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ABSTRACT

The Bayesian LASSO (BL) has been pointed out to be an effective approach to sparse model represen-
tation and successfully applied to quantitative trait loci (QTL) mapping and genomic breeding value
(GBV) estimation using genome-wide dense sets of markers. However, the BL relies on a single parameter
known as the regularization parameter to simultaneously control the overall model sparsity and the
shrinkage of individual covariate effects. This may be idealistic when dealing with a large number of
predictors whose effect sizes may differ by orders of magnitude. Here we propose the extended Bayesian
LASSO (EBL) for QTL mapping and unobserved phenotype prediction, which introduces an additional
level to the hierarchical specification of the BL to explicitly separate out these two model features.
Compared to the adaptiveness of the BL, the EBL is ‘‘doubly adaptive’’ and thus, more robust to tuning. In
simulations, the EBL outperformed the BL in regard to the accuracy of both effect size estimates and
phenotypic value predictions, with comparable computational time. Moreover, the EBL proved to be less
sensitive to tuning than the related Bayesian adaptive LASSO (BAL), which introduces locus-specific
regularization parameters as well, but involves no mechanism for distinguishing between model sparsity
and parameter shrinkage. Consequently, the EBL seems to point to a new direction for QTL mapping,
phenotype prediction, and GBV estimation.

REGULARIZATION or shrinkage methods are gain-
ing increasing recognition as a valuable alternative

to variable selection techniques in dealing with over-
saturated or otherwise ill-defined regression problems in
both the classical and Bayesian frameworks (e.g., O’hara

and Sillanpää 2009). Many studies (e.g., Xu 2003; Wang

et al. 2005; Zhang and Xu 2005; De los Campos et al.
2009; Usai et al. 2009; Wu et al. 2009; Xu et al. 2009) have
documented the potential of shrinkage methods for
quantitative trait locus (QTL) mapping and genomic
breeding value (GBV) estimation using genome-wide
dense sets of markers. Lee et al. (2008) make a clear
connection between phenotype prediction and GBV
estimation, suggesting that methods developed for one
are also applicable to the other. We thus use the two
concepts interchangeably throughout this article.

Regularized regression methods, such as ridge re-
gression (Hoerl and Kennard 1970) or the least
absolute shrinkage and selection operator (LASSO)
(Tibshirani 1996), are essentially penalized likelihood
procedures, where suitable penalty functions are added
to the negative log-likelihood to automatically shrink
spurious effects (effects of redundant covariates) to-

ward zero, while allowing relevant effects to take values
farther from zero.

It has been pointed out that these non-Bayesian
shrinkage methods are not suitable for oversaturated
models. Zou and Hastie (2005) and Park and Casella

(2008) noted that the LASSO cannot select a number of
nonzero effects exceeding the sample size. Xu (2003)
found that for ridge regression to work, the number of
model effects should be in the same order as the number
of observations. This is impractical for genomic selec-
tion, which capitalizes on the variation due to small-
marker effects, the number of which can exceed the
sample size, by contrast to QTL mapping where interest
lies mostly in a small subset of loci with large effects on
the focal phenotype. In connection with the LASSO, the
Bayesian LASSO (BL) (Park and Casella 2008; Yi and
Xu 2008) has been proposed to overcome this limitation
by imposing a selective shrinkage across regression
parameters. Xu (2003) also proposed a Bayesian shrink-
age method for QTL mapping, which extends ridge
regression in a similar fashion.

Although the BL has been successfully applied to QTL
mapping (e.g., Yi and Xu 2008) and to GBV estimation
(e.g., De los Campos et al. 2009), it relies on a single
parameter known as the regularization parameter to
simultaneously regulate the overall model sparsity and
the extent to which individual regression coefficients are
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shrunken. However, this is unrealistic when dealing with
a large number of predictors whose effect sizes may
differ by orders of magnitude. It is therefore natural to
ask whether this practice can be relaxed and how such an
attempt may impinge on the model performance (e.g.,
Sun et al. 2010).

Here we propose an extension to the Bayesian LASSO
for QTL mapping and unobserved phenotype predic-
tion. Our method, the extended Bayesian LASSO
(EBL), introduces locus-specific regularization parame-
ters and utilizes a parameterization that clearly separates
the overall model sparsity from the degree of shrinkage
of individual regression parameters. We use simulated
data to investigate the performance of the EBL relative
to the Bayesian LASSO in mapping QTL and in predict-
ing unobserved phenotypes. We also compare the
performance of the EBL to the Bayesian adaptive LASSO
(BAL) recently proposed by Sun et al. (2010), which also
assumes locus-specific regularization parameters.

METHODS

Statistical model: Let yi (i ¼ 1, . . . , n) and xij denote,
respectively, the value of the phenotypic trait of interest
for the ith individual and the genotype code of the ith
individual at locus j ( j¼ 1, . . . , p). The model is developed
in the context of experimental crosses derived from two
inbred lines such as backcross (BC) or double haploid
(DH) progenies with only two possible genotypes at any
locus. The dummy variables xij are coded as xij ¼ 0 for
one genotype and xij ¼ 1 for the other. We assume an
additive model that regresses the phenotypic values of
the n individuals on their genotypes at p putative loci,
which may be markers or alternatively pseudomarkers
(Sen and Churchill 2001; Servin and Stephens

2007). That is,

yi ¼ b0 1
Xp

j¼1

xijbj 1 ei ; ð1Þ

where b0 is the intercept. Under the genotype coding
assumed here, bj represents the genetic effect associ-
ated with locus j (j ¼ 1, . . . , p) or more precisely, the
difference (contrast) between the genetic effects asso-
ciated with the two genotypes for locus j. The residual
errors ei are assumed to be independent and normally
distributed with mean zero and common variance s2.
The model is applicable to other experimental designs,
such as F2 intercross progeny under appropriate geno-
type coding and to population-based samples. For
breeding purposes or analysis of family data, model
(1) can be extended to include an infinitesimal poly-
genic term that accounts for relatedness between
individuals (see, e.g., De los Campos et al. 2009 or
Pikkuhookana and Sillanpää 2009 for more details).
In matrix notation, model (1) can be written as

y ¼ Xb 1 e; ð2Þ

where y¼ (y1, . . . , yn)T, b¼ (b0, . . . , bp)T, e¼ (e1, . . . , en)T,
and X is the n 3 (p 1 1) design matrix comprising the
genotype profiles of the p loci, with all elements of the
first column (which corresponds to the intercept) set to
1. The likelihood for this model is given by

Lðy; b;s2Þ ¼ ð2pÞ�n=2 jS j 1=2exp �ky � Xbk2
2=2s2

� �
;

ð3Þ

where S ¼ s�2In is the precision matrix associated with
the residual errors, In is the n 3 n identity matrix, and
k�k2 denotes the L2 norm.

Maximum likelihood estimates (MLEs) of b and s2

are obtained by maximizing the likelihood function L(y;
b, s2) or alternatively, by minimizing the negative
likelihood function with respect to b and s2. However,
as already pointed out, when dealing with genome-wide
dense sets of markers, the number, p, of predictors can
be larger than the sample size n, with most of the
markers having weak or no effect on the focal pheno-
type (e.g., Xu 2003; Zhang and Xu 2005). In such
circumstances, regularization methods offer an inter-
esting approach to inducing a sparse model represen-
tation by automatically shrinking the effects of
redundant covariates (spurious effects) toward zero,
while effectively estimating the relevant ones.

Regularization methods and the LASSO: The ratio-
nale of regularization methods is to penalize the log-
likelihood function �ky � Xbk2

2=2s2 with a suitable
nondecreasing function, g(b) . 0, and estimate b by
b̂ ¼ arg maxb �ky � Xbk2

2=2s2 � g ðbÞ
� �

, or equivalently,

b̂ ¼ arg min
b
ky � Xbk2

2=2s2 1 g ðbÞ
� �

: ð4Þ

Several penalty functions have been proposed, includ-
ing g(b) ¼ lkbk2 (l . 0), which leads to ridge
regression (Hoerl and Kennard 1970; Whittaker

et al. 2000; Malo et al. 2008), and g(b) ¼ lkbk1 ¼
lSjjbjj, which leads to the LASSO estimate

b̂LASSO ¼ arg min
b
ky � Xbk2

2=2s2 1 lkbk1

� �
: ð5Þ

(Tibshirani 1996; Usai et al. 2009; Wu et al. 2009). The
smoothing or regularization parameter, l, determines
the extent of the penalization, with larger values
implying a stronger penalization on the Lw norm (w ¼
1 for LASSO and w ¼ 2 for ridge regression), which
results in more regression coefficients being shrunk
toward zero. Henceforth, our attention is focused on
the LASSO owing to its desirable feature of setting some
of the redundant effects to be exactly zero (Tibshirani

1996). Note that if bj is shrunken to zero, then the
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LASSO objective function, ky � Xbk2
2=2s2 1 lkbk1, in

Equation 5 becomes independent of bj so that Xj is
pruned (discarded) from the model. As l approaches
zero, b̂ tends to the ordinary least-squares estimate (no
shrinkage). The intercept, b0, is not subject to shrinkage
since we consider that it is always included into the
model. The term ky � Xbk2

2 in Equation 5 expresses the
least-squares approximation, whereas the penalty func-
tion g(b) ¼ lkbk1 is intended to promote sparseness.
The LASSO estimate b̂LASSO can be interpreted from a
Bayesian perspective as the maximum a posteriori (MAP)
or posterior mode of the parameter vector b under the
prior specification bj � N ð0; s2

j Þ and s2
j � Exp ðl2=2Þ,

independently for j ¼ 1, . . . , p (Tibshirani 1996; Park

and Casella 2008; Yi and Xu 2008). Equivalently, this
corresponds to assigning to the bj independent Lap-
lacian or double exponential (DE) priors with mean
zero and variance 2/l2. This follows from the fact that, for
any x 2 R, and l . 0,

DEðx j 0; l=2Þ ¼ l

2
expð�l j x j Þ

¼
ð‘

0
ð1=

ffiffiffiffiffiffiffiffiffi
2p s
p

Þ expð�x2=2 sÞ l2

2
expð�l2s=2Þ ds;

ð6Þ
where DE(x j0, l/2) denotes the probability density
function of the DE distribution with mean 0 and
variance 2/l2, evaluated at x (Park and Casella 2008).

The DE distribution is sharply peaked at the mode
and has heavier than Gaussian tails. Setting the prior
mode at zero encodes a prior belief of no effect for most
of the regression covariates. In addition, the strength of
this belief, and hence the degree of model sparsity, is
determined by the variance of the DE prior assumed for
the regression coefficients, which in turn depends solely
on the regularization parameter l. The LASSO estimate
corresponds to the MAP of b when all bj ( j¼1, . . . , p) are
independently assigned DE(0, l/2) priors with l set to a
fixed nonnegative constant. But as pointed out earlier,
the number of nonzero effects that the LASSO can select
is bounded from above by the sample size. A Bayesian
formulation of the LASSO known as the Bayesian
LASSO has been proposed to overcome this limitation.

The Bayesian LASSO: In the BL (Park and Casella

2008; Yi and Xu 2008; De los Campos et al. 2009), each
regression parameter, bj ( j¼ 1, . . . , p), is a priori assumed
to be normally distributed around zero with its own
variance s2

j , i.e., bj � N ð0;s2
j Þ. Consequently, the de-

gree of shrinkage is made locus specific through differ-
ences in the variances s2

j across loci. These variance
parameters are independently assigned Exp(l2/2) pri-
ors. With this hierarchical prior specification, the
marginal prior of the regression parameters, bj, is
DE(0, l/2), independently for j ¼ 1, . . . , p, by virtue of
Equation 6. Differences in locus-specific variances in-
duce a selective shrinkage with smaller variances imply-
ing stronger shrinkage toward zero, as expected for

spurious effects. It is clear, however, that the variance 4/
l4 of s2

j , and hence the amount of shrinkage of all
regression parameters is largely influenced by the
regularization parameter l. In the BL, the hyperpara-
meter l is meant to be estimated alongside the other
model parameters and as such, requires a prior distri-
bution e.g., l � G(a, b) for some suitably selected values
of a and b. Park and Casella (2008) and Yi and Xu

(2008) recognized that the performance of the BL
depends critically on the tuning of l. The hierarchical
specification of the priors of the regression coefficients
in the BL is graphically depicted in Figure 1a. As can be
seen from Figure 1a, all the variances s2

j for ( j¼ 1, . . . , p)
are controlled by the hyperparameter l. This may be
unrealistic when dealing with a large number of predic-
tors in which effect sizes may differ greatly, as frequently
happens in QTL mapping and in phenotypic value
prediction using genome-wide dense sets of markers.
Our new method, the extended Bayesian LASSO, re-
laxes this assumption.

The extended Bayesian LASSO: In the vein of the BL,
the EBL proceeds by assigning to each regression
parameter a Gaussian prior with its own variance,
independently. That is, bj � N ð0; s2

j Þ, independently
for j ¼ 1, . . . , p. Each locus-specific variance, s2

j , is fur-
ther independently assigned an Exp ðl2

j =2Þ prior. The
EBL departs from the BL in that the regularization
parameters are locus specific. Crucially for us here, lj is
defined in terms of a measure, d, of model sparsity, which
is common to all loci, and a locus-specific deviation, hj,
from d, which represents the strength of shrinkage
specific to locus j. More specifically, we let

lj ¼ d hj : ð7Þ

The common factor d can, just like l in the BL, be used to
adjust the model to the desired level of sparsity, whereas
the locus-specific random deviations, hj, from d enforce
the difference in the extent of shrinkage across loci. This
makes the EBL ‘‘doubly adaptive’’ compared to the
adaptiveness of the BL. Figure 1b shows the hierarchical
specification for the priors of the regression coefficients
in the EBL. The extra layer of the EBL relative to the BL
is apparent from Figure 1b. The hyperparameters d and
hj are also assigned prior distributions and estimated
along with the other model parameters. A nice feature of
the EBL is that tuning is not critical like in the BL. We
discuss this point in more detail further.

APPLICATION

Simulated data analysis: The performance of the EBL
was evaluated on simulated data. The data-generation
process used marker data from a well-known data set
from the North American Barley Genome Mapping
project (Tinker et al. 1996), which has been widely
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analyzed in mapping studies (e.g., Xu 2003, 2007; Xu

and Ja 2007; Yi and Xu 2008). The Barley data, initially
intended for analyzing economically important traits in
two-row barley (Hordeum vulgare L.), comprise 127
biallelic markers spanning seven chromosomes for 150
DH lines grown in 25 different environments. The
markers cover 1270 cM, with an average distance
between consecutive markers of 10.5 cM. The original
data involved 150 individuals, but five individuals with
missing phenotypes (days to heading) were left out. The
incentive for using the Barley marker data is to draw
close to a real-world situation. The data set also includes
some missing genotypes. At the outset, the missing
genotypes were filled-in with random draws from Ber-
noulli (0.5). For a DH population, an individual can take
only one of two possible genotypes. The dummy
variables xij were coded as xij ¼ 0 for one genotype and
xij ¼ 1 for the other. We used the model in (1) to
generate phenotypic values assuming a few QTL, namely
at loci 4, 25, 50, and 65 with respective effects set to 2.5,
�2.5, 4, and�4. We used different values of the residual
variance to induce different heritability levels in the
data. Heritability, ĥ 2 ¼ ðŝ2

y � s2Þ=ŝ2
y , refers to the pro-

portion of phenotypic variance attributable to genetic
factors. Here s2 is the known residual variance and ŝ2

y is
the empirical phenotypic variance estimated from the
data.

It is well known that correlations among covariates
may greatly affect the performance of variable selection
methods. To verify how well our method would perform
in the presence of dense marker data, we considered, in
addition to the moderately dense Barley marker data, a
dense marker data set simulated through the WinQTL
Cartographer program (Wang et al. 2006), and used by
Sillanpää and Noykova (2008) . This data set involves
200 backcross progeny and 102 marker points spanning
three chromosomes, with 34 evenly spaced markers on

each chromosome. The length of each chromosome
was 99 cM, implying a distance of 3 cM between
consecutive markers. The methodology described here
is straightforwardly applicable to this data set since a
backcross can have only two possible genotypes (initially
coded as�1 and 1) at each locus. We changed the initial
coding to 0 and 1. As before, we assumed only four QTL
at loci 25, 60, 70, and 75 with QTL effects of 2.5,�2.5, 4,
and �4, respectively. Note that the last two QTL are
linked with 15 cM between them and in repulsion (i.e.,
having effects of opposite signs).

For both the moderately dense Barley marker data
and the simulated dense marker data, we generated 50
synthetic data sets of approximately same heritability
with the design matrix held fixed and the intercept set
to zero without lost of generality. For the reported
results, the residual variance was set to 2, yielding an
average heritability of 0.8 for the Barley marker data and
0.72 for the simulated dense marker data.

Model fitting and performance evaluation: We fitted
the Bayesian LASSO and extended Bayesian LASSO to
the simulated data replicates by Markov chain Monte
Carlo (MCMC) (Gilks et al. 1996) simulation through
the Bayesian freeware OpenBUGS (Thomas et al. 2006).
The BUGS code is available upon request from the
authors. The response variable was considered on the
original scale to facilitate the comparison between
the true effect sizes and their estimates. We used the
following, essentially noninformative, priors: b0 � N(0,
100); bj � N(0, 100) for j ¼ 1, . . . , p; s2 � Inv � G (0.1,
0.1). To mitigate the effect of prior specification on our
results, the reported results are based on the non-
informative priors l � Uni (0, 100) in the BL, and d �
Uni (0, 100), hj�Uni (0, 100) in the EBL. These priors
are diffuse (flat). This implies no tuning, which is
important if we are to compare the performances of
the two models.

Initially, we ran three separate Markov chains for
10,000 iterations each, to assess how fast the chain would
converge and how well they would mix (mixing refers to
the ease with which the Markov chains explore the full
parameter space). For the simulations based on the
Barley marker data, 10,000 iterations took 21,483 sec for
the BL and 22978 sec for the EBL (i.e., comparable
computation time) on an AMD with 1.33 GHz and 768
MB of RAM. For both methods, the chains seemed to
reach the stationary distribution after about 1500
iterations. The convergence was assessed through visual
inspection of the MCMC traceplots. The sensitivity of the
results to the prior specification was assessed by varying
the range of the uniform priors for hyperparameters l in
the BL, and d and hj in the EBL, but the results were
robust to these changes.

After the initial evaluation of the two models, we used
simulated data replicates to evaluate their performances
in estimating the regression parameters with regard to
both the true signals (i.e., QTL) and false signals (i.e.,

Figure 1.—Graphical representation of the hierarchical
specification of the priors of the locus-specific effects in the
BL (a) and the EBL (b), illustrating the roles and scopes of
each hyperparameters: l in the BL and d and hj in the EBL.
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non-QTL), and in predicting unobserved phenotypes.
For each replicated data set, we ran 10,000 MCMC
iterations and discarded the first 2000 samples as burn-in.

The estimation error on the true and the false signals
were respectively evaluated through the statistics

RT ¼
1

N t

X
t jDbt j = jbt j and RF ¼

1

N f

X
f
jDbf j ;

where Dbt ¼ ðbt � b̂tÞ, bt and b̂t being the true and the
estimated effects of locus t, respectively. The summation
in the definition of RT is taken over the true signals, and
Nt is the number of true signals. RF is defined in a simi-
lar manner to RT, but bf ¼ 0, and the formula for RF

involves no scaling by the absolute value of the true
effect size, which is zero. The number, Nf, of false signals,
is given by Nf ¼ (p � Nt).

The predictive performances of the two models were
evaluated through posterior predictive cross-validation.
The basic idea of cross-validation (e.g., Picard and Cook

1984) is to fit the model to a subset of the data (the
training set) and utilize the remaining data (the test set)
to evaluate the model predictive performance. A cross-
validation loss function (usually the mean square error
or the root mean square error) is required for compar-
ison, and the model associated with the smallest loss is
chosen as the best. Here we left out (i.e., we omitted from
the training set) two randomly selected phenotypic
values in each replicated data set and monitored their
posterior predictive means estimated from the MCMC
samples. For each replicated data set, we used the

posterior predictive means of the omitted data points
to compute the root mean square error (RMSE)

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1=2Þ

X
j
ðypred

j � yjÞ2
r

;

where j runs over the indices of the discarded pheno-
types, y

pred
j is the posterior predictive mean of the jth

discarded phenotype, its actual value being yj.
To have significance thresholds for distinguishing

QTL from non-QTL, we randomly shuffled the pheno-
types (permutation without replacement) to artificially
destroy the association between the markers and the
phenotypes. We fitted the model to each of the ensuing
data sets using MCMC simulation. We ran 4000 MCMC
iterations, discarding the first 2000 samples as burn-in.
For each data set, we monitored the largest absolute
posterior mean effect size used as our test statistic. This
provided us with an empirical distribution F of the test
statistic, and we used the 100 3 (1 � a) percentile of as
the critical value (Churchill and Doerge 1994). The
significance thresholds based on 100 phenotype per-
mutations with a ¼ 0.10 were found to be 0.64 for the
BL and 0.67 for the EBL.

RESULTS

The results for the simulations based on the Barley
marker data were broadly similar to those based the
simulated dense marker data set. In this section, we
report only on the performance of the BL and the EBL

Figure 2.—Performance evaluation of the
EBL and the BL over 50 replicated data sets using
the Barley marker data. The results are summa-
rized by the posterior means over 50 replicated
data sets. Top left: the estimation errors (differ-
ences between the posterior means and known
true values) with regard to true signals i.e.,
QTL. Top right: the estimation errors with re-
gard to false signals i.e., non-QTL. Bottom left:
predictive root mean square errors for the BL
and the EBL. Bottom right: the ratios of poste-
rior means of l (in the BL) and d (in the
EBL) over 50 replicated data sets, illustrating
the correspondence between the roles of these
two locus-independent parameters (l and d) in
the two methods.
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based on the Barley marker data (an extensive compar-
ison of the EBL to the contending BAL, including for the
dense marker data, is provided in the discussion).
Figure 2 summarizes the performance of the EBL
relative to the BL with regard to the accuracy of effect
size estimates on both true and false signals and the
accuracy of phenotypic value predictions. Figure 2,
bottom right, displays the ratios l/d of the locus-
independent variance hyperparameters in the BL and
the EBL, which is roughly constant over the 50 repli-
cated data sets.

Figure 3 shows the posterior means of QTL effects
under the BL and the EBL, along with the true values.
The results displayed in Figure 3 suggest that the EBL
estimates track the true effects more efficiently than
their BL counterparts.

Figure 4 shows the posterior means of all loci effects
averaged over the 50 replicated data sets for the BL and
the EBL. For each method, the significance thresholds
for declaring QTL are indicated by the horizontal
dashed lines.

For a significance level of 10%, the detection proba-
bilities for QTL were roughly 0.87 for the BL and 0.91
for the EBL.

DISCUSSION

Our discussion is structured in subsections relating to
different aspects on which the BL and the EBL are being
evaluated. We also compare the performance of the EBL
to the BAL recently proposed by Sun et al. (2010), which
also introduces locus-specific regularization parameters.

Signal detection: The locus-effect estimates under the
EBL were always closer to the true values than their BL
counterparts (Figure 3), resulting in lower estimation
errors with regard to the true signals (i.e., QTL) and false
signals (i.e., non-QTL) (Figure 2). Nevertheless, both
the BL and the EBL were effective at identifying the
known QTL in our simulation settings, as exemplified by
the plots in Figures 3 and 4.

Predictive performance: The EBL outperformed BL
in predictive accuracy, with lower prediction errors
(RMSEs displayed in Figure 2). This implies that the
EBL is also better suited to breeding value prediction in
genomic selection. Our specification of the regulariza-
tion parameters provides the possibility of incorporat-
ing prior information regarding the level of model
sparsity through the prior of the overall sparsity param-
eter, d, while letting the locus-specific hyperparameters,
hj ( j¼ 1, . . . , p), take care of keeping the nonzero effects
‘‘on’’ and adjusting their sizes according to their
importance. This doubly adaptive feature is appealing
in that it allows the model to effectively exert less
shrinkage on the effects of important covariates re-
quired to be into the model, and more shrinkage on
spurious effects. This results in more accurate estimates
of marker effects and predictions of phenotypic values
as implied by the results of our simulation study. The BL
may miss the point as it relies on a single regularization
parameter for model sparsity and parameters shrinkage.

Sensitivity to prior specification and separation of
QTL from non-QTL loci: In the BL, the hyperpara-
meters of the prior p(l) require suitable tuning, with

Figure 3.—Posterior means of estimated QTL effects for
the BL (solid squares) and the EBL (solid triangles) at
QTL positions, along with their true effects (shaded circles).
The plotted values represent the posterior means averaged
over 50 replicated data sets based on the Barley marker data.

Figure 4.—Posterior means of all marker effects averaged
over the 50 replicated data sets based on the Barley marker
data for the BL and the EBL. The dashed lines indicate the
permutation-based QTL significance thresholds.
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optimal values depending on the data and the number
of variables included (Yi and Xu 2008), meaning that
tuning is critical to the performance of the BL. The EBL
estimates proved to be robust to tuning, owing pre-
sumably to the way the priors of the locus-specific
hyperparameters lj are specified. In particular, the ratio
of the posterior means of the parameters l and d in the
BL and the EBL, respectively, was found to be roughly
constant (Figure 2, bottom right). This indicates that
these two parameters equivalently regulate the level of
model sparseness in the two models by ‘‘borrowing
strength’’ across loci. A consequence of the reliance of
the BL on a single smoothing parameter is that placing
on this parameter a prior that strongly enforces sparsity
will result in all regression parameters being indiscrim-
inately shrunken. This is not a desirable feature for
phenotype prediction, as most of the small but relevant
parameters will be set to zero.

In the EBL, the locus-specific hyperparameters hj play
a key adaptive role, which makes tuning much less of
an issue. It also is obvious that the parameters d and hj

in the EBL have meaningful interpretations as they
operate on different scales: global for the former and
local (i.e., locus specific) for the latter. The graphical
representation of the hierarchical specifications of the
priors for locus-specific effects in the BL and the EBL
shown in Figure 1 better illustrates the roles and scopes
of the hyperparameters l in the BL, and (d and hj) in the
EBL.

It is worth emphasizing that, although the Laplacian
distribution is mathematically equivalent to a mixture of
an infinite number of Gaussians with exponentially
distributed mixing variances as implied in Equation 6, it
is computationally more convenient to not integrate out
the mixing layer when the required computations can
efficiently be carried, for example, through Markov chain
Monte Carlo (Gilks et al. 1996). This recommendation
seems to oppose the all-too-common practice of analyt-
ically integrating out intermediary layers of hierarchical
priors in the quest for simplicity. O’Hara and Sillanpää

(2009) found that using the Laplace prior directly on the
regression parameters in the Bayesian LASSO as obtained
by the analytical integration in Equation 6 may result in
poor mixing of the MCMC sampler and bad separation of
the variables. Like Yi and Xu (2008) and De los Campos

et al. (2009), we did not face any mixing problems with the
hierarchical specification of the Laplace distribution
when implementing the BL and the EBL. The same
applies to the Student t-distribution, which is mathemat-
ically equivalent to a mixture of an infinite number of
Gaussians with inverse gamma-mixing variances.

Statistical identifiability issues: From a statistical
model-fitting perspective, our parameterization of the
locus-specific regularization parameters, lj, as a product
of a factor, d, common to all loci and a locus-specific
effect, hj, is crucial for statistical identifiability. If these
two components were both indexed by j, they would be
confounded and, hence, statistically unidentifiable.

Figure 5.—Performance evaluation of the
EBL and the BAL on the Barley marker data
(left), and a simulated dense marker data set
(right). The results are summarized by boxplots
of posterior means over 50 replicated data sets.
Top: the estimation errors (differences between
the posterior means and known true values)
for true signals i.e., QTL. Middle: the estimation
errors with regard to false signals i.e., non-QTL.
Bottom: predictive root mean square errors.
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Comparison to the Bayesian adaptive LASSO: Sun

et al. (2010) also introduced locus-specific smoothing
parameters in the Bayesian LASSO, but without a
separation between model sparsity and parameter
shrinkage hyperparameters. They proposed a fully
Bayesian method, the BAL, along with an iterative
method, the iterative adaptive LASSO, for fitting their
model to the data. We compared the performance of
the EBL to the BAL on simulated data on the basis of the
Barley marker data and the simulated dense marker
data set used before. We fitted the BAL to the simulated
data replicates using the R library BPrimm (Sun et al.
2010). The BAL has two tuning hyperparameters d and
t, with a default setting of d¼ 1 and t¼ 0.01. We used a
set of hyperparameter values. With the default setting,
the BAL had comparable performance to the EBL on
these particular data sets with a good separation
between QTL and non-QTL effects as can be seen from
Figure 5. The reported results are based on 10,000
MCMC iterations with 4000 burn-in iterations.

However, we found that the performance of the BAL
may be sensitive to the tuning of the hyperparameters d

and t, with larger values of t pointing to bad separation
between QTL and non-QTL effects. This is apparent
from the results displayed in Figure 6, which depicts
typical patterns of posterior means of the marker effects
for different hyperparameter values under our simula-
tion setting based on the Barley marker data.

It is worth giving credit to Sun et al. (2010) for the
recommendation of small values of t. However, too small
a value for t may excessively shrink and eventually set to

zero small to moderate effects. As already pointed out
above, this might not be desirable for phenotype pre-
diction. The bottom line is that, while Sun et al.’s (2010)
approach is an improvement over the Bayesian LASSO,
tuning is still an issue therein. The EBL brings more
flexibility by separating model sparsity and parameter
shrinkage, thereby mitigating the impact of tuning on
the model results. In our simulation study, the locus-
specific hyperparameter, lj, was efficiently estimated
from the data, even when uniform prior with large
support such as (0, 100) were placed on d and hj, and the
results remained robust to changes in the range of these
hyperpriors.

Scalability: It is important to point out that our focus
here is on model structure. We are currently engaged in
designing practical computational methods that may be
needed for large-scale problems. For problems involv-
ing a couple of hundreds of predictors (loci), the
MCMC-based full Bayesian approach using WinBUGS/
OpenBUGS as described here can efficiently be applied.
De los Campos et al. (2009) applied a MCMC-based fully
Bayesian approach to fit the BL to a data set involving
more than 10,000 predictors.

CONCLUSION

In this article we have proposed the extended
Bayesian LASSO method for QTL mapping and un-
observed phenotype prediction. The EBL introduces
locus-specific regularization parameters and is parame-
terized so as to separate the overall model sparsity to the

Figure 6.—Typical patterns of posterior
means of marker effects for different hyperpara-
meter values under our simulation setting based
on the Barley marker data with QTL at loci 4, 25,
50, and 65 with respective effects 2, �2, 4, and
�4. The results are based on 10,000 MCMC iter-
ations, with the first 4000 samples discarded as
burn-in.
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degree of shrinkage of each marker effect. The explicit
separation of these two features allows the EBL to
overcome the curse of tuning, which may affect the
performance of a similar approach proposed by Sun

et al. (2010), which, like the BL, does not include a
mechanism for separating model sparsity from param-
eter shrinkage. We are unaware of any previous attempt
to separate these two aspects.

Under our model parameterization, the parameter
representing the overall model sparsity is effectively
estimated by pooling information (i.e., borrowing
strength) across loci, whereas locus-specific effects meant
to enforce differential shrinkage across loci are obtained
as deviations from the overall parameter. Xu (2003) also
proposed the normal Jeffreys’ Bayesian shrinkage
method, which does not require tuning. However, unlike
Xu’s approach, the methodology proposed here enter-
tains the possibility of incorporating information relating
to the degree of model sparsity through the prior
imposed on the corresponding parameter.

Simulations demonstrated the good performance of
the EBL with regard to the accuracy of parameter
estimates and phenotype predictions, suggesting the
potential of this method in QTL/association mapping
and phenotype prediction, as well as genomic breeding
value estimation and prediction in animal and plant
breeding programs.
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