,3 f(i,j) ¼ 1 Structural clustering

Qsurface f ði; jÞ ¼ sisj; si ¼
1 if surface
0 otherwise

�
Surface clustering

Qsequence f(i,j) ¼ dj�i,1 Neighbors in sequence
non z-score based measures
Qcontrast

PL

j>i

P
ai ;aj

Aðai ;ajÞjðcj�ciÞj

n
Contact rank difference

QRI TI � RE Information content of ranks

There are five z-score based Qm’s that measure the statistical significance of the clustering among ET top-ranked residues
within structure and sequence. The measures are a function of z-scores, zc ¼ w�hwi

r where w ¼
PL

j>i SðiÞSðjÞAði; jÞf ði; jÞ.
The quantity w measures the top-ranked residues in contact spatially. The difference lies in the weighting term f(i,j), which
weighs the contribution of residues i and j differently based on their relative position in the structure and sequence. The
last two measures (Qcontrast and QRI) are unique in formula. Qcontrast is a measure of the rank gradient over the structure.
QRI is structureless measure of the information content of the rank distribution. Further detail of the Qm’s can be found in
‘‘Materials and Methods’’ section.
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the selection of sequences in order to improve func-

tional site detection without prior knowledge of that

site. Notably, some of these different Qm depend on

the structure and others on the sequence, but most

focus on the similarity of physically neighboring ET

ranks, that is, their continuity in the sequence or in

the structure (Fig. 1). This common theme suggests

that many other derivative quality measures also

related to continuity could be devised easily.

Correlations with deleterious
sequence perturbations

To test condition 2, Qm perturbations were introduced

in ET’s input and a correlation was assessed between

spatial clusters of top-ranked residues and known func-

tional sites, that is, between the quality measure Qm

and the overlap Aoverlap. Different ranking methods

were used each time to control for method-specific bias:

the integer value ET27 (ivET), Shannon Entropy51 and

the current standard real value ET28 (rvET), which is

resilient to errors like entropy, but exploits the phyloge-

netic information like ivET. Each method is reviewed in

‘‘Materials and Methods’’ section.

The first type of perturbation was to add more

sequences to the input to ET, starting from just the

query and two homologs. The sequences were taken

at random from an initial BLAST52 search. A repre-

sentative example shows that Qcontrast and Aoverlap

were well correlated (>0.9) (see Fig. 2) and this gen-

erally irrespective of the ranking method (Fig. 3).

There was one sole outlier Qstructure,3, that had a

poor correlation for ivET. Also note that one method,

ivET, had more proteins with little or no correlation.

This is consistent with the high sensitivity of ivET

to errors, gaps, misalignments or polymorphisms

that break the perfect match between sequence var-

iations and phylogenetic divergences that is the hall-

mark of ivET rankings. Once such a sequence was

added to the input, it decreased the overlap to a

Figure 1. (a) The clustering z-score measures the

nonrandomness of the clustering of top-ranked residues in

space. The z-scores are a direct result of the ranking of the

residues in a protein structure. This diagram shows an

example of the clustering z-scores as a function of ci using

the rvET method for a cold-active citrate synthase

[Antarctic bacterium, PDB 1a59]. The high clustering

z-scores would indicate similarly ranked residues proximate

in the structure and would be considered a positive result.

Quality measures Qstructure,1 and Qstructure,3 are variants of

the clustering z-scores. (b) To represent a method’s ability

to predict a known site, the overlap z-score is also

calculated using a simple hypergeometric distribution. An

example of the overlap z-scores as a function of ci can be

seen in bottom figure. The overlap measure Aoverlap is

derived from the these z-scores.

Figure 2. A correlation between quality measures and overlap

of known site was found when variations were considered in

alignment. The quality measures are a result of the ranking of

the sequences in an alignment. These diagrams show

examples of the values of quality measure Qcontrast and overlap

measure Aoverlap as sequences are added into the analysis

randomly. The values for the first 30 sequences added to the

analysis were used to calculate correlation.
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known site irretrievably, yielding traces with lower

quality and lower correlations overall.

A second type of perturbation (Fig. 4) was intro-

duced to further test these correlations. To corrupt

the alignments, an increasing number of mutations

were introduced to simulate errors (in steps of 0.25%

and up to a 5% error). Each time, a sequence and resi-

due location was randomly picked and replaced with

another residue or a gap, also picked randomly (each

had an equal chance of occurring). The procedure was

repeated 10 times to find how the average quality

measure Qm correlated with the average functional

site overlap, Aoverlap, as a function of errors. Again,

Qm’s and Aoverlap were both strongly correlated for

most proteins and ranking methods (Fig. 5). This

time, Qstructure,3 was comparable to Qstructure,2, and

even outperformed it with integer value ET. These

observations suggest that Qm’s are adequate surro-

gate markers of the impact of input sequence pertur-

bations on the accuracy of ET hotspots.

Test set: Individual quality measures

Next, we tested whether sequence selections that

maximized Qm also improved ET predictions. An

Figure 4. Analysis was performed to study the

performance of the quality measures and the ranking

methods as errors were introduced. The deterioration of the

quality measures and overlap measure Aoverlap as a function

of random mutations in the analysis is observed in protein

16pk and 1a59. Correlation was determined from the values

of the quality measures and overlap measure Aoverlap.

Figure 3. Distribution of Pearson correlations between

quality measure variations and overlap measure variations

in 74 proteins when sequences are added randomly added

to an alignment. The purpose of the study was to test the

methods and quality measures as a function of sequence

selection. The histograms show the correlations of the

possible quality measures and functional site measure

Aoverlap for the rvET, ivET, and Shannon Entropy method

when 30 sequences are randomly added to the ranking

analysis. The Qcontrast (labeled EC), QRI and Qstructure,2 had

the highest correlations amongst the quality measures for

the ranking methods though all measures where found to

have some correlation. Note that one method, ivET, had

more proteins with little or no correlation. This is consistent

with the high sensitivity of ivET to errors, gaps,

misalignments or polymorphisms that break a perfect

match between sequence variations and phylogenetic

divergences. Once such a sequence was added to the

input, it decreased the overlap to a known site irretrievably,

yielding traces with lower quality and lower correlation.
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optimization algorithm described in Materials and

Methods added, or removed, sequences or whole evo-

lutionary tree branches from ET’s input depending

on whether Qm values rose, or fell. It was then

applied to 74 diverse proteins (that variously bind

substrates, cofactors, DNA or proteins). In each

case, an initial BLAST52 search gathered sequences;

those with obvious gaps and fragments were

removed (a step referred to as coarse heuristic prun-

ing); and the remaining sequence selections were

refined with the optimization algorithm.

Consistent with the hypothesis, most sequence

selections could be manipulated to increase Qm and,

in turn, lead to better overlap with the known func-

tional sites (see Table 2). Optimized ET improved on

coarse heuristic pruning, which itself had improved

on the naive ET result taken over the initial, raw

set of sequence homologs. This held for every Qm, in-

dependent of the ranking method. Specifically, the

robust rvET method yielded the best final overlap

between top-ranked residues and known functional

sites, with z-scores rising as much as 9% (see Table

2). The ivET method, which is sensitive to sequence

perturbations, gained the most (up to 15% z-score

increases) but still lagged behind rvET. Strikingly,

similarity among sequence neighbors alone, meas-

ured via the Qsequence measure, was sufficient to

improve overlap of known site (hzoi increased 7%).

Thus, ET rank similarities among neighbors com-

puted without knowledge of the 3D structure are

significant in their own right. Overall, the rank

Figure 5. To test ranking methods and quality measures,

random mutations were inserted into the alignment. These

histograms show the correlations of the possible quality

measures and functional site measure Aoverlap for the rvET,

ivET, and Shannon Entropy method. The Qstructure,2 and

Qstructure,3 measures consistently have the best correlations

in all three methods for the majority of the proteins. All

measures were shown to have some correlation. The

Shannon Entropy and the rvET methods had a significant

number of proteins with low correlation when compared to

the ivET method. This is because ivET is very sensitive to

errors while the other methods are more resilient. Thus, as

errors were added, ivET rapidly lost accuracy and showed

better correlations than the two other, more robust methods

for which the overlap with the known site would not change

dramatically up until the alignment had 20% error. Though

this decreased correlation may impair optimization, it is

desirable for good initial functional site prediction.

Table 2. Training Set Optimized to Find a Better
Sequence Selection Using the rvET, ivET, and Shannon
Entropy Methods for the Individual Quality Measures

Q

hzoi

rvET ivET
Shannon
Entropy

No pruning 3.14 1.08 3.28
Pruning only 3.71 2.98 3.61
Cluster, 1 3.75 (þ1.1%) 3.39 (þ13.8%) 3.65 (þ1.1%)
Cluster, 2 3.89 (þ4.9%) 3.38 (þ13.4%) 3.69 (þ2.2%)
Cluster, 3 4.06 (þ9.4%) 3.45 (þ15.8%) 3.70 (þ2.5%)
Surface 4.05 (þ9.2%) 3.45 (þ15.8%) 3.64 (þ0.8%)
Sequence 3.96 (þ6.7%) 3.35 (þ12.4%) 3.76 (þ4.2%)
Contrast 4.07 (þ9.7%) 3.45 (þ15.8%) 3.71 (þ2.8%)
RI 3.68 (�0.8%) 3.08 (þ3.4%) 3.58 (�0.8%)
Combined

measure
4.16 (þ12.1%) — —

All quality measures were shown to improve the overlap
except the QRI which decreased the overlap measure hzoi in
the case of the rvET and Shannon Entropy methods. The
small decrease of hzoi due to QRI optimized may be because
the value of the measure is already near maximized. The
optimization with the ivET method had a larger improve-
ment due to a new sequence selection but did not give the
equivalent results of the rvET method before optimization.
The hzoi for the pruned set is considered the original/start-
ing value for the alignments described in ‘‘Materials and
Methods’’ section.
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distribution features measured by Qm are suffi-

ciently correlated with ET accuracy to inform

sequence selection and to optimize ET results.

In practice, the human Rac/p67phox complex

[PDB 1e96]53 illustrates these gains (Fig. 6). The

GTPase Rac and p67phox assemble to form an active

enzyme complex, the NADPH oxidase, which gener-

ates superoxide in the phagosome of neutrophils as

part of their attempts to kill bacteria during infec-

tion. After collecting BLAST hits [Fig. 6(a)], culling

sequences with blatant problems [Fig. 6(b)] and fur-

ther Qcontrast optimization [Fig. 6(c)], the top 25%

ranked residues are shown in rainbow coloring (Red

is most important and yellow is 25th percentile

rank). The bound protein p67phox is shown in green

[Fig. 6(d)]. Optimization specifically improved the re-

solution of the protein-protein interface, with the

additional recovery of 5 interfacial residues (I21,

T24, T25, F28, D29). Likewise, the receiver-operator

curve (ROC) of sensitivity versus specificity [Fig.

Figure 6. The sequence selection was optimized with quality measure Qcontrast for human Rac/p67phox complex [PDB 1e96].

The top 25% ranked residues before and after the optimization are shown here. The individual rankings with no pruning (a),

only pruning (b) and after optimization (c) are shown. (d) shows the actual protein–protein interface. The bound protein

p67phox is shown in green. Before optimization the average overlap z-score hzoi after pruning is 0.96 while the optimization

improves hzoi to 2.76. The new alignment predicts more residues proximate to the known protein-protein interface. The

optimization of the sequence selection dramatically improves the ability to predict the interfaces. An interactive view is

available in the electronic version of the article.
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6(e)] and the overlap z-scores [Fig. 6(f)] improved

with the optimized ranks.

Similar observations held in the human growth

hormone and receptor complex (Fig. 7, PDB 3hhr).54

This complex comprises the growth hormone (Chain

A) bound asymmetrically to two receptor molecules

(Chain B & C) and it is essential for growth and de-

velopment and a potential drug target.55,56 This

time, the new selection of sequences illustrated in

Figure 7 was guided by Qsurface and it enabled the

ET recovery of the protein–protein interface with

the receptor (Chain B). The color-coding is as before.

Test set: Combined quality measures

Next, we asked whether the Qm’s might be combined

together. This is plausibly useful since each Qm

responds slightly differently to different perturba-

tions and, in turn, optimizes different ranking meth-

ods to different extents. After trial and error, a sin-

gle composite score Qcomposite for the ET ranks

Figure 7. The optimization was performed with the Qsurface quality measure for the human growth hormone and receptor

complex [PDB 3hhr]. The individual rankings with no pruning (a), only pruning (b) and after optimization (c) are shown (Red is

most important and yellow is 25th percentile rank). The new selection of sequences enables the ranking method to recover

the protein–protein interface with the receptor (shown in green). The average overlap z-scores starts hzoi ¼ 1.30 (no pruning),

after pruning hzoi is 1.48 and after quality measure optimization the hzoi ¼ 3.14. The new sequence selection improves the

ability to the predict the protein interface.
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emerged. It combined the standard scores of Qsurface,

Qstructure,2, Qsequence, and Qcontrast and it improved

the average z-score hzoi of the 74 test proteins (on

which it was trained) from 3.71 to 4.16 (þ12%)

(shown in Fig. 8). This suggested that, independent

of the ranking method, functional site prediction

improved the most when sequence selection led to

ET ranks that are the most evenly smoothed out

and concentrated over the whole structure, its sur-

face, or the sequence.

To confirm these results are free of circular bias,

ET optimization guided by this composite score Qcom-

posite was next tested in 110 unrelated proteins taken

from the literature.57,58 Their known ligands defined

the gold standard functional sites from PDBsite.59

The optimized ET overlap z-score hzoi improved was

3.75, and 8% improvement on the standard ET

server (3.46) [Fig. 9(a)], at percentile ranks within

20%. For reference, another functional site detection

method, Consurf,20 yielded overlaps with average z-

scores hzoi of 2.17. Receiver-operator curve further

illustrate the gain in sensitivity and specificity after

ET optimization [Fig. 9(b)]. The equivalent results

(standard ET, optimized ET and Consurf) for each

proteins are in Supporting Information. The average

overlap z-scores decreased in a few cases, those pro-

teins typically had multiple ion-binding sites. The

prediction would then improve for one site but lose

overlap with respect to the secondary sites

Bovine ribonuclease A [PDB 7rsa]60 illustrates

the gain accuracy. The enzyme has four catalytic

residues (H12, K41, H119, and F120). Figure 10

shows the catalytic residues (spheres) and the ET

top-ranked residues (colored by rank, red is most im-

portant evolutionarily and yellow is at the 20% ET

rank). To recover all four catalytic residues the

standard ET needed a coverage reaching as far as a

percentile rank of 52%. By contrast, the optimized

Figure 8. Optimization of the sequence selection using the

combined quality measure further improved functional site

prediction. Best results were obtained by first pruning the

alignment and then followed by quality measure

optimization with a combination of the standard score of

the quality measures, Qsurface, Qstructure,2, Qsequence, and

Qcontrast. (a) The diagram shows the functional site measure

hzoi before and after the optimization of the pruned

alignments is compared for the 74 individual proteins. The

average overlap z-scores increased by 12% when rankings

depend the optimized alignments compared to the pruned

only. (b) The differences in methods can also be seen in

receiver-operator curve. The pruned traces and pruned/

optimized out performed the Consurf20 results.

Figure 9. To test quality measure optimization method a

second set was optimized for improvement in site

prediction. The average z-score before and after the

optimization for the 110 proteins was compared. (a) We

found that after optimized sequence selection the dataset

improved site prediction (average z-score improved from

3.46 to 3.75, an 8% increase). (b) The pruned traces and

pruned/optimized out performed the Consurf results.

Wilkins et al. PROTEIN SCIENCE VOL 19:1296—1311 1303

http://firstglance.jmol.org/fg.htm?mol=7rsa


ET identified all of them with a scant coverage of

only the 20th percentile rank. Thus, maximizing

Qcomposite significantly improved the resolution of the

functional sites.

Application: Annotation set

To assess more generally the meaning of an of 8%

increase in the z-score of functional site overlap, we

asked next whether it improved function prediction

via 3D-templates. This is a stringent test for two rea-

sons: it requires large-scale comparisons of traces

over a representative subset of the PDB; and it

focuses specifically on molecular determinants of

function as defined by a few of the very best ranked

residues, so accurate ET rank order is paramount.

In more details, 3D templates are small struc-

tural motifs made up of just a few (six) of the most

functionally important neighboring surface residues

in a (query) structure. Ideally, they embody the key

residues that are necessary and sufficient to deter-

mine function, and a classic example is the catalytic

triad of serine proteases. When such templates can

be matched in other (target) structures in terms of

geometry and evolutionary importance, repeatedly

and reversibly,47,48,50 then such matches are likely

to be relevant, rather than random, and to indicate

that the query and the target have the same enzy-

matic activity and hence the same Enzyme Commis-

sion (EC) number.

The challenge is that for most proteins, the func-

tional sites are not known a priori. Hence there are no

obvious templates. The Evolutionary Trace Annota-

tion (ETA) server61 obviates the need for any prior

knowledge of function, functional site location, and

functional site composition by building templates

solely on the basis of residue rank order and distribu-

tion: it picks a six residue template from clusters of

top-ranked surface residues. Then it searches and

finds matches across the PDB as described above to

suggest likely functions. Recently, when ETA was con-

trolled with the standard rvET analysis on 1217

structural genomics enzymes that were already anno-

tated with EC numbers, the positive predictive value

(PPV) was 93%, but the sensitivity was much lower,

43%.47 A prediction is correct if the first three digits

of the EC annotation are correct. Typically, this

defines the chemical reaction, although not its sub-

strate, which would require the fourth digit.

Figure 10. The example of the optimized sequence selection for phosphate-free bovine ribonuclease [PDB 7rsa] known to

have an active site with catalytic residues. The top 20% ranked residues before (a) and after the optimization (b) are shown in

both diagram. Residues marked red are most important and yellow are the 20th percentile rank. The overlap z-scores (c) and

sensitivity/specifity (d) had significant improvement with a new selection of sequences based on quality measures.
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Here, ETA was run again on the same set, but

this time using optimized traces to create templates

for both the 1217 control queries and the target set

of all annotated 2006 PDB90 protein structures.

Overall, for 1217 proteins, the three digit EC PPV

rose to 94% from 93% (Table 3). More strikingly, sen-

sitivity rose to 53% from 40%, where PPV ¼ correct

predictions/(correct predictions þ incorrect predic-

tions) and sensitivity ¼ correct predictions/number

of proteins in the test set.

This trend was robust, even when trivial

matches to proteins of high sequence identity are

progressively removed from consideration. For exam-

ple, at the 40% threshold (meaning that all annota-

tions are based on matches to other structures with

less than 40% identity), the three digit EC PPV rose

to 92% from 89%, and sensitivity rose to 30% from

25% (Fig. 11). ETA with optimized ET added 243

predictions, where 227 were correct and 16 were

not. Conversely, optimized ETA missed prediction for

75 cases that unoptimized ETA analysis alone had

recovered. Thus, overall, optimized traces improve

the rank distribution sufficiently to raise the quality

of picked templates, the relevance of their matches

and overall net predictions of enzyme function.

As an example, standard unoptimized ETA found

no matches for the template it extracted from Dephos-

pho-CoA kinase (EC 2.7.1.24) (Dephosphocoenzyme A

kinase) (tm1387) from Thermotoga maritima at 2.60
_A resolution [PDB 2grj; chain A]. That template con-

sisted of residues: 12G, 13K, 113G, 142L, 134R,

139D and 142L. The optimized ETA, however, cre-

ated a different template (see Fig. 12) in which four

of six residues were different: 6T (old ET percentile

rank 10.3% ! new percentile rank 2.9%), 84H (7.4%

! 5.1%), 85P (10.9% ! 4.0%), 107A (8.0% ! 3.4%)

while 12G (1.7% ! 2.9%) and 13K (1.7% ! 2.9%)

were unchanged. The average percentile rank of the

optimized template improved from 6.7% to 3.5%, and

ETA was able to match a dephospho-coenzyme A ki-

nase from Haemophilus influenzae [PDB 1jjv; chain

A] of 29% sequence identity with 2grj (chain A),

leading to a correct prediction of EC 2.7.1.24.

Discussion

This study is part of a long-term effort to identify ev-

olutionary hotspots27 in proteins in order to design

functional variants62 or peptidomimetics63 that

Figure 11. ETAs performance for 1217 enzymes with

optimized and unoptimized ET. Positive predictive value

(PPV) and sensitivity are calculated removing matches

above a sequence identity threshold.

Figure 12. Pictures show the ETA templates as spheres on the PDB 2grj (chain A) structure. Both templates are taken at

5.14% ET percentile rank. Left structure (a) shows the template from unoptimized ET while the right (b) is the template from

quality measure optimized ET.

Table 3. Protein Set Annotated by the ETA Method
Using Default Alignment and the Optimized Sequence
Selection Alignment

Pruned Optimized

Number of proteins 1217 1217
Number of predictions 522/1217 (43%) 690/1217 (57%)
Correct predictions 483/522 (93%) 648/690 (94%)

The new selection of sequence made a dramatic improve-
ment in the number of prediction without compromising ac-
curacy. The sensitivity increased to 53% from 40%. The
quality measure optimization will contribute considerably
to prediction for functional annotation.
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selectively perturb pathways involved in signal-

ing,38,63,64 transcription,65,66 or genomic stability.34

The approach relies on the Evolutionary Trace, a

method that integrates sequence, structure and

function analyses into a single framework to charac-

terize structural sites and functional residues. Some

recurrent features of top-ranked ET ranks residues27

are that: these top-ranked residues (in the 10th,

20th, 30th top-percentile rank) cluster non-randomly

in protein structures30; and these clusters overlap

significantly with, and therefore reveal, functional

sites.31,67 These observations are highly reliable and

can efficiently guide experiments, for example, to

separate functions,8,34 rewire specificity,29 design

peptide inhibitors,63 or reveal the conformational

trigger of an allosteric pathway and recode it to

respond to a different ligand.68 Beyond these varied

experimental case studies, ETA function prediction

further validated the basic premise that clusters of

top-ranked ET residues point to functionally essen-

tial residues, but this time on a large scale.

These prior results suggest that ET ranks high-

light fundamental, general and useful patterns link-

ing the distribution of evolutionary importance in

sequence residues to their structural location and to

their biological roles. The question posed here, is

whether other quantifiable features can be defined

to improve the resolution of this evolutionary rela-

tionship, and to lead to more accurate ranks, more

accurate functional sites, and more accurate function

predictions.

All seven of the quality measures proposed

here do so, as does the 8th composite one. They

guided sequence selections that improved the

match between top-ranked residues and functional

sites, independent of the precise ranking algo-

rithm. The rise in statistical significance, the

z-score of overlap, with the composite quality mea-

sure was 8% in 110 proteins unrelated to the

training set. This gain translated into better reso-

lution of the functional sites in both individual

case studies and on a proteome-wide scale for func-

tion prediction. ETA sensitivity rose sharply (a

13% gain from 40% to 53%, which is a 33% rela-

tive increase) with no loss of specificity (positive

predictive value rose 1% from 93% to 94%). The

results reflect the large impact of even subtle

improvements in ET ranks.

These data also confirm the hypothesis: for most,

if not all proteins, quantifiable features of ET rank

distributions can be optimized towards more accurate

views of the sequence-structure-function evolutionary

relationship. But the multiplicity of Qm, their comple-

mentarity, and the better performance of the ad hoc,

composite quality measure Qcomposite, suggest that a

deeper, more general and more basic feature of the

distribution of evolutionary importance in proteins is

at play.

It is therefore noteworthy that a common theme

among the Qm is to focus on neighboring residues

and rate whether they have similar evolutionary im-

portance. The more this is so, the more top-ranked

residues will cluster,30 and ET accuracy measures

will increase. This suggests two related broader

reformulation of our results: First, that ET ranks

should distribute continuously, that is, such that

from one neighbor to the next the change in evolu-

tionary importance is as small, or smooth as possi-

ble. Second, that ET ranks should be most ordered,

that is, their distribution entropy is least. Both

statements hold for sequence neighbors, or spatial

neighbors in the structure, and suggest, most simply

that over time, molecular evolution operates in

sequence and structure in an orderly and continuous

fashion.

In this light, mutations are still random events,

but the physical and function constraints that lead

to natural selection lead to the apparent order and

continuity of evolutionary importance. The different

quality measures reflect different ideas of what orga-

nization of evolutionary ranks best reflects nature:

how to measure the continuity or the entropy of a

distribution of evolutionary importance in the dis-

crete context of a sequence or structure? In practice,

the suitability of aligned sequences for site predic-

tion analysis can be measured and optimized to

improve the statistical significance of functional site

predictions. These gains are scalable to the proteome

and carry over to the prediction of functional deter-

minants since these translate to improved function

prediction by 3D templates.

In summary, the results suggests that a finer

definition of the ‘‘clustering’’ property that ties top-

ranked residues with function is the continuity and

order of ET ranks distributions in sequence and in

space. The generality of this statement is supported

by all the correlations between Qm and ET accuracy,

which is so reliable and so general that it guides

sequence selections that optimize ET, and ETA, on a

proteomic scale. The maximal rank continuity sug-

gests a more succinct formulation than the phenom-

enological (ad hoc) nature of the quality measures

themselves. It remains to be tested in the future

whether other, and more general means to improve

rank continuity can further improve ET, and in so

doing point to a more definitive ET rank order qual-

ity than Qcomposite. For now, this study provides sig-

nificant improvements to the automated, large-scale

functional site identification and the annotation of

their key residues and functions.

Materials and Method

Quality measures
The first group focuses on the notion of ‘‘clusters’’ of

top-ranked residues. These are residues that are in
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contact and are evolutionarily important, given ET

rank threshold. The more such residues are in con-

tact at a given threshold, the greater Qcluster will be.

Qcluster is an accumulative value derived from the

clustering z-scores at each unique rank,

Qcluster ¼
1

L

XL
i

zðiÞc ð1 � ciÞ (1)

where z
ðiÞ
c is the clustering z-score of the residues

within a threshold based on the rank of residue i

and ci is the fraction of the residues falling within

this threshold. The term 1 � ci weighs more heavily

z-scores arising from top-ranked residues. L is the

residue length of the protein structure. The cluster-

ing z-score zc is the distance of w, the actual cluster-

ing of top-ranked residues, from its average

expected value hwi, measured in units of standard

deviation r and is expressed

zc ¼
w� hwi

r
: (2)

Finally, the quantity w is defined by the top-

ranked residues in contact and can be expressed

w ¼
XL
j>i

SðiÞSðjÞAði; jÞf ði; jÞ: (3)

Here, the adjacency matrix A(i,j) assigns 1 to

any pair of residues i and j if they are defined as

neighbors (within 4 _A), and is 0 otherwise. Si is the

selection threshold which assigns the value of 1 if

the residue i falls into a given ci. Detailed explana-

tions of the methods used to calculate hwi and r can

be found in Mihalek et al.32

Of note, the function f(i,j) weighs the contribu-

tion of residues that are near in the structure but

not in the sequence. Until now contacts between res-

idues that were further apart in the sequence were

weighed (f(i,j) ¼ j � i, where i and j is the residue

numbering) more heavily.44,45 But other choices

(referred to as Qstructure,1) are possible including no

special weight Qstructure,3, or a drop-off such as the

square root is taken as the weight Qstructure,2. This

gives rise to three quality measures.

Moreover, clustering among surface residues

may be more relevant to identify functional sites for

protein ligand interactions. This is the purpose of

Qsurface, constructed as shown in Eqs. (1) to (3)

where now f(i,j) is equal 1 if both i and j are on the

surface residues (solvent accessibility > 5 _A2 accord-

ing to DSSP69) and equal f(i,j) ¼ 0 otherwise. This

yields a two-dimensional measure of quality.

One may further reduce dimensionality and con-

sider sequence clustering only. This yields Qsequence,

akin to the previous Qcluster measures but with the

adjacency matrix A(i,j) set at 1 only for residues

that are next to each other in sequence, and set to 0

otherwise. This quality measure is structure

independent.

We also consider the previously defined Rank

Information (QRI)
46 which does not explicitly rely on

clustering, and which is also structure independent.

(QRI) is a product of two expressions related to the

information content of the ET rank distribution

QRI ¼ TI � RE (4)

where TI is the trace integral and RE is the rank

entropy. The trace integral sums ET ranks over all

possible positions and is written

TI ¼
XN
r¼1

fr
ðN þ 1 � rÞ

N
: (5)

where fr is the frequency a rank appears in the anal-

ysis and N is the number of sequences. The value r

is an integer position based on the score from the

ranking method, where it is the integer value modi-

fied by leaving gaps before the sets of equally

ranked items. For example, if four residues have the

evolutionary scores 1.0, 1.1, 1.1, and 1.3 then r is

equal to 1, 3, 3, and 4, respectively. This transforma-

tion was necessary to compare methods. The rank

entropy measures the diversity of the rank values

over the possible positions as shown

RE ¼ �
XN
r¼1

fr log fr: (6)

The origin of QRI is the following. First, the

fewer data are corrupted or inconsistent, the better

the ranks of functional residues should be. So TI

should be as large as possible. However, in the

extreme, this process leads to sequences that are

identical to each other so that every residue is top-

ranked. RE balances this process by requiring that

the rank distribution remains as diverse as possible.

Last, a partially related view of clustering

among top-ranked residues is that the relative rank

difference between contact pairs of the individual

atoms in the residues should be minimized. This ob-

servation introduces the notion of smoothness within

the distribution of ranked residues and it is quanti-

fied by Qcontrast. Qcontrast measures the rank differ-

ence between residues within the structure. Qcontrast

is calculated as follows

1

Qcontrast
¼

PL
j>i

P
ai ;aj

Aðai;ajÞjðcj � ciÞj
n

(7)

The adjacency matrix A(ai,aj) ¼ 1 if the atoms ai
and aj are within a minimum distance of 4 _A (other-

wise A(ai,aj) ¼ 0). n is the number of atoms within

the structure. The value of ci contains the
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evolutionary rank information as a fraction of resi-

dues with the evolutionary rank of residue i or bet-

ter. The reciprocal is taken since we want the func-

tion to be maximized similar to the other quality

measures. In this study, Qcontrast will only be consid-

ered across the whole structure, but it can be nar-

rowed to surface residues only.

Finally, to assess the recovery of known sites,

we use Aoverlap which is the measure of overlap with

the ‘‘gold standard’’ functional site. This function is

derived from the overlap z-scores zo, which are based

on the hypergeometric distribution describing the

overlap between the ‘‘gold standard’’ residues and

the ranked residue (Fig. 1). The measure Aoverlap

similar to Qcluster is defined as

Aoverlap ¼ 1

L

XL
i

zðiÞo ð1 � ciÞ (8)

where z
ðiÞ
o is referred to as the overlap z-score corre-

sponding to the residues within ci.

Note that in order to normalize the gains in

functional site overlap among many different pro-

teins, they are expressed in terms of hzoi, the aver-

age statistical z-score of overlap between the func-

tional site and the trace residues at the percentile

ranks within the top 20%. We focus on the residues

in the top 20% because the performance of the

method at top ranks is more relevant when guiding

experiments.

Residue ranking methods

The focus of our studies will be integer value ET,

Shannon Entropy and a hybrid method (real value

ET). Mihalek, et al. discuss a comparative study of

the ability of these methods to predict important

residues.28

The integer value ET rank27 (ivET) for the resi-

due position i in the query protein can be expressed

ri ¼ 1 þ
XN�1

n¼1

d (9)

The summation considers all the nodes N

(branches) in the evolutionary tree. The value d ¼ 0

if residue position i is conserved within the sequen-

ces that make up the node in the evolutionary tree,

and d ¼ 1 otherwise. The ranking method ignores

the groups that are not completely conserved at posi-

tion i. Assigning a rank ri to each of the residues

leads to a relative ranking scheme: given any two

residues, the one with smaller rank ri is considered

more important. The magnitude of ri for residue

position i is not important except relative to the

ranks at other residue positions in the query pro-

tein. Each method we consider shares this idea.

Shannon Entropy is a measure of variability at

a given position in a set of aligned sequences.51 The

rank si for residue position i is defined as

si ¼ �
X20

a¼1

fialnfia (10)

where fia is the frequency that amino acid a appears

in the column containing residue position i.

Real value ET (rvET) method28 ranks the evolu-

tionary importance of residues in a protein family,

which is based on the column variation in multiple

sequence alignments and evolutionary information

extracted from the phylogenetic tree. Shannon En-

tropy is calculated for the entire alignment, and

then recalculated for all the subgroups of the align-

ment selected by the phylogenetic tree. The rank qi
of residue i is calculated as follows:

qi ¼ 1 þ
XN�1

n¼1

1

n

Xn
g¼1

�
X20

a¼1

f gialnf
g
ia

( )
(11)

where fia
g is the frequency of the amino acid of type a

within the sub-alignment of group g. The number of

possible nodes in the evolutionary tree is N � 1 where

N is the number of sequences in the alignment. The

nodes in the phylogenetic tree are numbered in the

order of increasing distance from the root. Note that

the node n ¼ 1 term would be Shannon Entropy.

Training set

The dataset used to determine best set of quality

measures consists of 74 proteins with protein–ligand

and/or protein–protein interactions. The set was cho-

sen to be diverse in function and to include proteins

with more then one functional site. The protein data

bank IDs are: 16pk, 1a09, 1a0oE, 1a22A, 1a22B,

1a2kA, 1a2kD, 1a3k, 1a48, 1a4mA, 1a53, 1a59,

1a6m, 1a6q, 1a80, 1aca, 1ad3A, 1ai2, 1aj2, 1aj8A,

1aky, 1am1, 1amk, 1aonF, 1ars, 1aru, 1ast, 1axn,

1b54, 1bag, 1bqk, 1bto, 1c1bA, 1cg0, 1cio, 1cvjA,

1cxzA, 1dam, 1dig, 1dqr, 1dqx, 1e96A, 1e96B, 1ee9,

1efaB, 1eg2, 1eje, 1elrA, 1elwA, 1f6mA, 1f88A, 1finA

1finB, 1fjmA, 1fqjB, 1gnjA, 1jfiB, 1k7vA, 1ng1,

1nzcA, 1pvdA, 1qumA, 1qupA, 1rrpA, 1rrpB, 1vh4A,

1w1uA, 1ycsA, 1ycsB, 2bif, 2mjpA, 2msbA, 3hhrA,

6gst. The ‘‘gold standard’’ functional sites of the pro-

tein–ligand interactions are defined by the database

PDBsum.70 The protein–protein functional sites are

defined as the residues within five angstroms dis-

tance of the residues in the second protein.

Pruning algorithm

For each query protein, a set of sequences were

obtained with the default settings of the ETviewer.71

The set was retrieved with BLAST52 (using NCBI’s

non-redundant protein sequence database, the
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blosum62 substitution matrix, and default parame-

ters). The top 500 homologs with an e-value better

than 0.05 were retrieved from NCBI’s Protein data-

base. CLUSTALW72 (using the default parameters)

was used to generate a multiple sequence alignment

for the query structure. The set was pruned to

remove evolutionary outliers and sequence frag-

ments (referred to as Pruned set): sequences were

removed if sequence identity was less then 26% with

the query and less then 70% of the query sequence

length. The sequences were then re-aligned. The set

of alignments was used to test performance of the

quality measures and ranking methods.

Feedback optimization algorithm

The sequence selection algorithm aims to eliminate

problem sequences rather than to pinpoint a single

best set. The reason is that many similarly good

selections differ only by any number of combinations

of close homologs, which would have no impact on

the distribution of top-ranked residues. Starting

from the sequences collected as described in previous

section, the algorithm identifies a reasonable initial

selection in the first two steps, and then adds new

sequences in the third step, guided each time by the

quality score measure Qm. Specifically:

1. The evolutionary tree nodes that contain the query

protein as a leaf are used to define nested sequence

selection and each one is traced. The node with the

best Qm value defines the starting selection, thus

initially removing outlying homologs that may con-

flict with closer homologs to the query.

2. Each of the smaller nodes of this new tree is then

removed, in turn and one at a time, and the

remaining sequences are retraced. If the value of

the quality measure increases then the node is

removed from the analysis. Thus as the tree, and

sequence selection shrinks, Qm increases further.

3. Finally, all individual sequences are then added/

removed from analysis and the Qm is evaluated based

on the new rankings due to the change in sequence

selection. Thus, any one of the sequences removed in

earlier steps may be incorporated back into the tree.

The sequences are added/removed in the order of the

value of the quality measures Qm, each time retesting

the sequence against the new evolutionary tree. The

sequences not selected are repeatedly tested until the

subset of sequences is left unchanged. The algorithm

allows for five iterations to insure convergence but in

a majority of the cases the selection converges after

no more then three iterations.

Composite quality measure

Qcomposite is a single score made up of the standard

scores of a subset of the quality measures. Qcomposite

is formulated

Qcomposite ¼
X

m

Qm � hQmi
rQm

: (12)

where the sum is over subset of quality measures

chosen. The expected average of a quality measures

hQmi and standard deviation rQm
are evaluated from

the values of the quality measures obtained during

the steps of the Feedback Optimization Algorithm.

Sensitivity and specifity

The receiver-operator curve (ROC) was calculated on

the test sets as follows: sensitivity is found as TP
TPþFN,

where a true positive (TP) is the number of residues

defined to be part of the ‘‘gold standard’’ functional

site and predicted by the ranking method, while a

false negative (FN) is the ‘‘gold standard’’ residues

that the method misses. The specificity is equal to
TN

TNþFP, where the true negative (TN) is neither ‘‘gold

standard’’ nor predicted by the ranking method,

while the false positive (FP) is the residues not

listed as part of the ‘‘gold standard’’ site but still pre-

dicted by the ranking method. The ROC curve was

calculated with the total TP, FN, TN, and FP found

as the rank coverage increased in the test sets.

Comparison to Consurf

The amino acid conservation scores were taken from

the pre-calculated results obtained from the Consurf

website20 We were unable to obtain a pre-calculated

result for PDB ID 1cxzA. For the 73 proteins we

found Consurf results, we found the average z-scores

for predictions within the top 20% ranked for Con-

surf (hzoi ¼ 2.75), were lower then our standard ET

server (hzoi ¼ 3.89), and the optimized ET (hzoi ¼
4.20). We were also unable to obtain a pre-calculated

result for PDB 1iyu. After adjusting for the missing

protein, the standard ET server traces (hzoi ¼ 3.49)

and optimized ET traces (hzoi ¼ 3.84) out-performed

the Consurf results (hzoi ¼ 2.17). A complete compar-

ison of the individual proteins making up the test

set can be found in Supporting Information.

Acknowledgment
The authors thank Panos Katsonis and and Dan Mor-

gan for helpful discussions contributing to the article.

A.D.W., S.E. and R.M.W. were also supported by train-

ing fellowships from the National Library of Medicine

to the Keck Center for Interdisciplinary Bioscience

Training of the Gulf Coast Consortia.

References

1. Lee D, Redfern O, Orengo C (2007) Predicting protein
function from sequence and structure. Nat Rev Mol
Cell Biol 8:995–1005.

2. Laskowski RA, Thornton JM (2008) Understanding the
molecular machinery of genetics through 3D struc-
tures. Nat Rev Genet 9:141–145.

Wilkins et al. PROTEIN SCIENCE VOL 19:1296—1311 1309

http://firstglance.jmol.org/fg.htm?mol=1iyu


3. Jiang L, Althoff EA, Clemente FR, Doyle L, Röthlis-
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