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Abstract
Multipotent skin-derived stem cells represent neural-crest derived precursors which have neural
and mesodermal potency and can generate neurons, glias, smooth muscle cells and adipocytes.
Transcriptional profiling studies show that both intrinsic programs and extrinsic signaling
pathways mediate their neural and mesodermal potency. In addition, recent progress implies that
skin-derived stem cells may have a broader developmental potency than previously expected, of
which is their potential to generate germline cells in vitro. In this review, we discuss the
transcriptional profiling of multipotency and neural crest-derived characteristics of skin-derived
stem cells, and argue for their potential germ-line competency in the view of nuclear and cellular
reprogramming.
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Introduction
Stem cells are a type of primitive cell arising during embryonic and postnatal development,
which have the ability to self-renew and differentiate into multiple functional cell types. A
number of pluripotent and multipotent stem cell lines have been derived from
preimplantation embryos (1,2), post-implantation epiblast (3,4) and various sources of
postnatal animals (5). Mammalian skin is a complex tissue that regenerates dynamically by
continuing to turnover during the life of the animal. Thus, on-one-hand, epidermal skin-
derived stem cells contribute to balance the epidermal homeostasis in the skin. Such stem
cell populations maintain the self-renewing compartments of mammalian skin epidermis: the
hair follicle, the sebaceous gland and the interfollicullar epidermis (6). On-the-other-hand,
multipotent dermis-derived stem cells provide substantial support for wound healing and
regeneration (7,8). A novel type of dermis-derived stem cell termed skin-derived progenitors
(SKPs) were first isolated from juvenile and adult mammalian skin by Toma et al in 2001
(9,10). They used a serum-free medium (DMEM/F12 (1:1) + B27 + EGF + bFGF) originally
developed for neural stem cell culture in vitro. The SKPs cells can survive as spheres in
suspension culture and the population can double every 2–3 days. Under certain conditions
SKPs have multiple lineage potential and can generate neural and mesodermal lineages:
neuron, glias, smooth muscle cells and adipocytes (9).
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With properties similar to rodent SKPs, human SKPs were successfully isolated from
neonatal foreskin and adult trunk skin (11,12). In contrast to mesenchymal stem cells, SKPs
express nestin (neural stem cell marker), p75 (neural crest stem cell marker), fibronection
and Sox10. Several lines of evidence show that SKPs are neural crest derived and that they
arise during embryogenesis and can persist into adulthood (12–14), thus sharing properties
similar to embryonic neural crest stem cells. In pigs, several independent groups reported the
isolation of porcine skin-derived progenitors (pSKP) from both embryonic and adult skin
(13,15,16). Porcine SKPs express pluripotency-related genes (Oct3/4, Sox2, Stat3 and
Nanog) and neural crest marker genes (p75NTR, Sox10, Snail), showing a pattern of marker
gene expression similar to human and rodent SKPs in vitro (13,15). In addition, individual
cells of SKP spheres show heterogeneous expression of specific marker genes, implying a
metastable state inside the SKP spheres (13). Porcine SKPs are multipotent and can generate
both neural and mesodermal progeny in vitro. However, porcine SKPs show distinct
transcriptional profiles when compared to neural stem cells in the central nervous system
(CNS) and skin-derived fibroblasts, indicating a novel type of multipotent stem cells derived
from skin (17). Specifically, porcine SKPs can generate primordial germ cell-like and
oocyte-like progeny in vitro, showing a promising in vitro model to investigate germ-cell
formation and gametogenesis (18,19). In this review, we will discuss the neural crest-
derived properties, neural and mesodermal differentiation, germline cell potency, and
prospective biomedical application of skin-derived stem cells.

Neural crest derived properties of skin-derived stem cells
The neural crest cells are a group of transient and multipotent cells which are induced to
migrate and give rise to various cell lineages: melanocytes, craniofacial cartilage, bone,
smooth muscle, peripheral and enteric neurons and glias. In the past two decades, neural
crest stem cells (NCSCs) or neural crest-derived progenitors have been isolated from neural
crest explants (20), sciatic nerves (21), dorsal root ganglion (DRG) (22), skin (10,12),
enteric ganglia (23–25), cornea (26), carotid bodies (27), whisker pads, bone marrow (28),
and heart (29). Neural crest stem cells can generate both neural (neurons and Schwann cells)
and mesodermal lineages (adipocytes, chondrogenic cells, osteogenic cells and smooth
muscle cells) when stimulated by various extracellular signals (Figure 1) (30). Several lines
of evidence suggest that SKP cells are neural crest-derived and show properties similar to
neural crest stem cells. It appears that SKPs cells reflect the residual neural crest stem cells
in adult skin, whose developmental potential is restricted in vivo by the niche it occupies, but
could be revealed when cultured in vitro. The first evidence comes from the comparison of
marker gene expression between neural crest cells and SKP cells. Rodent SKPs express
several transcription factors genes (slug, snail, twist, pax3 and sox9) (10) which are involved
in the migration and specification of neural crest cells (31). However, p75NTR, which is
widely used in identification and isolation of neural crest stem cells by flow cytometry, was
either not expressed or undetectable in rodent dorsal and facial SKPs (10), or in human
neonatal foreskin SKPs (11). In contrast, multipotent SKP cells from human and mouse
trunk skin co-express p75NTR and Sox10 (12), showing that neural crest marker gene
expression may be associated with their tissue of origin. In pigs, we found that SKP cells
expressed both pluripotency-related genes and neural crest markers (13), further
demonstrating the neural crest origin of skin-derived stem cells.

The second evidence arises from the fate mapping approach by which transgenic reporter
genes were exclusively expressed in cells of neural crest origin. Fernandes et al employed
Wnt1-Cre/RosaR26R mice, where β-galactosidase expression was directed by a Wnt1
promoter and was only restricted to the progeny of neural crest stem cells. This
demonstrated that follicle dermal papillae contain neural crest-derived cells and SKPs from
facial skin are neural crest-derived (10). They also found that neural crest-derived SKP
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spheres from facial dermis (whisker papillae) could first be isolated as early as embryonic
day 9 and persist into adulthood. Wong et al also used Wnt1-Cre/R26RLacZ transgenic mice
to conclude that sphere-forming neural crest-derived cells reside in distinct structures of the
adult skin and display different intrinsic properties with time and location (12). In whisker
follicles of the face, neural crest-derived SKPs appear to be located in many mesenchymal
structures; however, in the trunk skin they are restricted to the glial and melanocyte lineages.
In addition, these neural crest-derived cells in adult skin have intrinsically different growth
factor responsiveness from previously identified neural crest stem cells which exert
exclusively neural or glial lineage differentiation in response to bone morphogenetic protein
2 (BMP2) or neuregulin 1 (NRG1) in vitro (12,32). Using a combined fate mapping and
microdissection approach, Hunt et al identified a highly enriched niche of neural crest-
derived SKP spheres in the dermal papilla (1,000 enriched compared with whole facial skin
and termed papillaspheres) of the hair follicle in the adult skin (33). In addition, Schwann
cell precursors are also derived from SKPs in adult skin, further illustrating that the
gliogenic SKPs are neural crest derived (34).

The third evidence is from cell transplantation studies. When yellow fluorescent protein
(YFP)-labeled SKP spheres were transplanted into the chick neural crest migratory stream in
ovo at Hamburger-and-Hamilton stage 18, these SKP sphere derived cells migrated into the
sympathetic ganglia, spinal nerve, dorsal root ganglion (DRG) and even the dermal layer of
the skin, whereas very few cells went into neural tube (10). These results are consistent with
the in vivo property of p75+P0

− neural crest stem cells which can give rise to neurons and
glias in peripheral nervous system (PNS) upon transplanting into chick embryos (21).
Hence, three lines of evidence suggest that SKP spheres are neural crest-derived precursors
that arise from embryogenesis and retain multipotency into adulthood (14).

Transcriptional characterization of porcine skin-derived stem cells:
illustrating the neural and mesodermal potential by microarray analysis

In the past two decades, the genetic program of the “stemness” in multipotent/pluripotent
stem cells has been extensively elucidated by high-throughput microarray or next-generation
sequencing technologies (35). Recent studies show that the core transcriptional regulatory
circuitry centered on the transcription factors Oct3/4, Sox2 and Nanog maintains the
transcriptional program required for pluripotency in embryonic stem (ES) cells (36). The
importance of transcriptional regulation on maintaining the “stemness” has been further
demonstrated by the reprogramming of fibroblast (37) or even terminally differentiated B
lymphocytes (38) into induced pluripotent stem (iPS) cells by defined factors (Oct3/4, Sox2,
Klf4 and c-myc). However, the transcriptional regulation of somatic stem cells has still been
elusive although the transcriptional profiling experiments on hematopoietic stem cells (39),
neural stem cells (40), and neural crest stem cells (41,42) have been performed. This
unsolved problem is confounded by the variation of transcriptional profiling caused by the
noise of different genetic backgrounds and the heterogeneity of ES cells and adult stem cells
(43). Different extracellular stimuli may also trigger stem cells to display various
transcriptional profiling because transformation or reprogramming is likely to happen during
long-term culture (44). Thus, a similar in vitro culture system and genetic background would
be indispensible to describe the molecular basis of multipotency in porcine skin-derived
stem cells.

Transcriptional characterization of neural and mesodermal potency in porcine skin-derived
stem cells has recently been dissected (17). The general strategy is summarized in Figure 2.
In order to eliminate any potential genetic background difference in describing the neural
potency of porcine SKP spheres, neural stem cells (neuropsheres) (45) were isolated from
the same fetuses as SKP spheres. Both SKP cells and neural stem cells were cultured in the
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same medium (DEME/F12 + B27 + N2 + EGF + bFGF) and they formed spheres after
several days’ selection. After they formed spheres transcriptional analysis via a pig-specific
microarray (46) was performed directly without any further culture. The common highly
expressed genes in the SKP spheres and neurospheres are mainly ribosome, tight junction,
gap junction, cell communication, calcium signaling, ErbB signaling, JAK-STAT signaling,
MAPK signaling etc. The differentially expressed genes between SKP spheres and
neurospheres are involved in ECM-receptor interaction and the TGF-β signaling pathway.
Leukemia inhibitory factor (LIF) or MEK inhibitor treatment results in a distinctive impact
on the “stemness” and differentiation-related genes in SKP spheres and neurospheres. Thus
it is inferred that the cell-intrinsic genetic program may contribute to the innate “stemness”
of tissue origin in SKP spheres and neurospheres in a similar local microenvironment (47).

To decipher the mesodermal potential of porcine SKP spheres, they were induced to
differentiate into SKP-derived fibroblast-like cells (SFC) by culture in serum and adhesive
dishes. The porcine SKP spheres gradually lost their neural potential but still retained
mesodermal properties (17). By microarray and functional annotation clustering analysis of
porcine SKP spheres and SFC, 305 genes were found to be up-regulated and 96 genes down-
regulated. The down-regulated genes are mostly involved in intrinsic programs such as the
Dicer pathway and asymmetric cell division; whereas up-regulated genes are more likely to
participate in extrinsic signaling pathways such as ErbB signaling, MAPK signaling, ECM-
receptor reaction, Wnt signaling, cell communication and TGF-beta signaling pathways.
These intrinsic programs and extrinsic signaling pathways may collaborate to mediate the
transcription-state transition between SKP spheres and SFC. Together with the neural
potential assays, these transcriptional profiling data provide candidate signal pathways that
may orchestrate the neural and mesodermal potency of porcine SKP spheres. Further studies
would be to test the role of key molecules in signal transduction pathways in the self-
renewal and multipotency of porcine SKP spheres by functional experiments.

Neural and mesodermal potency of skin-derived stem cells and their
prospective clinical application

Since skin may provide an accessible source for autologous stem cell transplantation, SKP
cells would be an idea experimental and therapeutic model for regenerative medicine (48).
Strikingly, the neural progeny derived from SKP spheres may provide a new resource of
neurons and glias for degenerative diseases in the nervous system. Potential clinical
application is suggested by experiments that show that enriched skin-derived AC133+ (a cell
surface marker) progenitors can migrate through the forebrain and give rise to astrocytes but
not oligodendrocytes after injection into adult brain (49). Similarly, human skin-derived
stem cells generate neurons when exposed to hippocampal astrocytes. They stably express
neuronal makers (neurofilament and tubulin β-III) and show the presence of voltage-
dependent calcium transients (50). This is consistent with Gingras’ report that human skin-
derived neuronal precursors eventually became terminally differentiated mature neurons in
vitro (51). In contrast, rodent SKP-derived neuron-like cells can maintain their peripheral
phenotypes for more than 5 weeks when transplanted into the brain but still possess an
immature electrophysiological profile, implying that further investigation is required to
induce them into electrophysiological mature neurons (52). These studies illustrate the
prospective clinical application of using SKP-derived neurons for brain therapy.

In addition, SKP-derived progeny also play a role in the regeneration of injury in the
peripheral nervous system. Skin-derived stem cells can improve functional nerve
regeneration after sciatic nerve resection when transplanted into resorbable guides (53).
Similarly, rodent SKPs can generate myelinating Schwann cells for an injured peripheral
nerve, promoting remyelination and functional recovery after contusion spinal cord injury
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(54). These SKPs produced Schwann cells which proliferated and induced myelin protein
when in contact with sensory neuron axons. Furthermore, SKPs-derived Schwann cells can
myelinate CNS axons or injured peripheral nerves in either wild type or shiverer mutant
mice, thus providing an accessible source of myelinating cells for nervous system injury and
dysmyelinating disorders (55). Nevertheless, SKPs or their derivatives are proposed to be
the cell origin of dermal neurofibroma through loss of Nf1 tumor-suppressor gene (56).
Furthermore, it is still not known whether SKPs are tumorigenic and can give rise to
teratomas in vivo. Thus more comprehensive tests should be performed before any clinical
application.

Another clinical application may be a result of the mesodermal potency of SKP cells. Mouse
SKP cells can produce muscle progenitors and differentiated muscle cells both in vitro and
in vivo (57). Both rodent and human SKPs generate skeletogenic cell types: chondrocytes
and osteocytes in vitro, and can be induced into an osteogenic lineage when transplanted
into injured bone marrow (58). This skeletal and osteogenic potency was also reported in
porcine skin-derived stem cells (16,59). Interestingly, mouse skin-derived stem cells can be
converted into insulin-producing cells in vitro (60), indicating another possible source of
stem cells for cell-transplantation therapy of diabetes.

Germline potency and cellular reprogramming in porcine skin-derived stem
cells

Although it is still controversial about the plasticity of adult/somatic stem cells (61), several
studies reported a very broad developmental potential of somatic stem cells. For example,
adult neural stem cells can contribute to chicken and mouse embryos and give rise to cells of
all three germ layers (62). Bone marrow-derived multipotent adult progenitors cells
(MAPCs) are also capable of generating cells of mesenchyme, neuroectoderm and endoderm
in vitro and contributing to most somatic tissue when injected into blastocysts and engrafted
(63). For skin-derived stem cells, epidermal stem cells have the ability to produce cells of
ectodermal, mesenchymal, and neural crest-derived tissues when injected into day 3.5
C57BL/6 mouse blastocysts (64). In particular, hair follicle dermal stem cells are capable of
repopulating the hematopoietic system after transplantation into lethally irradiated recipient
mice (65). Porcine skin-derived stem cells are demonstrated to have the intrinsic ability to
differentiate into oocyte-like and primordial germ-like cells in vitro (18,19). The oocyte-like
cells can spontaneously develop into parthenogenetic embryo-like structures. However, they
failed to be fertilized by sperm in vitro because of their unstable structure. Until now this
germline potential of skin-derived stem cells has not been confirmed by other independent
groups even though porcine SKP cells can potentially integrate into the genital ridge in vivo
when injected into peri-morula embryos (66). A more stringent assay, such as production of
a chimeric animal should be performed to test the germline potency of porcine skin-derived
stem cells.

In theory, skin-derived stem cells have the possibility of producing germline cells based on
the following strategies (Figure 3). First, somatic cells can be reprogrammed into a
totipotent embryonic state and produce offspring by using somatic cell nuclear transfer
technology (67). Skin-derived stem cells have been used as donor cells to generate live
offspring (68). Somatic adult cells, even terminally differentiated B lymphocytes, can be
reprogrammed into iPS cells by defined factors in vitro (37). The iPS cells have the ability to
produce chimeric mice when injected into early blastocysts and even produce completely
iPS-derived live offspring after tetraploid complementation (69). The original somatic cells,
of course, develop into germline cells in either chimeric or completely iPS-derived mice.
Second, both male (70,71) and female gametes (72) can be derived from embryonic stem
cells in vitro, and the ES cell-derived sperm can produce live mice. It may be possible to
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reprogram skin-derived stem cells into an intermediate pluripotent state and then
differentiate them into gametes in vitro. Third, direct cell reprogramming may be an
alternative strategy to interconvert cell states between different cell types. Recent progress
includes directly converting mouse embryonic fibroblast cells into functional neurons by
defined factors in vitro (Ascl1, Brn2 and Myt1l) (73) and in vivo reprogramming of adult
pancreatic exocrine cells to β-cells by a combination of three factors (Ngn3, Pdx1 and Mafa)
(74). Thus it is conceivable to convert skin-derived stem cells into germline cells by
unknown factors in metaphase II oocytes and early embryos.

Conclusion
Multipotent skin-derived stem cells have neural and mesodermal lineage potency and
represent a prospective stem cell source for autologous cell transplantation. They are neural
crest-derived but display intrinsic transcriptional profiling reflecting their tissue origin and
developmental stage. Endogenous SKP can be isolated from embryonic skin and they persist
into adulthood. It seems that these skin-derived stem cells have a broader developmental
potency including generating primordial germ cells and gamete-like cells. Recent progress
on nuclear and cellular reprogramming implies that it is possible to convert skin-derived
stem cells into germline cells or any other cell type of interest. However, rigorous cellular
and transplantation tests are needed before any clinical application because SKP cells are
considered to be the cell origin of particular tumors in the nervous system. Therefore, further
studies are needed to assess their developmental potency of skin-derived stem cells and
illustrate the molecular basis which establishes and maintains the multipotency.
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Figure 1.
The developmental potential of neural crest-derived stem cells. Neural crest stem cells can
generate neural (neurons and glias) and mesodermal progeny (adipocytes, chondrocytes,
osteocyte and smooth muscle cells) when various extracellular signals are present. BMP2:
bone morphogenetic protein 2; NRG: neuregulin; TGF-β: transforming growth factor-β;
BDNF: brain derived neurotrophic factor; Dexa: dexamethasone.
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Figure 2.
Strategy for deciphering the neural and mesodermal potency of porcine skin-derived stem
cells by microarray analysis and functional annotation clustering. Porcine SKP spheres and
neurospheres were isolated from the same fetuses and cultured in the same medium. SKP
spheres differentiate into SKP-derived fibroblast-like cells (SFC) with serum. Reprinted
with permission from (17). The publisher for this copyrighted material is Mary Ann Liebert,
Inc. publishers.
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Figure 3.
Prospective strategies to reprogram porcine skin-derived stem cells into germ-line cells.
Porcine SKPs can generate oocyte-like cells in vitro (middle panel). Alternatively, they may
be used as donor cells for nuclear transfer to produce cloned animals which can generate
normal gametes in vivo (lower panel). Finally they might be reprogrammed into iPS cells by
defined factors and then derive gametes by in vitro induction or in vivo chimera production
and tetraploid complementation (upper panel).
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