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Abstract
AIM: To analyse the influence of Smad7, antagonist of 
transforming growth factor (TGF)-β canonical signaling 
pathways on hepatic stellate cell (HSC) transdifferentia-
tion in detail.

METHODS: We systematically analysed genes regulated 
by TGF-β/Smad7 in activated HSCs by microarray analy-

sis and validated the results using real time polymerase 
chain reaction and Western blotting analysis. 

RESULTS: We identified 100 known and unknown tar-
gets underlying the regulation of Smad7 expression and 
delineated 8 gene ontology groups. Hk2, involved in 
glycolysis, was one of the most downregulated proteins, 
while BMP2, activator of the Smad1/5/8 pathway, was 
extremely upregulated by Smad7. However, BMP2 de-
pendent Smad1 activation could be inhibited in vitro  by 
Smad7 overexpression in HSCs.

CONCLUSION: We conclude (1) the existence of a tight 
crosstalk of TGF-β and BMP2 pathways in HSCs and 
(2) a Smad7 dependently decreased sugar metabolism 
ameliorates HSC activation probably by energy with-
drawal.
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INTRODUCTION
Histopathological changes of  chronic liver diseases usually 
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start with inflammatory hepatitis, followed by fibrosis and 
the final stage of  cirrhosis, possibly leading to liver cancer. 
Hepatic fibrosis is characterized by increased and altered 
deposition of  newly generated or deficiently degraded ex-
tracellular matrix (ECM) in response to injury[1]. Hepatic 
stellate cells (HSCs) are the major fibrotic precursor cells 
that transdifferentiate in inflammatory liver tissue to fibro-
genic myofibroblasts (MFBs), by undergoing morphologi-
cal changes, increased expression of  α-SMA and synthesis 
of  large amounts of  ECM components[2].

Transdifferentiation of  HSCs is driven by a variety of  
cytokines with transforming growth factor (TGF)-β play-
ing a master role. It stimulates quiescent HSCs by paracrine 
and transdifferentiated MFBs by autocrine mechanisms ac-
tivating intracellular Smad cascades. A great variety of  cy-
tokines, chemokines and mitogens (TNF-α, IFN-γ, EGF, 
PDGF, CTGF, ID1, YB1) display complex crosstalk with 
TGF-β[3-6]. 

Smad7 is a powerful antagonist of  TGF-β in HSCs 
blunting downstream signaling by inhibiting receptor 
(R)-Smad phosphorylation[7]. In quiescent HSCs, expres-
sion of  Smad7 itself  is induced by the R-Smad cascade, 
thereby providing a negative feedback loop to terminate 
TGF-β signals[8]. We demonstrated before phenotypically 
and functionally that overexpressed Smad7 inhibits HSC 
transdifferentiation and attenuates the extent of  fibrosis[7] 
suggesting that Smad7 is a promising antifibrotic tool for 
treatment approaches. 

Therefore, in this study we analyzed the influence of  
Smad7 on the HSC gene expression pattern in great de-
tail using microarray analysis. Its overexpression affects 
a great variety of  cellular pathways involved in develop-
ment, angiogenesis, differentiation, transcription, immune 
response, apoptosis, proliferation, signal transduction, 
ion and electron transport, sugar and lipid metabolism, 
morphogenesis, protein synthesis and modification, DNA 
synthesis and repair, cell adhesion, stress response, blood 
circulation, cell cycle and growth, cell motility, muscle 
contraction and organization of  the cytoskeleton. The 
strongest regulated proteins are Pla2g2a, Cyp4b1, both 
upregulated and, Hk2 and VEGFa, which were downreg-
ulated significantly. Interestingly, BMP2, a member of  the 
TGF-β family and alternative activator of  the Smad1/5/8 
pathway, was strongly induced by Smad7 overexpression 
in HSCs. 

MATERIALS AND METHODS
Affymetrix gene chip array 
Primary HSCs of  male Sprague-Dawley were isolated as 
previously described[9,10]. To identify Smad7 dependent 
gene responses, HSCs were infected with adenoviruses 
encoding for Smad7 (AdSmad7; kindly provided by C. 
Heldin (Ludwig Institute for Cancer Research, Uppsala, 
Sweden)) or LacZ (AdLacZ) as control 2 d after seeding[7]. 

RNA sample collection and generation of  biotinylated 
complementary RNA probes was carried out according to 
the Affymetrix GeneChip® Expression Analysis Technical 

Manual (Affymetrix, Santa Clara, CA,USA). In brief, total 
RNA was prepared at day 4 from 5 × 106 cultured primary 
HSCs that were infected with AdLacZ or AdSmad7 at day 
2. Twenty five micrograms total RNA was reversely tran-
scribed into double-stranded cDNA using HPLC-purified 
T7-(dt) 24 primers (MWG, Ebersberg, Germany) and the 
Superscript choice cDNA synthesis system (Invitrogen 
Corp., Carlsbad, CA). Purified cDNA was used to synthe-
size biotinylated complementary RNA using the BioArray 
High Yield RNA Transcription Labeling Kit (Enzo Diag-
nostics, Enzo Life Science Inc., Farmingdale, NY, USA). 
Each sample was hybridized to an Affymetrix rat Genome 
RG-U34A microarray (8799 probe sets) for 16h at 45℃. 
Expression values of  each probe set were determined and 
AdSmad7 infected samples were compared to AdLacZ 
infected controls using the Affymetrix Microarray Suite 5.0 
software.

Intensities across multiple arrays were normalized to 
a target intensity of  2500 using global normalization scal-
ing. Two separate experiments with HSCs from different 
animals were performed under identical conditions. Genes 
whose expression levels were changed more than 2-fold 
with P < 0.001 in both experiments were considered to 
be significantly regulated by Smad7. These genes were 
investigated according to their molecular function and 
biological process by searching the gene ontology (GO) 
term database. Genes differentially expressed in AdSmad7 
treated compared to controls were classified by “pathway” 
analysis [KEGG (http://www.genome.jp/kegg/pathway.
html), PathwayArchitect, Stratagene].

Reverse-transcription and quantitative real-time 
polymerase chain reaction
Total RNA was collected from 3 (3 d-) or 7 d old (7 d-)HSCs, 
which were either infected with AdSmad7 or AdLacZ 2 d  
earlier or were uninfected[11]. cDNA from cell culture 
samples was synthesized as described[11]. Quantitative real-
time polymerase chain reaction (RT-qPCR) was performed 
as in[11] with modified conditions: 95℃ for 60 s, then 40 
cycles (50 cycles for low copy genes) of  95℃ for 10 s, 60℃ 
for 10 s and 72℃ for 15 s. Annealing temperature was set 
at 58℃ for U92564 and 62℃ for rat VEGF.1. Primers 
are listed in Table 1. The quantity of  target mRNA was 
determined using a TGF-β RI standard curve[11]: A cDNA 
fragment was amplified and column-purified using the 
QIAquick PCR purification kit (Qiagen) and the following 
primers: TGFβ RI (GI: 416397) 180 bp; F (5'-CGTCT-
GCATTGCACTTATGC-3'), R (5'-AGCAGTGGTA-
AACCTGATCC-3'). A standard curve was generated from 
serial 10 time logarithmic dilutions of  the cRNA by reverse 
transcription. 

Western blotting analysis 
Isolated primary HSCs of  female Wistar rats were cul-
tured as in[7]. Following overnight starvation (0.5% FCS) 
HSCs were stimulated with 5 ng/mL human recombinant 
TGF-β (Peprotech, Hamburg, Germany) or 20 ng/mL 
BMP2 (R&D, Minneapolis, MN), respectively.
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For Smad7 overexpression studies, HSCs were in-
fected on day 3 or day 6 with 50 IFU/cell (infectious units) 
Smad7 encoding adenovirus for 24 hr in medium contain-
ing 5% FBS. Four days old HSCs are considered to be in 
the transactivation process, while 7 d old HSCs are consid-
ered to be fully activated. After infection cells were serum-
starved overnight and stimulated with 5 ng/mL TGF-β1 
or 20 ng/mL BMP2. Generally, more than 90% of  HSCs 
were infected.

For Western blotting analysis 20 μg protein was sepa-
rated (4%-12% Bis-Tris Gel, NuPAGE, Invitrogen) and 
transferred to nitrocellulose membranes (Pierce, Rock-
ford, IL). Nonspecific binding was blocked with 5% milk/
TBST for Smad7 and GAPDH (Santa Cruz, CA, USA) 
or 5% BSA/TBST for pSmad1/3 antibodies (Epitomics/
Biomol). Horseradish peroxidase-linked goat anti-rabbit 
antibody (Santa Cruz, CA, USA) served as secondary an-
tibody. Membranes were developed with Supersignal Ultra 
(Pierce, Hamburg, Germany).

RESULTS
Smad7 dependent gene expression pattern 
At day 2 of  culture, primary rat HSCs were infected with 
AdSmad7 or AdLacZ (control). Two days later, when 
HSCs are in the process of  transdifferentiation, the expres-
sion of  genes displayed on 8799 probe sets was compared 
between cells overexpressing Smad7 and controls. Con-
firming Western blotting analysis of  HSC lysates[12], micro-
array data revealed tremendous overexpression of  Smad7 
in AdSmad7 infected HSCs (40.79 times). 

One hundred and twenty-nine probe sets were found 
differentially expressed due to Smad7, including 10 
unknown proteins, 1 predicted protein and 89 known 
proteins (Table 2 provides a full list). According to their 
biological role, these genes were classified into eight main 
GO groups (Figure 1A). 37% of  the regulated genes 
are involved in development. 22% can be assigned to 
signal transduction processes, which was expected since 
Smad7 represses TGF-β signaling and thus has impact on 
manifold different cross-talking signaling pathways. 15% 
refer to multicellular organismal processes (i.e. processes 
involved in intercellular interaction of  any kind), 35% to 
response to stimulus, 21% to localization, 38% to meta-

bolic processes, 25% to cell differentiation and 5% to cell 
adhesion. Note that the total percentage is greater than 
100% as some regulated genes can be assigned to different 
ontology groups. A similar classification of  all differen-
tially expressed genes was carried out according to their 
molecular function (Figure 1B). Figures 2 and 3 graphi-
cally summarize regulation of  all genes according to their 
ontology groups. 

In general, many known mediators of  TGF-β signal-
ing were differentially expressed in AdSmad7 infected 
HSCs, confirming a direct link of  Smad7 effects to TGF-β 
signalling (Table 2). ECM proteins like Col1a1 and Fn1 
which are induced during HSC activation and fibrogenesis 
were negatively regulated upon Smad7 overexpression. 
Further profibrogenic cytokines like CXCL10 and HGF 
were upregulated. In addition, Cyp proteins like Cyp1b1, 
Cyp2E1 and Cyp4B1, Id proteins 1, 2, and 3, as well as 
PDGFR A were identified as Smad7 dependent in activat-
ed HSCs. Unexpectedly, several genes involved in glucose 
metabolism, so far annotated as predominantly associated 
with hepatocytes were influenced by Smad7 overexpres-
sion in HSCs. 

As expected, Smad7 led to an opposite regulation of  a 
number of  recently systematically identified genes induced 
during HSC activation[14]. Table 3 contains a complete 
list of  proteins identified to be regulated in both studies. 
In total, 37 genes of  our study overlapped with the array 
results reported by[14]. Twenty-two of  those (60%), e.g. 
HK2, were induced during activation[14] and decreased 
by Smad7 (this study) and therefore probably represent 
profibrogenic TGF-β target genes. There were also a few 
genes strongly upregulated by Smad7, which were down-
regulated during in vivo HSC activation, e.g. BMP2. Some 
of  the proteins found to be differently regulated by acti-
vation vs Smad7 overexpression are already known to be 
TGF-β target genes and related to fibrogenesis, i.e. BMP2, 
Cnn1, Col1a1, Ddah1, Fn1, Lox, Pdgfra, Slc2a1, Slc16a3, 
and VEGF. Others might represent yet unidentified tar-
get genes of  profibrogenic TGF-β signaling and/or new 
markers of  HSC activation. Their specific influence on 
HSC transdifferentiation in vivo needs to be carefully in-
vestigated in future as they display potential antifibrotic 
target genes. In some cases De Minicis et al[14] reported op-
posite effects in regards to regulation of  gene expression 

Table 1  Primer used for quantitative real-time polymerase chain reaction validation of array results 

Gene Probe set ID Forward Reverse

CYP4B1 M29853 5'CCGAAGGCTGCAGATGTGT3' 5'TTTGGCCCATCCAGAACTAGTAG3'
mSmad7 5'GGTGCTCAAGAAACTCAAGG3' 5'CAGCCTGCAGTCCAGGCG3'
BMP2 L02678_at 5'TGCCCCCTAGTGCTTCTTAGAC3' 5'GGGAAGCAGCAACACTAGAAGAC3'
SGⅢ U02983 5'CAAGCAGGACCGAGAATCAG3' 5'CGTTGGACAAGGTCAAGGTG3'
Zfp423 U92564 5'GCAGTGCTACACCTGACTCG3' 5'GTCATCCCGCATCTTCTTCTG3'
Pla2g2a x51529 5'GCTCAATTCAGGTCCAGGG3' 5'CCACCCACACCACAATGG3'
EST189231 AA799734 5'CGGCTCACTGAGCTTGAAGTAG3' 5'ACACGACGGAGGAGCTTCTG3'
Olr1 AB005900 5'CAGAGAGAACTGAAGGAACAG3' 5'GGACCTGAAGAGTTTGCAGC3'
ID1 L23148_g_at 5'TGGACGAACAGCAGGTGAAC3' 5'TCTCCACCTTGCTCACTTTGC3'
HK2 D26393exon_s_at 5'CTCAGAGCGCCTCAAGACAAG3' 5'GATGGCACGAACCTGTAGCA3'
Slc16a3 U87627 5'CTCATCGGACCCCCATCAG3' 5'CGCCAGGATGAACACATACTTG3'
ratVEGF.1 5'TGCCAAGTGGTCCCAGGC3' 5'ATTGGACGGCAATAGCTGCG3'
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Table 2  One hundred genes selected as being differentially expressed after Smad7 overexpression in hepatic stellate cells (note that 
some specific transcripts are detected by more than one probe set)

Official symbol Average 
log2 fold

SD log2 
fold

Affymetrix probe set ID Official full name

Downregulated (n = 72)
   Acta2 -0.85 0.21 X06801cds_i_at Smooth muscle α-actin
   Ak3l1 -1.20 0.42 rc_AA891949_at Adenylate kinase 3-like 1
   Akap12 -1.00 0.57 U75404UTR#1_s_at A kinase (PRKA) anchor protein (gravin) 12
   Akr1b1 -0.70 0.42 M60322_g_at Aldo-keto reductase family 1, member B1 (aldose 

reductase)
   Atp6v1b2 -1.10 0.14 Y12635_at ATPase, H transporting, lysosomal V1 subunit B2
   Btg1 -0.65 0.49 L26268_g_at B-cell translocation gene 1, anti-proliferative
   Clec4f -2.40 3.39 M55532_at C-type lectin domain family 4, member f
   Cml5 -1.30 0.42 rc_AA894273_at Camello-like 5
   Cnn1 -1.30 0.57 D14437_s_at Calponin 1
   Col1a1 -1.51 0.53 M27207mRNA_s_at/rc_AI231472_s_at/

U75405UTR#1_f_at/Z78279_at/Z78279_g_at
Procollagen, type 1, α 1

   Cryab -1.13 0.32 M55534mRNA_s_at/X60351cds_s_at Crystallin, α B
   Cyp1b1 -1.10 0.28 rc_AI176856_at/U09540_at/U09540_g_at Cytochrome P450, family 1, subfamily b, polypeptide 1
   Ddah1 -0.95 0.21 D86041_at Dimethylarginine dimethylaminohydrolase 1
   Dpysl2 -0.95 0.64 rc_AA875444_at Dihydropyrimidinase-like 2
   Egr2 -1.25 0.64 U78102_at Early growth response 2
   Eif4ebp1 -1.05 0.07 U05014_at Eukaryotic translation initiation factor 4E binding protein 1
   Emp1 -0.65 0.78 Z54212_at Epithelial membrane protein 1
   Eno2 -0.80 0.71 X07729exon#5_s_at Enolase 2, γ
   Ercc1 -0.75 0.49 rc_AA892791_at Excision repair cross-complementing rodent repair 

deficiency, complementation group 1
   EST (unknown) -2.65 0.64 rc_AI102814_at EST
   EST (unknown) -2.60 0.28 rc_AI230256_at EST
   EST (unknown) -2.00 0.14 rc_AA874889_g_at EST
   EST (unknown) -1.40 0.85 rc_AA866419_at EST
   EST (unknown) -1.35 0.64 X62950mRNA_f_at EST
   EST (unknown) -1.10 0.99 rc_AA859740_at EST
   EST (unknown) -0.85 0.35 rc_AA800708_at EST
   EST (unknown) -0.40 1.41 X62951mRNA_s_at EST
   F3 -1.85 0.92 U07619_at Coagulation factor Ⅲ
   Fabp5 -0.80 0.57 S69874_s_at Fatty acid binding protein 5, epidermal
   Fkbp1a -0.65 0.49 rc_AI228738_s_at FK506 binding protein 1a
   Fn1 -1.15 0.36 L00190cds#1_s_at/U82612cds_g_at/

X05834_at
Fibronectin 1

   Fntb -1.28 0.49 rc_AI136396_at/rc_AI230914_at Farnesyltransferase, CAAX box, β
   Gabbr1 -1.25 0.92 rc_AI639395_at γ-aminobutyric acid (GABA) B receptor 1
   Gpx3 -1.10 0.14 D00680_at Glutathione peroxidase 3
   Hig1 -0.95 0.49 rc_AA891422_at Hypoxia induced gene 1
   Hk2 -3.20 0.00 D26393exon_s_at Hexokinase 2
   Id1 -2.55 0.35 L23148_g_at Inhibitor of DNA binding 1
   Id2 -2.45 0.21 rc_AI137583_at Inhibitor of DNA binding 2
   Id3 -1.85 0.13 AF000942_at/rc_AI009405_s_at Inhibitor of DNA binding 3
   Idi1 -0.70 0.57 AF003835_at Isopentenyl-diphosphate delta isomerase
   LOC686781 -1.25 0.21 rc_AA799657_at Similar to NFkB interacting protein 1
   Lox -1.10 0.17 rc_AA875582_at/rc_AI234060_s_at/

S77494_s_at
Lysyl oxidase

   Lpl -1.20 0.71 L03294_at/L03294_g_at/rc_AI237731_s_at Lipoprotein lipase
   Lrrc59 -0.65 0.64 D13623_at Leucine rich repeat containing 59
   Lum -0.80 0.42 X84039_at Lumican
   Ncam1 -1.35 0.78 X06564_at Neural cell adhesion molecule 1
   Olr1 -2.43 0.99 AB005900_at/AB018104cds_s_at/

rc_AI071531_s_at
Oxidized low density lipoprotein (lectin-like) receptor 1

   P4ha1 -0.85 0.21 X78949_at Procollagen-proline, 2-oxoglutarate 4-dioxygenase 
(proline 4-hydroxylase), α 1 polypeptide

   Pcsk6 -1.10 0.71 rc_AI230712_at Proprotein convertase subtilisin/kexin type 6
   Pfkp -1.25 0.54 L25387_at/L25387_g_at Phosphofructokinase, platelet
   Plaur -1.20 0.71 X71898_at Plasminogen activator, urokinase receptor
   Plod2 -1.00 0.28 rc_AA892897_at Procollagen lysine, 2-oxoglutarate 5-dioxygenase 2
   Pmepa1 -1.55 0.07 rc_AI639058_s_at Prostate transmembrane protein, androgen induced 1
   Ptk2 -0.85 0.35 S83358_s_at PTK2 protein tyrosine kinase 2
   Rasl11a -2.25 0.49 rc_AI169372_at RAS-like family 11 member A
   Rasl11b -1.03 0.24 rc_AA800853_at/rc_AA800853_g_at RAS-like family 11 member B
   Rcn2 -0.90 0.57 U15734_at Reticulocalbin 2
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   RGD1306841 -1.10 0.14 rc_AI639203_at Similar to RIKEN cDNA 2410006F12
   RGD1310444_predicted -1.25 0.21 rc_AA866432_at LOC363015 (predicted)
   Rgs4 -1.45 0.64 U27767_at Regulator of G-protein signaling 4
   Sc4mol -1.10 0.45 E12625cds_at/rc_AI172293_at Sterol-C4-methyl oxidase-like
   Schip1 -1.00 0.42 rc_AA800036_at Schwannomin interacting protein 1
   Serpine1 -1.90 0.00 M24067_at Serine (or cysteine) peptidase inhibitor, clade E, member 1
   Slc12a2 -0.80 0.99 AF051561_s_at Solute carrier family 12, member 2
   Slc16a3 -2.05 0.35 U87627_at Solute carrier family 16 (monocarboxylic acid 

transporters), member 3
   Slc2a1 -1.15 0.35 S68135_s_at Solute carrier family 2 (facilitated glucose transporter), 

member 1
   Spink8 -2.55 1.48 rc_AA799734_at Serine peptidase inhibitor, kazal type 8
   Tfrc -0.90 0.42 M58040_at Transferrin receptor
   Tnc -0.90 0.28 U09401_s_at Tenascin C
   Tnnt2 -1.70 0.42 M80829_at Troponin T2, cardiac
   Vegfa -2.25 1.28 L20913_s_at/M32167_g_at/rc_AA850734_at Vascular endothelial growth factor A
   Wfdc1 -1.70 0.14 AF037272_at WAP four-disulfide core domain 1
Up-regulated (n = 28)
   Adora2a  0.85 0.35 S47609_s_at Adenosine A2a receptor
   Agtr1a  0.95 0.21 M74054_s_at/X62295cds_s_at Angiotensin Ⅱ receptor, type 1 (AT1A)
   Bmp2  2.83 1.31 L02678_at/rc_AA997410_s_at Bone morphogenetic protein 2
   Col3a1  0.90 0.42 M21354_s_at/X70369_s_at/ Procollagen, type Ⅲ, α 1
   Cxcl10  1.05 0.21 U17035_s_at Chemokine (C-X-C motif) ligand 10
   Cyp2e1  1.00 0.14 M20131cds_s_at Cytochrome P450, family 2, subfamily e, polypeptide 1
   Cyp4b1  3.25 0.49 M29853_at Cytochrome P450, family 4, subfamily b, polypeptide 1
   Ednrb  0.70 0.42 rc_AA818970_s_at Endothelin receptor type B
   Ephx1  1.15 0.21 M26125_at Epoxide hydrolase 1, microsomal
   EST (unknown)  0.80 0.28 rc_AA874873_g_at EST
   EST (unknown)  0.90 0.28 rc_AI177256_at EST
   Glul  0.90 0.23 M91652complete_seq_at/rc_AA852004_s_at Glutamate-ammonia ligase (glutamine synthase)
   Hgf  1.03 0.05 E03190cds_s_at/X54400_r_at Hepatocyte growth factor
   Hsd11b1  0.95 0.49 rc_AI105448_at Hydroxysteroid 11-β dehydrogenase 1
   Igfbp3  1.15 0.30 M31837_at Insulin-like growth factor binding protein 3
   Kif4  1.05 0.07 rc_AA859926_at Kinesin family member 4
   Lhx2  0.95 0.21 L06804_at LIM homeobox protein 2
   Notch1  0.80 0.42 X57405_g_at Notch gene homolog 1 (Drosophila)
   Nr2f1  0.95 0.21 U10995_g_at Nuclear receptor subfamily 2, group F, member 1
   Pdcd4  1.00 0.14 rc_AI172247_at Programmed cell death 4
   Pdgfra  1.10 0.28 rc_AI232379_at Platelet derived growth factor receptor, α polypeptide
   Pla2g2a  3.60 0.00 X51529_at Phospholipase A2, group ⅡA (platelets, synovial fluid)
   Ptn  2.10 0.57 rc_AI102795_at Pleiotrophin
   Scg3  2.70 0.85 U02983 Secretogranin Ⅲ
   Serping1  0.85 0.21 rc_AA800318_at Serine (or cysteine) peptidase inhibitor, clade G, member 1
   Smad7  5.35 1.20 AF042499_at MAD homolog 7 (Drosophila)
   Sod3  1.05 0.07 Z24721_at superoxide dismutase 3, extracellular
   Zfp423  1.85 1.47 U92564_at/U92564_g_at Zinc finger protein 423

The average change in expression after Smad7 overexpression is given as log2 fold. SD: Square root of the variance; NFkB: Nuclear factor kB.

in “culture activated” cells compared to “in vivo activated” 
cells. This leaves a final evaluation of  Smad7 influence on 
the regulation of  these genes in HSC activation processes 
open.

Confirmation of array data using quantitative real-time 
PCR
To validate our microarray results, we selected 12 genes 
from array data identified as highly regulated in depend-
ency to Smad7 for RT-qPCR analysis. Transdifferentiating 
(3 d in culture) and fully activated (7 d in culture) HSCs 
were investigated. TGF-β RI mRNA expression is not 
modulated during transdifferentiation[15,16] and was used as 
the expression reference. A synopsis of  Smad7 associated 
modulation of  gene expression, given in Figure 4 as log2 
fold of  LacZ, generally supports the array results. We con-

firmed upregulation of  Cyp4B1, BMP2, SGIII, Zfp423, 
Pla2g2a and downregulation of  EST189231, Olr1 and Id1 
(Table 4) independent of  time during the transdifferentia-
tion process. 

Interestingly, when comparing 3 d- with 7 d-HSCs, 
opposite effects of  Smad7 were found for HK2 (0.38-fold 
in 3 d-, 3.85-fold in 7 d-HSCs), Slc16a3 (0.59-fold in 3 d, 
2.25-fold in 7 d-HSCs) and VEGF.1 (0.51-fold in 3 d-, 
1.07-fold in 7 d-HSCs), underlining temporal differences 
and modulation of  the TGF-β signal during HSC activa-
tion[15]. 

Smad7 inhibits BMP2 dependent Smad1 expression
BMP2 was strongly upregulated in Smad7 expressing 
HSCs (Table 2, Figure 4A and B). Here, we further dem-
onstrate that nevertheless Smad7 blunted BMP2 and 
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Figure 1  Genes whose expression levels were changed (n = 100) after overexpression of Smad7 in hepatic stellate cells are matched to 8 gene ontology 
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15

TGF-β dependent signalling via Smad1 upon AdSmad7 
infection in transdifferentiating (4 d in culture) rat HSCs 
(Figure 5) and infected CFSC (data not shown). Fully 
activated (7 d in culture) HSCs, which are insensitive to 
TGF-β, remain responsive to BMP2 mediated Smad1 
phosphorylation, show the same tendency when stimu-
lated with BMP2. 

DISCUSSION
Using the Affymetrix Microarray approach, we systemati-
cally analyzed the effects of  Smad7 overexpression during 
HSC transdifferentaition. About 100 genes were identified 
to be regulated upon Smad7 overexpression. For obvious 
reasons, only some of  the regulated genes can be discussed 
below in detail. Nevertheless, all gene expression changes 
found constitute potential starting points for future re-
search projects to unravel the process of  liver fibrogenesis.

Tumor supressor genes were upregulated by Smad7 
overexpression in HSCs
Pla2g2a and Cyp4B1 were strongly upregulated after 
Smad7 overexpression in HSCs. Pla2g2a participates in 
lipid metabolism/catabolism and was previously described 

as a tumor repressor in different cancer models, i.e. intes-
tinal tumorigenesis, neuroblastoma, melanoma and colon 
cancer cell lines[17,18]. VEGF and Glut1, both known to be 
upregulated in tumor cells[19,20] were Smad7 dependently 
downregulated in HSCs. These results suggest an influ-
ence of  Smad7 on tumor development and progression 
which is a long debated issue considering its regulative 
impact on ambiguous TGF-β signaling in tumorigenesis. 

Cytochrome P450s are haem-thiolate proteins involved 
in oxidative degradation of  particularly environmental 
toxins and mutagens and play a role in electron transport 
reactions. Additionally, they are key players in alcohol in-
duced oxidative stress in liver, causing hepatocyte necrosis, 
apoptosis and liver fibrosis[21]. During steatosis, lipid per-
oxidation by Cyp2E1 is associated with inflammation and 
HSC activation including increased TGF-β production, 
possibly through up-regulation of  KLF6[22]. Members of  
the Cyp P450 family are also upregulated during HSC ac-
tivation[14]. 

Interestingly, overexpression of  Smad7 increased the 
expression of  some members of  the Cytochrome P450 
system through HSC activation, i.e. Cyp4B1 which is im-
portant in the metabolism of  drugs, cholesterol, steroids 
and lipids, and Cyp2E1, while others are downregulated 
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Figure 2  Genes with changed expression levels after overexpression of Smad7 are matched to 8 gene ontology terms of the biological process and to 
unknown/other. Unknown: Genes without annotation; Other: Genes with another annotation not assignable to the given annotations, details in brackets. Change of 
expression is given as log2 value of the fold factor with the SD. Black bars: Upregulated; Gray bars: Downregulated.
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upon Smad7 overexpression, e.g. Cyp1B1. These ambigu-
ous effects probably reflect the complex control of  oxida-
tive metabolism in the cell. 

Glucose metabolism and angiogenesis/vascularisation 
is downregulated by Smad7 
Hk2 is a hexokinase, one of  the best known enzymes of  
glycolysis, and is involved in cell cycle progression. Accord-
ing to the results of  the microarray analysis it represents 
the most downregulated gene in AdSmad7 infected HSCs. 
One feature of  activated HSCs is the ability to prolifer-
ate. TGF-β antagonizes proliferation in quiescent HSCs, 
whereas it has a growth promoting effect in transdiffer-
entiated MFBs. Thus, Hk2 might be induced by TGF-β 
in HSCs during activation, subsequently stimulating HSC 

proliferation and thus providing at least part of  the growth 
stimulatory effect of  TGF-β. Although physiological ef-

Table 3  Comparison of gene regulation in activated hepatic 
stellate cells in vivo  (De Minicis et al [13])

Gene symbol Smad7 overexpressing 
HSCs

In vivo  activated 
untransformed HSCs 

Acta2 ↓ ↑
BMP21 ↑ ↓
Cnn1 ↓ ↑
Col1a1 ↓ ↑
Col3a1 ↑ ↑
Cryab ↓ ↓
Cyp1b1 ↓ ↑
Ddah1 ↓ ↑
Ednrb ↑ ↑2

Eno2 ↓ ↓
Ephx1 ↑ ↑2

Fn1 ↓ ↑
Gabbr1 ↓ ↓
Hgf ↑ ↑2

Hk21 ↓ ↑
Hsd11b1 ↑ ↑2

Id1 ↓ ↓
Igfbp3 ↑ ↑2

Kif4 ↑ ↑
Lox ↓ ↑
Lpl ↓ ↑2

Lum ↓ ↑
Ncam1 ↓ ↑
P4ha1 ↓ ↑
Pdgfra ↑ ↓
Pfkp ↓ ↑
Plod2 ↓ ↑
Rasl11b ↓ ↑
Serping1 ↑ ↑
Slc16a3 ↓ ↑
Slc2a1 ↓ ↑
Sod3 ↑ ↑
Tmepai_predicted ↓ ↓2

Tnc ↓ ↓2

Tnnt2 ↓ ↑
VEGFa1 ↓ ↑ (VEGFc)1

Wfdc1 ↓ ↑2

Gene expression profiles during hepatic stellate cell activation in culture and 
in vivo (Gastroenterology 2007; 132: 1937-1946[13]) and Smad7 overexpressing 
hepatic stellate cells (HSCs) (our study). 1Genes regulated the strongest in our 
study are marked; 2The regulation of in vivo activated HSCs which is different 
compared to culture activated HSCs in De Minicis study. In total 37 genes 
overlap in both studies, 22 of those (60%) are oppositely regulated indicating 
participation of transforming growth factor-β/Smad7 on the regulation of 
those genes in vivo.

Table 4  Comparison of gene regulation according to quan-
titative real-time polymerase chain reaction analysis and array 
analysis

Gene Probe set ID Array RT-PCR analysis

Cyp4B1 M29853_at Up Up
Smad7 AF042499_at Up Up
BMP2 L02678_at/

rc_AA997410_s_at
Up Up

SGⅢ U02983_at Up Up
Zfp423 U92564_at/

U92564_g_at
Up Up

Pla2g2a x51529_at Up Up
EST189231 AA799734_at Down Down
Olr1 AB005900_at/ 

AB018104cds_s_at/
rc_AI071531_s_at

Down Down

ID1 L23148_g_at Down Down
HK2 D26393exon_s_at Down 3 d down/7 d up
Slc16a3  U87627_at Down 3 d down/7 d up
VEGFa/ratVEGF.1 
in RT-PCR

L20913_s_at/
M32167_g_at

Down 3 d down/7 d up

Different results in array and quantitative real-time polymerase chain reac-
tion (RT-PCR) analysis are marked bold.
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Figure 4  Validation of microarray results using quantitative real-time polymer-
ase chain reaction. A: SYBR Green I-based real-time quantification to compare 
the mRNA expression patterns of 12 selected genes in hepatic stellate cell which 
were infected either with AdLacZ or AdSmad7. Transforming growth factor-β 
RI, not affected by Smad7 overexpression, served as a house-keeping gene. 
Results are given as relative expression of log2 fold of LacZ. 3 d (light grey 
column) and 7 d (dark grey column): 3 d and 7 d after adenoviral infection. Val-
ues are the mean of three measurements each performed in duplicates ± SD 
from independent experiments; B: Total RNA purity and integrity was verified by 
formaldehyde agarose gel electrophoresis. Lane 1: LacZ, 7 d; Lane 2: LacZ, 3 d; 
Lane 3: Smad7, 7 d; Lane 4: Smad 7, 3 d; Lane 5: Untreated control, 7 d; Lane 6: 
Untreated control, 3 d.
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fects of  glucose metabolism in the liver are traditionally as-
sociated to hepatocytes and provide a direct link to fibro-
genesis via hyperglycemia and insulin resistance[23-25], one 
could speculate that activated HSCs need more energy and 
thus, glycolysis is upregulated TGF-β dependently in this 
cell type. In line, HSCs become sensitive to glucose signal-
ing during activation, high glucose concentrations stimu-
late ROS production through PKC-dependent activation 
of  NADPH oxidase and induce MAP kinase phosphory-
lation subsequent to proliferation and type Ⅰ collagen 
production in this cell type[26] suggesting a crucial role of  
HSC-sugar metabolism in fibrogenesis.

Upregulation of  Hk2 during activation of  HSCs fur-
ther suggests that glycolysis induction and increased levels 
of  involved proteins may occur by other means than el-
evated blood glucose levels ([14], our study). This in turn in-
dicates a direct connection between fibrosis and enhanced 
glycolysis independent of  inducing external stimuli of  
either process.

Beside Hk2 regulation, other genes encoding enzymes 
of  glycolysis (Eno2, PFKP) or related to glucose metabo-
lism were downregulated Smad7 dependently, e.g. VEGFa, 
PAI-1 (Serpine1), F3, Slc2a1 (Glut1), FN1, EIF4ebp1 
and PTK2 (Figure 6). A list of  all references proving the 
relation of  these genes to glucose metabolism will be pro-
vided to interested readers on request.

Glut1 is a glucose transporter protein which becomes 
upregulated in activated HSCs or upon HSC activation[14]. 
Since Smad7 decreases Glut1 expression levels and other 

proteins involved in glycolysis, TGF-β seems to enhance 
glucose metabolism and energy supply during HSC activa-
tion thus enabling the cells to proliferate and transdiffer-
entiate towards activated myofibroblasts. 

In contrast, decreased numbers of  Glut1 molecules 
are reported in hepatocytes subjected to chronic alcohol 
consumption[27] resulting in a reduced availability of  glu-
cose for glycolysis in hepatocytes. The resulting energy 
deficiency has been shown to impair this cell type’s ability 
to perform critical functions and to contribute therefore 
to cell death and alcoholic liver disease.

In line with our results, relations between glucose me-
tabolism and fibroproliferative processes were identified 
in other organs. For example in human kidney[28,29] expo-
sure of  proximal tubule cells and cortical fibroblasts to 
high extracellular glucose concentrations results directly in 
altered cell growth and collagen synthesis. 

IGFBP3 and Cyp2E1, known to participate in glu-
cose metabolism were upregulated in AdSmad7 infected 
HSCs, indicating that they might be under negative control 
through TGF-β. However, upregulation of  IGFBP3 in our 
study could be simply due to “culture” but not “in vivo ac-
tivation” of  HSCs (for term definition compare[14]) instead 
of  being mechanistically important. Interestingly, Smad7 
even seems to enhance the upregulation of  IGFBP3, which 
already occurs upon HSC activation. If  there is any patho-
logic relevance of  this finding, it suggests a mechanism of  
regulation independent of  canonical TGF-β/Smad7 signal-
ing in HSC activation. 

Figure 5  Smad7 overexpression inhibits BMP2 and transforming growth factor-β dependent Smad1 phosphorylation. Transdifferentiating (4 d old) and fully ac-
tivated (7 d old) hepatic stellate cells (HSCs) infected or non-infected with either AdLacZ (control) or AdSmad7 were stimulated for 1 h with 20 ng/mL BMP2 or 5 ng/mL 
transforming growth factor (TGF)-β as indicated. Smad7 overexpression and Smad1 phosphorylation were analysed using Western blottings. GADPH served as a refer-
ence. While transdifferentiating HSCs are sensitive to both BMP2 and TGF-β stimulation, fully activated HSCs are only responsive to BMP2.
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VEGFs are growth factors involved in angiogenesis, 
vasculogenesis and endothelial cell growth, promotion 
of  cell migration, apoptosis inhibition and induction of  
blood vessel permeabilization. De Minicis et al[14] showed 
VEGFc to be upregulated[14], while in the present report 
VEGFa was downregulated after Smad7 overexpression 
in activated HSCs, indicating its induction as a response 
to profibrogenic TGF-β signaling. Previous investigation 
of  hypoxia in a stellate cell line demonstrates upregulation 
of  VEGF expression[30]. Hypoxia leads to cell dysfunction 
or death and occurs during liver damage and inflamma-
tion. HIF1, considered to be the major regulator of  about 
100 genes including VEGF and PAI-1, is also upregulated 
in that study. In contrast HIF1 did not display an altered 
expression in our study indicating that HIF1 expression 
in HSCs is TGF-β independent and that another TGF-β 
dependent route exists to induce PAI-1 (serpine1) and 
VEGFa expression. 

Smad7 decreases cell adhesion regulators in HSCs
Expression of  several proteins linked to cell adhesion, i.e. 
Olr1, Ncam1, Fn1 and Tnc was decreased after Smad7 
overexpression in HSCs. Accordingly, Ncam1 and Fn1 

were upregulated in activated HSCs[14]. Although for Olr1 
no information about the regulation in activated HSCs is 
available so far, we assume from our results that Smad7 
antagonizes cell adhesion features of  activated HSCs. This 
suggests that profibrogenic TGF-β signaling improves cell 
adhesion for transdifferentiating HSCs. Nevertheless it 
should be noted that downregulation of  Tnc in activated 
HSCs is supported by Smad7.

Smad7 induces BMP2 expression in HSCs
Generally, TGF-β signals via Smad2 and Smad3 but 
also induces the second canonical pathway via ALK1/
Smad1/5/8. BMP2, another member of  the TGF-β family, 
solely signals via Smads1/5/8 utilizing ALK3 and ALK6[12]. 
Here we show that (1) BMP2 was strongly upregulated 
in Smad7 expressing HSCs (Table 2, Figure 4A and B);  
and (2) Smad7 potently inhibited BMP2 dependent and 
TGF-β dependent Smad1 phosphorylation. Even in fully 
activated HSCs which are not responsive to TGF-β con-
cerning Smad1 phosphorylation, BMP2 dependent Smad1 
phosphorylation was abolished (Figure 5). 

These results indicate a tight crosstalk between TGF-β 
and BMP signaling pathways in HSCs. It seems that HSCs 

Figure 6  Biological interaction between glucose and genes up- (light grey) or down-regulated (white)  in primary hepatic stellate cells after overexpression of 
Smad7. Genes linked to glucose by binding or regulatory interactions are depicted as interconnecting lines between glucose and the gene symbols. Pathway analysis was 
done with Pathway Architect software (Stratagene).
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try to keep up a functional Smad1 signaling upon block-
ing TGF-β pathways with Smad7. Accordingly, BMP2 
is capable of  inducing Smad1 signaling in fully activated 
7 d-HSCs which are no longer responsive to TGF-β 
stimulation. Thus BMP2 expression might be induced to 
overcome a lack of  TGF-β/Smad1 signaling upon Smad7 
expression or HSC activation using a corresponding auto-
crine loop. Although our in vitro experiments demonstrate 
that Smad7 is able to inhibit BMP2/Smad1 signaling ef-
fectively, Smad7 dependent induction of  BMP2 expres-
sion in HSCs in vivo might be strong enough to sustain an 
active Smad1/5/8 signaling pathway. Further experiments 
could delineate whether BMP2 expression is directly in-
duced by the recently described DNA binding activity of  
Smad7[31], if  a running TGF-β signaling pathway has a 
negative regulatory role toward the BMP2 promoter or if  
other mechanisms are responsible for BMP2 induction in 
Smad7 overexpressing HSCs. 

In summary we conclude that genes regulated con-
trarily during HSC activation[14] vs ectopic Smad7 expres-
sion (this study) most probably represent critical profi-
brogenic components. As Smad7 is able to blunt HSC 
transdifferentiation in vitro and in vivo[7] we assume glucose 
metabolism and the crosstalk between the TGF-β and the 
BMP2 pathways are critical components of  HSC activa-
tion. 

In general our study underlines the potential of  top 
down systemic approaches to delineate effects of  cell 
signaling regulation and opens the opportunity to find tar-
gets for drug development. 

COMMENTS
Background
Activation of hepatic stellate cells (HSCs) as a consequence of liver damage in-
cludes proliferation and extracellular matrix (ECM) deposition and represents a 
major step in fibrogenesis. Transforming growth factor (TGF)-β is a master con-
tributor and its signaling pathway is modulated during the HSC activation proc-
ess, whereby its cytostatic action is lost and ECM producing effects become 
predominant. Smad7 is a powerful antagonist of TGF-β. Expression of Smad7 
is transiently induced by the canonical TGF-β/R-Smad signaling cascade, 
thereby providing a negative feedback loop to regulate TGF-β signals. Smad7 
is able to inhibit HSC transdifferentiation and attenuate the extent of fibrosis, 
suggesting Smad7 is a promising antifibrotic compound. 
Research frontiers
The findings offer important new information about the process of HSC transdif-
ferentiation and fibrogenesis as well as cell biology of signal transduction in the 
liver. Moreover, providing a list of genes previously not known as participants in 
HSC activation and fibrogenesis, members of the field may use these data as 
starting points to get new insight into mechanisms of HSC (patho)physiology. 
Thus, it will definitely be of interest to the scientific community, especially in the 
field of hepatology and gastroenterology. 
Innovations and breakthroughs
In the present report, the authors systematically investigated transcriptional ef-
fects of Smad7 overexpression in cultured HSCs by microarray analysis. Using 
this powerful top down approach, the authors identified 100 target genes to be 
significantly regulated by Smad7 overexpression. These represent potential 
targets for delineating mechanisms of HSC activation and to set up therapeutic 
approaches. The results imply a crosstalk between TGF-β and BMP2 signaling 
pathways in HSCs and for the first time a significant involvement of glucose 
metabolism in the HSC transdifferentiation processes.
Applications
The results are of special interest for future attempts to understand the process 

of stellate cell activation and to set up TGF-β and/or Smad7 directed treatment 
approaches in chronic liver diseases, especially as they reflect the most power-
ful negative regulatory process of TGF-β signaling. 
Terminology
Bone morphogenetic protein (BMP): BMPs are multi-functional growth factors 
belonging to the TGF-β superfamily. BMPs were originally discovered by their 
ability to induce the formation of bone and cartilage, but are now considered 
to constitute a group of pivotal morphogenetic signals, orchestrating tissue 
architecture throughout the body. BMP signals are mediated by type Ⅰ and Ⅱ 
BMP receptors and their downstream molecules Smad1, 5 and 8. Microarray: A 
method for profiling gene and protein expression in cells and tissues. A microar-
ray consists of different nucleic acid/protein probes that are chemically attached 
to a substrate, which can be a microchip, a glass slide or a microsphere-sized 
bead. Hybridization of test samples to these probes can be measured by differ-
ent means.
Peer review
This is a potentially interesting study aimed at clarifying Smad7-regulated gene 
expression during the transdifferentiation of hepatic stellate cells, a major profi-
brogenic cell type in the liver. Overall, the study is well-performed and the manu-
script is well-written.
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