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ABSTRACT

The idea that molecular data should contain information on the recent evolutionary history of popu-
lations is rather old. However, much of the work carried out today owes to the work of the statisticians and
theoreticians who demonstrated that it was possible to detect departures from equilibrium conditions (e.g.,
panmictic population/mutation–drift equilibrium) and interpret them in terms of deviations from neu-
trality or stationarity. During the last 20 years the detection of population size changes has usually been
carried out under the assumption that samples were obtained from populations that can be approximated
by a Wright–Fisher model (i.e., assuming panmixia, demographic stationarity, etc.). However, natural pop-
ulations are usually part of spatial networks and are interconnected through gene flow. Here we simulated
genetic data at mutation and migration–drift equilibrium under an n-island and a stepping-stone model.
The simulated populations were thus stationary and not subject to any population size change. We varied the
level of gene flow between populations and the scaled mutation rate. We also used several sampling schemes.
We then analyzed the simulated samples using the Bayesian method implemented in MSVAR, the Markov
Chain Monte Carlo simulation program, to detect and quantify putative population size changes using
microsatellite data. Our results show that all three factors (genetic differentiation/gene flow, genetic
diversity, and the sampling scheme) play a role in generating false bottleneck signals. We also suggest an ad
hoc method to counter this effect. The confounding effect of population structure and of the sam-
pling scheme has practical implications for many conservation studies. Indeed, if population structure is
creating ‘‘spurious’’ bottleneck signals, the interpretation of bottleneck signals from genetic data might be
less straightforward than it would seem, and several studies may have overestimated or incorrectly detected
bottlenecks in endangered species.

THE idea that molecular data should contain infor-
mation on the recent evolutionary history of pop-

ulations is not new and traces back to the beginning
of the 20th century (e.g., Hirschfeld and Hirschfeld

1919). However, much of the work carried out today
owes to the seminal work of the statisticians and theo-
reticians who demonstrated that it was possible to detect
departures from equilibrium conditions (e.g., panmictic
population/mutation–drift equilibrium) and interpret
them in terms of deviations from neutrality (Watterson

1975; Tajima 1989b) or stationarity (Nei et al. 1975;

Tajima 1989a). Following this period most studies have
primarily been concerned with the statistical properties
of relatively simple models such as the Wright–Fisher
(WF) or Moran models (Ewens 2004). During the last
20 years the detection of population size changes (e.g.,
Tajima 1989b; Slatkin and Hudson 1991; Rogers

and Harpending 1992; Cornuet and Luikart 1996;
Beaumont 1999; Garza and Williamson 2001; Storz

and Beaumont 2002) has usually been carried out un-
der the assumption that samples were obtained from
populations that can be approximated by a WF model.
However, natural populations are usually part of spatial
networks and are interconnected through gene flow.
They are hence rarely isolated as in the WF model. To
be clear, structured models with several populations
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or demes such as the n-island (Wright 1931) or the
stepping-stone models (Kimura and Weiss 1964) have
been proposed decades ago in population genetics.
Also, a number of authors have proposed methods to
infer parameters under structured models (Wakeley

1999; Beerli and Felsenstein 2001; Chikhi et al. 2001;
Hey and Nielsen 2004; Excoffier et al. 2005; Beerli

2006; Becquet and Przeworski 2007; Bray et al.
2009). However, the number of populations involved is
generally limited compared to the n-island and step-
ping-stone models (but see Beerli and Felsenstein

2001; De Iorio et al. 2005). Models accounting for both
population structure and population size changes would
probably be more realistic for most species but the only
inferential method currently available (Hey 2005) re-
mains little tested under cases of structured popula-
tions (but see Strasburg and Rieseberg 2010 for a
very recent study). While it would be important to de-
velop and test flexible approaches allowing the de-
tection and quantification of population size changes
in structured populations (Hey 2005) it is also impor-
tant to quantify the robustness of existing methods to
population structure. In particular it would be impor-
tant to determine the extent to which methods that are
widely used but ignore structure can correctly detect or
quantify bottlenecks or expansions. This has both
practical and theoretical reasons.

In a seminal work, Wakeley (1999) showed that when
populations are structured according to an n-island
model, a false signal of population bottleneck can be
observed within single demes. The reason behind this
confounding effect can be understood in terms of
coalescent trees. The genealogy of a sample taken from
one deme in an n-island model will have short branches
for the lineages that coalesce within the sampled deme.
However, for lineages that arrived in the sampled deme
through gene flow, we expect to observe much longer
branches, since coalescent events will then be depen-
dent on the effective size of the whole set of demes
(Wakeley 1999). Thus, a typical gene tree is expected to
have a combination of sets of short branches connected
to each other by long branches. This kind of genealogy
is exactly what is expected in a bottlenecked population
(Hudson 1990; Beaumont 2003a; Hein et al. 2005).
How strong this effect will be should depend on the
relative rate of gene flow (m) and within population
coalescence events (1/N, where N is the effective size of
a deme). When gene flow is high over wide geographical
areas, the whole set of populations sampled may behave
as a single large population and it may be reasonable to
keep assuming a WF model. Similarly, when gene flow is
very limited, as might be the case for some isolated
populations, most alleles will likely coalesce within the
sampled population and the WF model may apply again.
Thus, in these extreme cases, it seems reasonable to
apply the methods developed to detect and quantify
population size changes (Cornuet and Luikart 1996;

Beaumont 1999; Garza and Williamson 2001; Storz

and Beaumont 2002). Intermediate situations are likely
to be present in real-life cases but this confounding
effect has been little studied.

Another issue that has little been explored is that of
the sampling scheme. In most studies, whether they are
based on simulated or real data, it is usually assumed
that samples are taken from single demes. However, with
real species the delimitation between populations is
rarely clear. Samples obtained in nature may thus come
from more than one population. This is particularly
crucial in endangered species, where small samples
taken from different demes (for instance forest frag-
ments) may need to be pooled for some analyses. This
may also be problematic in species where social groups
may create another level of substructure that would also
violate the random mating assumptions. To understand
the potential effect of the sampling strategy on the
detection of bottlenecks, we can take the extreme and
hypothetical case where each sampled individual or
gene comes from a different deme. It is expected that
coalescence times will follow a standard coalescent with
an effective population size equal to that of the meta-
population (Wakeley 1999). While this extreme case is
unlikely to happen by chance, it suggests that the sam-
pling scheme might counter, to some extent, the bot-
tleneck effect due to population structure. This may
seem counterintuitive but has recently been confirmed
by Städler et al. (2009) who found that when one pop-
ulation is sampled in a stepping-stone or n-island model,
positive Tajima D values (corresponding to bottlenecks
in a WF model) are typically observed and that the
Tajima D values tend toward zero (stationary population
in a WF model) when samples from different demes are
pooled together and gene flow is high.

The confounding effects of population structure and
of the sampling scheme have practical implications for
many conservation studies. Indeed, in recent years there
has been an increasing use of genetic data to reconstruct
the demographic history of endangered species, often to
detect, quantify, and/or date bottlenecks (Garza and
Williamson 2001; Goossens et al. 2006; Leblois et al.
2006; Okello et al. 2008; Olivieri et al. 2008; Craul

et al. 2009). Endangered species are often thought
or known to have undergone bottlenecks due to hunt-
ing, the introduction of alien species, or habitat loss
(Goossens et al. 2006; Olivieri et al. 2008; Craul et al.
2009; Quéméré et al. 2009; Sousa et al. 2009b). However,
if population structure is creating spurious bottleneck
signals, the interpretation of bottleneck signals from
genetic data might be less straightforward than it would
seem, and several studies may have overestimated or in-
correctly detected bottlenecks.

In this study we analyze the effect of the sampling
scheme, the amount of gene flow, and genetic diversity
on the generation of signals of population size change
using the method of Beaumont (1999). We used this
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method because it is a full-likelihood Bayesian method
that is expected to use the genetic data efficiently, hence
detecting bottlenecks when summary statistics-based
methods are potentially unable to detect significant
departures (e.g., Olivieri et al. 2008; Sousa et al. 2008).
To do this, we simulated genetic data at mutation and
migration–drift equilibrium under an n-island and a
stepping-stone model. The simulated populations were
thus stationary and not subject to any population size
change. We varied the level of gene flow between
populations and the scaled mutation rate. We also used
several sampling schemes. We then analyzed the simu-
lated samples using the Bayesian method implemented
in the MSVAR program (Beaumont 1999) to detect and
quantify putative population size changes. Our results
show that all three factors (gene flow/genetic differen-
tiation, genetic diversity, and the sampling scheme) play
a role in generating false bottleneck signals. We also
suggest an ad hoc method to counter this effect.

MATERIALS AND METHODS

Simulated data sets: n-island model: Data were simulated
using the coalescent algorithm of Beaumont and Nichols

(1996) for an n-island equilibrium model with n¼ 100 islands.
All islands were assumed to be of size N individuals and to
exchange migrants at a constant rate m. The model is fully
characterized by the scaled mutation rate (u¼ 4dNm), where m
is the per locus mutation rate, d is the number of demes or
islands, and by the scaled migration rate (M¼ 4Nm). Since we
were interested in microsatellite rather than sequence data,
mutations were assumed to occur under the stepwise mutation
model (SMM), at the same rate for all loci. The SMM was also
used as it is the mutation model assumed by the method of
Beaumont (1999). We investigated the effect of varying u and
M on the detection of false bottlenecks by simulating data sets
with u ¼ (1, 10) and M ¼ (99, 19, 9, 3). The values of M were
chosen so as to correspond to the FST values expected at
equilibrium for an infinite island model, namely FST ¼ (0.01,
0.05, 0.1, 0.25), respectively, according to the expression FST¼
1/(1 1 M). These values typically encompass the values
observed in most real data sets published in conservation
genetics, e.g., FST ¼ 0.00–0.14 in the Mediterranean toad
(Goncxalves et al. 2009), FST ¼ 0.00–0.20 in mouse lemurs
(Olivieri et al. 2008), and FST ¼ 0.01–0.12 in the Bornean
orangutan (Goossens et al. 2005). Note that these expected
FST values are theoretically valid only under the infinite allele
model (IAM) and infinite-island model (or n-island when n is
large). Due to homoplasy, lower FST values are expected under
the SMM. As a simple test we thus performed 1000 simulations
under the SMM to determine the extent to which the FST

distributions and averages obtained in the simulated data
would be different from the theoretical values above. Our
results (supporting information, Figure S1) suggest that the
observed means and expected values are very close to each
other under the n-island model whether we assume the SMM
or the IAM (Figure S1, a and b). For the stepping-stone model
the FST distribution between neighboring demes exhibited

averages slightly smaller than expected under the IAM and n-

island model (Figure S1, c and d). For simplicity, we will keep

referring to the equilibrium FST values given above throughout

the manuscript but the reader should be aware of this. We also

note that the FST values given should not be taken at face value
as measures of genetic differentiation (e.g., Chikhi et al. 1997;
Jost 2008). Throughout the manuscript we provide both M
and the corresponding equilibrium FST values for comparison
with real-case studies for which the level of gene flow is
unknown but FST values are provided.

We also investigated the effect of the sampling scheme by
considering three different sampling strategies. In all cases we
considered that 50 diploid individuals were sampled in total
(100 gene copies). In the first scheme, the genetic data were
sampled from 1 deme (this is the usual assumption). In the
second case we pooled the samples obtained in 2 different
demes (25 individuals in each). In the third case we obtained
samples from 50 demes, i.e., one individual per deme. Al-
together there were 24 different combinations of sampling
scheme and parameter values for u and M (u¼ (1, 10) and M¼
(3, 9, 19, 99)). For each of them 10 independent data sets
(replicates) were simulated with 5 loci. This number of loci was
chosen due to the fact that MSVAR is highly computational
(several days were typically necessary for one replicate/run).
To determine whether the number of loci had a major effect
on our results, we also repeated some of these analyses with 10
loci as many published microsatellite data typically have
between 8 and 12 loci. The samples were taken from 1 deme
and the parameter values used for these simulations were u ¼
(1, 10) and M ¼ (99, 19, 9) (i.e., FST ¼ (0.01, 0.05, 0.10)).

Stepping-stone model: To determine whether our results were
robust to the population structure model we repeated some of
the simulations assuming a stepping-stone model. Here the
simulations were performed assuming 5 loci, u ¼ (1, 10) and
two values of M ¼ (19, 3) (i.e., FST ¼ (0.05, 0.25)). All pa-
rameter combinations were repeated 10 times, hence corre-
sponding to 40 additional data sets. Thus, altogether 340
independent data sets (corresponding to 34 combinations of
parameter values, model, or sampling scheme) were analyzed
using MSVAR under the n-island (300) and stepping-stone
(40) model with 5 or 10 loci. This is to our knowledge one of
the largest tests performed on a full-likelihood method and
the first to test the robustness with a reasonably large number
of simulations (see Table S1).

Analysis with MSVAR: MSVAR implements a full-likelihood
Bayesian inferential method developed by Beaumont (1999).
The model assumes that a single stable population of size N1

started to decrease (or increase) ta generations ago to the
current population size, N0. The change in population size can
be either linear or exponential, and mutations are assumed to
occur under a SMM model, with rate u0¼ 4N0m, where m is the
locus mutation rate. Using a coalescent-based MCMC ap-
proach, the method estimates the posterior probability dis-
tributions of (i) the magnitude of population size change r ¼
N0/N1, (ii) the time since the population started changing size
scaled by N0, tf¼ ta/N0, and (iii) the scaled mutation rate u0¼
4N0m. The method uses the full allelic distribution taking into
account the relative size of microsatellite alleles. It is thus
expected to be more efficient at detecting population size
changes than methods based on summary statistics. The sim-
ulated data sets were given as input to MSVAR, assuming an
exponential model for the population size change. Wide uni-
form prior distributions were chosen, between �5 and 5 on a
log10 scale for log10(r), log10(u), and log10(tf), as in Olivieri et al.
(2008). For each data set one long run of 5 3 109 steps was
performed, with a thinning of 50,000 steps. Preliminary tests
showed that these runs were long enough to reach equilib-
rium. This was also confirmed by our experience with real data
sets (e.g., Goossens et al. 2006; Olivieri et al. 2008; Sousa et al.
2008). The first 10% of the chain was discarded (as burn-in)
and the remaining was assumed to be a sample from the joint
posterior distribution. We used the R language (R Development
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Core Team 2008) to analyze the outputs of MSVAR, using the
locfit (Loader 2007), coda (Plummer et al. 2009), mcmc (Geyer

2009), and MCMCpack (Martin et al. 2009) packages. The
convergence of the chains was tested with the Geweke (1992)
statistic. Note, however, that we were not interested in in-
ferring precisely the change in population size. Indeed, we
were interested in determining whether there was a clear bias
toward either bottlenecks or expansions, not whether the
quantiles were precisely estimated or whether the mean was
known with high precision. This is why convergence was not as
serious an issue for us as it would be with real data sets for
which several independent runs would need to be performed
for each data set (e.g., Okello et al. 2008; Olivieri et al. 2008;
Sousa et al. 2009a). Even in the very few cases where con-
vergence had not been reached (based on Geweke’s statistic)
visual inspection of the chains suggested that the chain was
close to equilibrium and the signal for either population
increase or decrease was clear.

Since we were interested in the detection of population size
changes we focused on the marginal posterior distribution of
log10(r) ¼ log10(N0/N1). Negative values correspond to a
population decrease (N0 , N1), whereas positive values point
to a population expansion (N0 . N1). Values close to zero
suggest a stable population (N0 ¼ N1). Flat posterior distribu-
tions suggest either a lack of information or no strong signal
for a change in population size. For each data set we also
recorded the mean and variance of the posterior distribution
and plotted the latter against the former.

Data from two Iberian minnow species and Bornean
orangutan populations: To determine whether we could
identify true from spurious bottleneck signatures in real data
sets, we compared the results obtained from two Iberian
minnows and orangutan populations using MSVAR (Goossens

et al. 2006; Sousa et al. 2008, 2009b) with the simulation results.
The Iberian minnow data sets consisted of six microsatellite loci
typed at 212 and 192 individuals from Iberochondrostoma lusita-
nicum and I. almacai, respectively. For each species, six pop-
ulations were sampled with sample sizes ranging from 21 to 43
in I. lusitanicum and from 12 to 50 in I. almacai, although most of
the populations had �40 individuals. Note that one locus was
monomorphic in I. lusitanicum. Thus, these real data set sam-
ples were similar to the simulations, with 50 diploid individuals
typed at five loci. The magnitude of the population size changes
(mean log10(N0/N1) estimated with MSVAR under the same
prior as the simulations), ranged from �3.14 to 0.18 in
I. lusitanicum and from �3.34 to �1.92 in I. almacai. These
species were characterized by F estimates, which are analogous
to average FST, obtained with the method of Vitalis and
Couvet (2001b) implemented in the program ESTIM (Vitalis

and Couvet 2001a). The F estimates ranged from�0.03 to 0.42
in I. lusitanicum and from�0.14 to 0.44 in I. almacai. This range
is the same as the average pairwise FST for each population
against all the others and is thus a reasonable measure of drift
within each population. The results of the two fish species were
compared with the simulations by dividing the data sets into two
groups to test for the effect of the population differentiation:
(i) FST , 0.1 and (ii) FST $ 0.1. The low expected heterozygosity
He found in these species (He , 0.45) and the MSVAR estimates
for u0 ¼ 4N0m suggested that the markers are characterized
by low u. Thus, the results were compared with the simulations
with u ¼ 1. We computed the expected heterozygosity for the
simulated data sets and found indeed He values mostly between
0.08 and 0.68 with an average of 0.47.

The orangutan data were obtained from Goossens et al.
(2006) and consisted of 200 individuals sampled in nine forest
fragments (S1–S9) located on the two sides of the Kinabatangan
River and genotyped at 14 microsatellites. The FST values
varied between 0.01 and 0.12 but the highest values were

observed between samples obtained from different sides of the
Kinabatangan, shown to be a barrier to gene flow (Goossens

et al. 2005). When samples were taken from the same river
side the FST values varied between 0.01 and 0.03 and between
0.01 and 0.06, with averages slightly above 0.02. In a study
aiming at determining whether orangutans had been subject
to population size changes (Goossens et al. 2006), two samples
were analyzed, namely S1 and S2, each from a different side of
the river, due to the computational cost of the method. For a
comparison between the orangutan data with the simulated
data sets we randomly sampled two subdata sets with 10 loci
from the original orangutan 14 loci data from S1 and S2
and analyzed them with MSVAR. The results were compared
with the simulation results obtained under the n-island and
stepping-stone models, with M ¼ (99, 19) corresponding to
the following expected FST ¼ (0.01, 0.05) and assuming
u ¼ 1. Indeed, the estimated value for u for single demes was
�0.007, suggesting a global value of u¼ 0.7, assuming d¼ 100
demes.

RESULTS

MCMC convergence: The Geweke (1992) test
suggested that most of the MCMC chains reached
equilibrium (337 out of 340, Figure S2). Exceptions cor-
responded to data sets with 10 loci and u¼ 10, where the
Geweke statistic values suggest that convergence was not
reached even though the chains were visually not
different from other chains. We note that in the vast
majority of the runs the posteriors were either similar to
the prior or suggested a population decrease. It is thus
unlikely that convergence affected our main conclusion
that population structure mimics population bottle-
necks (see below).

Genetic differentiation and diversity: Figure 1 shows
the posterior distributions obtained for log10(r) with five
loci. The main results are that (i) the posterior dis-
tributions are shifted toward the left (negative values
corresponding to a bottleneck), (ii) the intensity of this
confounding effect is dependent on the amount of gene
flow between populations, (iii) the effect of population
structure on the posteriors is itself significantly in-
creased when u ¼ 10 compared to u ¼ 1 (dashed vs.
solid lines). When gene flow is high with M ¼ 99 (i.e.,
genetic differentiation is limited, FST ¼ 0.01) and to a
lesser extent for M ¼ 19 (FST ¼ 0.05) most posterior
distributions do not lead to a significant signal, as they
are relatively flat and exhibit large variances that are very
similar to those of the prior (Figure 2). This is
particularly true when u ¼ 1. The bottleneck effect is
however extremely clear for small M values when u¼ 10.
Indeed, real data exhibiting similar posteriors would be
interpreted as strong evidence for a population de-
crease around two orders of magnitude (Figures 1, c and
d and 2, c and d). However, we note that even for low
levels of gene flow (M values as low as 3 or FST values as
high as 0.25), there are cases where the posteriors had a
mean close to zero and a large variance (Figure 2d).
This is more frequent for u ¼ 1 but even with u ¼ 10 we
found 1 case out of 10, with a very wide and flat posterior
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distribution. Thus, it appears that population structure
creates a spurious bottleneck effect that increases with
genetic differentiation and with genetic diversity. The
FST values at which this bottleneck effect is detected are
typically found in the literature of both endangered and
nonendangered species (e.g., Goossens et al. 2006;
Olivieri et al. 2008; Craul et al. 2009; Holsinger and
Weir 2009; Rosel et al. 2009). Another result apparent
in Figure 2 (and in Figures 3 through 7) is the linear
relationship (on a log–log scale) between the mean and
variance of the posteriors obtained for the simulated
data sets. The meaning of this relationship is unclear
but it suggests that it may be possible to identify points
that are clearly outside this ‘‘trend’’ and correspond to
populations that are unlikely to exhibit bottleneck
signals due to population structure.

The sampling scheme: The effect of the sampling
scheme appears in Figure 3 where, for M ¼ 3 or FST ¼
0.25, we plotted the variance against the mean in cases
where 2 and 50 demes were sampled (corresponding to
40 posteriors). They show that the means and variances
of the posterior distributions tend toward the values of
the prior when the number of sampled demes increases
(Figure 3c). Interestingly, when two demes are sampled
for the most extreme case of gene flow (M ¼ 3, FST ¼
0.25), we can see a pattern similar to that observed for
M ¼ 9 (FST¼ 0.1) when only 1 deme is sampled (Figure
2c). When 50 demes are sampled (one diploid in-
dividual from each deme) the situation is even more
extreme with most posteriors exhibiting little bottle-
neck signal as for the data obtained for M ¼ 99 (FST ¼

0.01) when only 1 deme is sampled. These results
suggest that the chances of obtaining estimates suggest-
ing a spurious population decrease are higher when
analyzing samples taken from a single deme than
samples mixing more than 1 deme. It also suggests that
one way of countering this spurious effect is to analyze
samples taken from as many demes as possible.

The number of loci and the model of population
structure: As Figure 4 shows, there were differences
when 10 loci were used instead of 5. In general the means
of the posteriors were shifted more toward negative
values, but this effect was stronger for u ¼ 10 than for
u ¼ 1. In general, the analyses with 10 loci tended to
return more precise posterior distributions (smaller
variance), thus increasing the support for spurious
population declines. However, for u ¼ 1 and high gene
flow (M ¼ (99, 19), i.e., FST ¼ (0.01, 0.05)) we note that
the use of 10 loci did not have a very strong effect. As can
be seen in Figure 5 there are no major differences
between the results obtained under the stepping-stone
model and the island model. For higher scaled mutation
rates and lower levels of gene flow (lower right panel)
the means under the stepping-stone model tend to be
slightly lower than under the island model, suggesting a
slightly stronger spurious bottleneck effect.

Comparison of the simulations with real data: In
Figure 6 the results of the fish data are compared with
the distribution of the mean and variance of the
magnitude of the population size change (log10(r)
where r ¼ N0/N1) obtained in the simulations. The
results of the two species fall outside the points

Figure 1.—Influence of gene flow and genetic diversity in the detection of bottlenecks—posteriors. Posterior distributions were
obtained for log10(r), where r is the ratio of present (N0) over ancient (N1) population size change. Negative and positive values of
log10(r) correspond to population bottlenecks and expansions, respectively. For all analyses the prior for log10(r) was a uniform
between �5 and 5 and is represented by the horizontal dashed line. The results were obtained with five loci and 50 diploid in-
dividuals sampled from a single deme assuming a 100-island model (see text for details). (a) Posteriors obtained for all the sim-
ulations performed for M¼ 99 (i.e., FST¼ 0.01) and for u¼ 1 (solid lines) and u¼ 10 (dashed lines). (b) Same as in a, but for M¼
19 (i.e., FST¼ 0.05). (c) Same as in a, but for M¼ 9 (i.e., FST¼ 0.10). (d) Same as in a, but for M¼ 3 (i.e., FST¼ 0.25). Most posterior
distributions are shifted to the left but are in general relatively flat for high levels of gene flow and not very different from the prior.
Posteriors indicating a potential bottleneck were obtained for the lowest levels of gene flow and the highest genetic.
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generated with the simulations, which represent the
expected distribution for the means and variances of
log10(r) values if population structure was the only
factor. Compared with the simulations, the real data
had a lower variance and in four samples the mean was
more negative than the lowest value obtained with the
simulations. Also, contrary to the distribution found
with the simulations, the results of the fish species
appear to be independent of the FST estimates, with
most of the points in the region of means between �3
and �2 and variances between 0 and 2 in both the right
and left panels (i.e., with both high and low FST values).
For the orangutan data, the comparison with the
simulated data (Figure 7) shows that the real data are
more extreme, exhibiting a stronger and clearer bottle-
neck than expected in the simulations. This suggests
that population structure alone may not fully explain
the bottleneck signal detected by Goossens et al.
(2006).

DISCUSSION

The importance of population structure: The simu-
lations presented here show that when samples are
obtained from populations that are actually stationary
and at mutation–drift equilibrium but are intercon-
nected by gene flow, MSVAR detects bottlenecks that are
apparently not distinguishable from real bottlenecks in
WF populations. While this effect has been known from
a theoretical point of view (Wakeley 1999; Beaumont

2003b, 2004; Nielsen and Beaumont 2009), it had not
been quantified for data sets simulated with different
levels of gene flow and diversity. We found that the effect
was limited when genetic differentiation was low but
that it could be observed for values of FST that are
typically reported in the literature (e.g., Goncxalves et al.
2009; Holsinger and Weir 2009; Quéméré et al. 2009;
Rosel et al. 2009). We found that the effect was par-

ticularly strong with high values of u, which either cor-
respond to highly variable markers or to species with
large effective population sizes. This is particularly
interesting as it means that structured populations with
large effective sizes are the ones that are most likely to
exhibit this spurious bottleneck effect.

This may seem counterintuitive but is in agreement
with several recent studies as we discuss later in this
section, and in particular with Wakeley (1999). It is also
worrying because a large population that has recently
been affected by environmental change may exhibit a
bottleneck signal not necessarily because of the recent
habitat contraction but also because it used to be large
and structured. This is likely to be the kind of species
that attracts interest of conservation biologists. That is,
our results suggest that we might have found a bottle-
neck signal, even if we had sampled an abundant and
structured species before it started decreasing. Given
that several vertebrate species currently endangered
used to be widely distributed and were probably
structured, this result may apply to some of them. Also,
the fact that for most of these species we do not have
access to nondisturbed populations, due to major
habitat losses that have taken place in the last centuries,
we may not be able to obtain samples from undisturbed
populations for which the spurious bottleneck effect
could be quantified.

This result does not mean that a bottleneck detected
today is necessarily unrelated to recent demographic
changes due to habitat loss and fragmentation in
endangered species, but it does suggest that it is
currently difficult to separate the two effects (popula-
tion structure and collapse). For instance, one could
imagine a hypothetical situation where MSVAR identi-
fies population size decreases by three orders of
magnitude, but that population structure contributed
to a 100-fold decrease, as some of our simulations
suggest, whereas the actual demographic decrease was

Figure 2.—Influence of gene flow and genetic diversity in the detection of bottlenecks—means and variances. This figure rep-
resents on the x- and y-axes, respectively, the means and variances computed for the posterior distributions represented in Figure 1
for log10(r) where r ¼ N0/N1. For comparison, the mean and variance of the prior are represented by the vertical and horizontal
dotted lines, respectively. Negative means correspond to population bottlenecks, whereas positive means correspond to popula-
tion expansions. The open circles correspond to posteriors obtained for u¼ 1, whereas the triangles were obtained with u¼ 10. (a)
Results correspond to simulations with 5 loci and 50 diploid individuals sampled from a single deme, assuming M ¼ 99 (average
equilibrium FST ¼ 0.01) in a 100-island model (see text for details). (b) Same as in a, for M ¼ 19 (FST ¼ 0.05). (c) Same as in a,
for M ¼ 9 (FST ¼ 0.10). (d) Same as in a, for M ¼ 3 (FST ¼ 0.25).
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‘‘only’’ 10-fold. One could probably imagine any com-
bination of these two effects. At this stage it is difficult to
say how population structure and population size
change may interact, whether it is additive or not.

It is also important to stress that most inference
methods available to users that explicitly model pop-
ulation size change ignore population structure, except
for simple models with few populations (Hey and
Nielsen 2004; Hey 2005). Also, it seems reasonable to
state that this confounding effect is general, as it is
related to the statistical properties of the gene trees
generated under different scenarios (population struc-
ture/collapse). It is expected to affect all methods or
statistics currently used to detect, quantify, or date
population size changes. Here we used the method of
Beaumont (1999) because it is expected to be very
efficient at retrieving information from the full allelic
distribution and because full-likelihood methods tend
to be less tested than those based on summary statistics
(Table S1). The effect on other methods that use only
part of this information through the computation of
one or several statistics may vary but there is no
particular reason to assume that the problem discussed
here should be specific to MSVAR. Indeed, the null
distributions of the statistics used by other methods are
derived or computed assuming a simple WF model with-
out population structure. This has been confirmed by
Städler et al. (2009) for the widely used Tajima

(1989b) and Fu and Li (1993) statistics. Another recent
study by Broquet et al. (2010) also found deviations
from stationarity using the method of Cornuet and
Luikart (1996) under scenarios of habitat loss and
fragmentation. They found that reduction in the
amount of gene flow between isolated fragments could
lead to signals of bottleneck using the DH statistic.

Our results are in agreement with the results of
Wakeley (1999) who showed that structured popula-

tions can exhibit a signal of population bottlenecks even
if they are actually growing and increasingly exchanging
migrants. His study was partly motivated by the obser-
vation that many genetic studies on humans were
finding signals of population bottlenecks when pre-
sent-day population sizes are most likely greater than
that of prehistoric humans. Our results are also similar
to those of Städler et al. (2009) who studied the effect
of population structure on two summary statistics used
to detect selection or population size changes in se-
quence data. They too simulated data under n-island
and stepping-stone models of population structure and
found that genetic differentiation was biasing Tajima’s
D (Tajima 1989b) and Fu and Li’s D (Fu and Li 1993)
toward positive values that are typically observed in
declining and isolated WF populations. Städler et al.
(2009) were mostly interested in detecting potential
spatial expansions and in quantifying the extent to
which population structure and the sampling scheme
could hinder this detection. Here, by contrast, we are
interested in bottlenecks and determining the condi-
tions under which bottlenecks are spuriously detected.
Städler et al. (2009) studied scenarios where an ances-
tral population suddenly became structured, while either
staying demographically stationary or increasing signif-
icantly in size. Their results showed that the above two
summary statistics were strongly influenced by popula-
tion structure and the sampling scheme. Moreover, they
were interested in sequence data, whereas we were
interested in microsatellite data and in methods using
the full allele frequency information. The latter point is
particularly important as full-likelihood methods are
supposed to use genetic information more efficiently.
We show here that instead of providing better and more
precise results, full-likelihood methods can provide
stronger support for incorrect answers, at least under
some conditions.

Figure 3.—Effect of the sampling scheme. The x- and y-axes are the same as in Figure 2, representing the mean and variance of
the posterior distributions for log10(r) obtained for three sampling schemes and with 2 scaled mutation rates (u ¼ (1, 10)) and for
M¼ 3 (FST¼ 0.25). The open circles correspond to posteriors obtained for u¼ 1, whereas the triangles were obtained with u¼ 10.
In all cases, 50 diploid individuals were sampled, using 5 loci and assuming a 100-island model. (a) All individuals were sampled
from the same deme. This is identical to d in Figure 2 and is represented here for comparison. (b) Same as in a, but all individuals
were sampled from 2 demes (i.e., 25 individuals from each). (c) Same as in a, but individuals were sampled from 50 demes (i.e., one
individual from each).

Population Structure and Bottleneck Signals 989

http://www.genetics.org/cgi/data/genetics.110.118661/DC1/5


In another study Leblois et al. (2006) tried to address
a different but related issue. These authors used an
isolation-by-distance model, where each node corre-
sponds to an individual rather than a deme. They then
analyzed genetic samples after a fragmentation event,
by sampling individuals from the only remaining
habitat fragment. They applied the summary statistics-
based methods of Cornuet and Luikart (1996) and
Garza and Williamson (2001) to determine whether
the fragmentation event led to signals of bottleneck.
Their analyses suggested that a rather complex set of
results could be observed. They found, as expected, that
bottlenecks could be detected, but, very surprisingly,
they also found a significant proportion of expansion
signals. This is particularly interesting since expansion
signals have also been observed in real data sets from
endangered species known to have rapidly decreased in
the last decades due to habitat fragmentation when the
method of Cornuet and Luikart (1996) was used (e.g.,
Cook et al. 2007; Johnson et al. 2008; Olivieri et al.
2008). We have also found this in another set of simu-
lations to which the Bottleneck program was applied (L.
Chikhi and V. Sousa, unpublished data). Altogether,
the studies mentioned above (Wakeley 1999; Leblois

et al. 2006; Städler et al. 2009; Broquet et al. 2010) and
ours, suggest that structured populations can generate
genetic signatures and patterns that cannot be properly
studied by using simple WF models. It is important to
note that this is true for nonspatial (n-island) or

spatially structured (stepping-stone) models. The in-
terest for spatially explicit models has increased in the
last few years, notably for nonequilibrium situations.
For instance, a recent set of studies has shown that
spatial expansions can generate genetic signatures that
can be very different from those expected under a
simple WF model (Ray et al. 2003; Edmonds et al.
2004; Klopfstein et al. 2006; Currat et al. 2006,
2008). For instance Currat et al. (2006) showed that
a spatial expansion can favor the surfing behavior of
neutral alleles that are rare in the source populations.
This can lead to near-fixation in some of the expan-
ding populations. Such large allele frequency differ-
ences can then be mistaken for the signature of
selection. Clearly, all these and other recent studies
and reviews (e.g., Goldstein and Chikhi 2002;
Edmonds et al. 2004; Nielsen and Beaumont 2009;
Ray and Excoffier 2009) strongly suggest that there is
still much to be learned about the properties of
genetic samples taken from structured populations,
with or without expansion.

While this was not the focus of our article, it is worth
mentioning that, to our knowledge, this is one of the
first studies to perform a robustness test on a full-
likelihood coalescent-based method (see, however,
Strasburg and Rieseberg 2010). Indeed, the data sets
typically used to test full-likelihood methods in simula-
tion studies are usually generated under the model of
interest. Our study differs from previous tests in that we

Figure 4.—Effect of the number of loci on population size change estimates. Means and variances of the posterior distributions
for log10(r) are shown for samples using 5 and 10 loci for different levels of gene flow and for the two scaled mutation rates (u ¼ 1
for a, b, and c; u ¼ 10 for d, e, and f). The results were obtained by sampling 50 diploid individuals from a single deme in a 100-
island model.
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simulated data under a model that is likely to be more
realistic than a WF model for most species. We thus
tested the robustness of the method to a specific model
misspecification. Our results suggest that robustness
should be better investigated in the future and that
conclusions drawn from model-based methods might
need to be reevaluated.

Our results would appear to suggest that the MSVAR
program has a bias toward detecting bottlenecks. As
noted in the Introduction, Wakeley (1999) has shown
that if samples are taken from a structured population,
one gene per deme, the expected genealogy should be
the same as that of a rescaled WF model. In such a case
we would expect that MSVAR and other methods should
not detect any signal of population size change. Figure
3c showed that indeed, when we were sampling individ-
uals from different demes the bottleneck signal was
nearly absent. There is still a tendency to detect bottle-
necks, however, which may lead to incorrect inference
when the number of loci used increases. However, in
this case we were sampling two rather than one gene per
deme. Of course, one can simply sample only one gene
per individual, but for endangered species, this may
lead to a reduction in sample size. Another explanation
for the ‘‘bias’’ is that Wakeley’s result is based on the
infinite-island model. As a simple test, we simulated data
from an n-island model, where one gene is sampled
from each of the 100 islands, and from a random mating
population for u¼ 1 and analyzed the data with MSVAR.
Our results show that most posteriors are very flat,

indicating no population size change. However, even for
the panmictic model, we do observe a slight bias in the
point estimate toward negative values (Figure S3). From
a Bayesian perspective the notion of bias of point
estimates is not very relevant: providing the true
parameter values are distributed according to the prior
(and providing the MCMC implementation has con-
verged), then the coverage of the credible intervals is
guaranteed to be exact—e.g., the true parameter value is
guaranteed to be within, say, the 90% limits, 90% of the
time. However, given that point values are often re-
ported in the literature, and there is often a naive
expectation that these should be unbiased, our obser-
vation has some cautionary relevance.

We also note that there is a literature bias since MSVAR
has been mostly used to analyze genetic data from
endangered species, i.e., species that are more likely to
have experienced bottlenecks than expansions. We note
that despite this bias, there are several cases where
expansions or no population size changes were detected
(Storz and Beaumont 2002) even when bottlenecks
were known to have taken place (Bonhomme et al. 2008).

Genetic data for conservation genetics: Genetic data
are increasingly used in conservation biology and it is
expected that management decisions may increasingly
depend on the results of genetic studies. However,
genetic data may be interpreted in different ways. For
instance an endangered species may lack genetic di-
versity for several reasons. It could be because it has
been subjected to a significant population decrease or

Figure 5.—Comparison of the stepping-
stone and n-island models. Means and var-
iances of the posterior distributions for
log10(r) are shown for samples obtained
for different levels of gene flow M ¼ (19,
3) (FST ¼ (0.05, 0.25) at equilibrium),
and scaled mutation rates u ¼ (1, 10), un-
der the n-island (open circles) and a two-
dimensional stepping-stone model (solid
triangles). In both cases, 50 diploid indi-
viduals sampled from a single deme and
typed at 5 loci were analyzed.
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because it has had a small population size for long
periods of time (Johnson et al. 2008; Okello et al.
2008). The statistical methods used to detect population
size changes usually ignore population subdivision and
our results show that this may generate incorrect results
under conditions that are likely to be common in
nature. It may thus be necessary to reevaluate a number
of older studies that detected past population size
changes. At the same time, we found that when the
samples are taken from several demes, MSVAR did not
detect bottlenecks in most cases. This suggests an ad hoc
approach to counter this effect and determine whether
the single sampled populations have indeed been sub-
ject to a population size change. If a bottleneck is still
detected when samples come from several demes, it may
be that the whole metapopulation was subject to a
population size change. This ad hoc approach would
require analysis of samples obtained by maximizing the
number of subpopulations. Indeed, for many endan-
gered species currently living in a fragmented environ-
ment, one could take one individual per fragment, and
if the number of fragments sampled is limited, one
could take individuals from different social groups or
locations within each fragment. Another solution was
also proposed by Beaumont (2003a) for another model
of population size change without mutations (pure
drift). In this model he found that the results were
improved by using temporal samples.

At another time scale, serially sampled data (i.e.,
present and ancient DNA) may prove extremely useful
in disentangling structure and population size change.
The reason for this was pointed out to us by J. Thorne

(personal communication). If we assume that we have
both modern and ancient samples from the same deme,
we can consider two possibilities. Either this deme is
isolated (i.e., no population structure) or it is connected
to other demes by gene flow (population structure). If
we now consider the sampled genes that have not yet
coalesced at the time of the ancient samples we can see
that the situation is very different with or without

structure. If there were no structure, then all non-
coalesced lineages will be exchangeable, whether they
were from modern or ancient DNA samples. On the
other hand, if there were some form of population
structure, only the modern-day lineages that have not
coalesced yet will have a probability to be in another
deme. Thus the coalescence rates with the genes
sampled in the past will be different. Thus, this differ-
ential rate of coalescence times suggests that with suff-
icient data there should be a way to statistically separate
the two models.

Another ad hoc way to assess whether population
structure is the main factor responsible for the genetic
patterns is to compare the real data with the simulations
results. The comparison of the MSVAR estimates of the
two Iberian minnow species I. lusitanicum and I. almacai
(Sousa et al. 2008, 2009b) with the simulations shows
that the real data fall outside the expected distribution,
suggesting that population structure alone may not
explain the results of these two species. Despite the fact
that the real data sets consisted of individuals genotyped
at six loci (against five in the simulations) and the fact
that populations had different sample sizes, these
results indicate that the populations in the two species
are probably undergoing a population decrease. This is
in agreement with field data indicating a recent pop-
ulation decline in both species (Alves and Coelho

1994; Cabral et al. 2005). We also note that the two
species had very low levels of genetic diversity (with He ,

0.5). The comparison with the simulations and with u¼
1 was thus probably conservative. For the orangutans the
data also appeared to be outside the distribution of the
simulated data. However, the results are not completely
clear and we believe that more work is necessary to
confirm or contradict the conclusions of the Goossens

et al. (2006) study. Of course, these ad hoc methods are
tentative only as many complexities of real-life systems
could still cause false bottleneck signals.

It is finally worth noting that most population genetic
studies typically try to identify ‘‘populations’’ to which

Figure 6.—Comparison of the Iberian
minnow data with the simulations. Means
and variances of the posterior distributions
for log10(r) are shown for samples gener-
ated under different levels of gene flow
M ¼ (99, 19) (i.e., FST ¼ (0.01, 0.05), left)
and M ¼ (9, 3) (FST ¼ (0.10, 0.25), right)
with scaled mutation rate u ¼ 1, under the
n-island model and a two-dimensional step-
ping-stone model. In both cases, 50 diploid
individuals sampled from a single deme
and typed at five loci were analyzed. The re-
sults obtained for Iberochondrostoma lusitani-
cum and I. almacai in Sousa et al. (2008,
2009b) are represented by the solid circles
and triangles, respectively. The FST values
for the fish data were computed using
the Vitalis and Couvet (2001b) method
as in the original studies.
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population genetics methods can be applied to estimate
parameters such as admixture rates, divergence times,
population size changes, etc. What our work and several
other studies implicitly or explicitly suggest (Leblois

et al. 2006; Städler et al. 2009; Broquet et al. 2010) is
that this approach can be misleading because the
identified populations are rarely isolated. Thus, it will
be important to determine when the identified popula-
tions can be approximated by an isolated WF model and
when they cannot, as we tried here for the quantification
of population size changes.

CONCLUSION AND PERSPECTIVES

Altogether our results and those of several previous
studies (Leblois et al. 2006; Städler et al. 2009) suggest
that population and conservation geneticists should be
very careful while interpreting genetic data. This is true
for endangered populations subject to habitat loss and
fragmentation but it is just as true for other areas of
population genetics. As inferential methods have be-
come increasingly powerful, they may also have become
more sensitive to departures from model assumptions.
Methods that account for both population subdivision
and population size change may be difficult to imple-
ment as the number of parameters to estimate may grow
very quickly. An alternative solution may come from the
use of model-choice approaches. The recent develop-
ment of methods based on the approximate Bayesian
computation framework suggests that it is becoming
possible to choose among several models (e.g., Fagundes

et al. 2007; Cornuet et al. 2008; Bray et al. 2009; Lopes

et al. 2009; V. C. Sousa, unpublished results). In that
case it should be possible to determine whether data are
more likely to come from a structured model than from
a model with population size change (Peter et al. 2010).

It is important to add that all the simulations performed
here were done assuming only one kind of departure from
the model underlying MSVAR analyses. In real data, other
departures could also contribute in creating false bottle-
neck signals. This is particularly the case with the mutation
model. If the microsatellite data were generated by a
mutation process where insertion or deletion of more
than one repeat unit are possible, then this too could
create gaps in the microsatellite distribution, which would
also be interpreted as signals of bottlenecks. It is not clear
how important this effect would be. Thus, there is a place
for further research on the detection of past population
size changes using genetic data.
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Städler, T., B. Haubold, C. Merino, W. Stephan and P.
Pfaffelhuber, 2009 The impact of sampling schemes on the
site frequency spectrum in nonequilibrium subdivided popula-
tions. Genetics 182: 205–216.

Tajima, F., 1989a The effect of change in population size on DNA
polymorphism. Genetics 123: 597–601.

Tajima, F., 1989b Statistical method for testing the neutral mutation
hypothesis by DNA polymorphism. Genetics 123: 585–595.

Vitalis, R., and D. Couvet, 2001a Estim 1.0: a computer program
to infer population parameters from one-and two-locus gene
identity probabilities. Mol. Ecol. Notes 1: 354–356.

Vitalis, R., and D. Couvet, 2001b Estimation of effective popula-
tion size and migration rate from one-and two-locus identity
measures. Genetics 157: 911.

Wakeley, J., 1999 Nonequilibrium migration in human history.
Genetics 153: 1863–1871.

Watterson, G., 1975 On the number of segregating sites in genet-
ical models without recombination. Theor. Popul. Biol. 7: 256–
276.

Wright, S., 1931 Evolution in Mendelian populations. Genetics 16:
97–159.

Communicating editor: H. G. Spencer

Population Structure and Bottleneck Signals 995



GENETICS
Supporting Information

http://www.genetics.org/cgi/content/full/genetics.110.118661/DC1

The Confounding Effects of Population Structure, Genetic Diversity
and the Sampling Scheme on the Detection and Quantification

of Population Size Changes

Lounès Chikhi, Vitor C. Sousa, Pierre Luisi, Benoit Goossens and Mark A. Beaumont

Copyright � 2010 by the Genetics Society of America
DOI: 10.1534/genetics.110.118661



L. Chikhi  et al. 2 SI 

 
 

FIGURE S1.—Convergence analysis. This figure shows the Geweke statistics obtained for the 340 simulated data sets analysed. 

The region between the horizontal dashed lines correspond to the 95% confidence interval (2.5% and 97.5% quantiles of the null 

distribution [Normal(0,1)]). The region between the solid lines corresponds to the confidence region corrected using the 

Bonferroni procedure. 
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FIGURE S2.—Distribution of FST values in the n-island and stepping-stone model under the SMM mutation model. The results 
shown in the left and right panels were obtained with =1 and =10, respectively. In all panels, the vertical dashed lines 

correspond to the means of the simulated distributions whereas the vertical solid lines correspond to the expected values for the 

infinite island model under the IAM (infinite allele model) hence obtained as FST =1/(1+M), where M=4Nm and N is the effective 

size of single demes and m is the migration rate between demes. The distributions were obtained using 1000 simulations. The FST 

values were estimated according to COCKERHAM and WEIR 1993. a and b The two top panels show the distribution of the mean 

FST values in a 100-island model under the SMM model compared to the expected value under the IAM  for the four levels of 

gene flow used in this study. The two panels show that the four distributions means are very close to the expected values under 

the IAM. One hundred gene copies were sampled in each deme. c and d. The two lower panels show the distribution of the 

mean FST values in a two dimensional stepping-stone model, but with samples taken in two neighbour demes. These two panels 

show that the expected FST values between neighbouring demes are close, and slightly smaller than expected in the n-island 

model, but exhibit a large variance. Here 100 gene copies were sampled corresponding to 50 in each deme. 
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FIGURE S3.—Effect of the sampling scheme on the detection of population size changes (with a comparison with a random 

mating population). The results shown in the panels were obtained under different sampling schemes. The first panel (a) shows 

for =1 and =10 the mean and variances of the posteriors obtained when 50 demes are sampled. The second panel (b) 

corresponds to the situation where 100 demes are sampled. The third panel (c) shows the results for a panmictic population. 
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TABLE S1 

Summary of Tests of Inferential Methods 

 

Demographic Model Mutation Model Parameters Algorithm Data 
Simulation 

study 
Paper 

Stable population 

 

sequence 

Kimura-2P 
 (2Nμ) 

MCMC sampling  

Gi ~ P(G|D, 0) 

Allele freq. 

(mut info) 

 

YES (1200) 
Kuhner et al. (1995) 

Stable population 
microsat 

SMM 
 (2Nμ) MCMC sampling P(G, |D) 

Allele freq. 

(mut info) 
YES (140) Wilson and Balding (1998) 

Stable population and 

Exponential  growth 

sequence 

Kimura-2P 
 (2Nμ) growth rate 

MCMC sampling  

Gi ~ P(G|D, 0) 

Haplotype freq 

(mut info) 
YES (2000) Kuhner et al. (1998) 

Exponential and Linear 

Population size change 

microsat 

SMM 

 (2N0μ); r (N0/N1) ratio current/past 

pop size; 
MCMC sampling P(G, |D) 

Allele freq 

(mut info) 
YES (5) Beaumont (1999) 

2-island model 
sequence 

Kimura-2P 

1,  2, scaled migration  

rates M1, M2- (2Nm) 

MCMC sampling  

Gi ~ P(G|D, 0) 

Allele freq 

(mut info) 
YES (2000) 

Beerli and Felsenstein 

(1999) 

4-island model  
sequence 

Kimura-2P 

, scaled migration  

rate M (2Nm) 

MCMC sampling  

Gi ~ P(G|D, 0) 

Haplotype freq 

(mut info) 
YES (200) 

Beerli and Felsenstein 

(2001) 

Admixture model K allele model 
scaled time since  

admixture ti=T/Ni, i=1,2,3 

d i ib i

MCMC sampling P( |D) 

IS - L( ) at each MCMC step 

Allele freq  

(no mut into) 
YES (120) Chikhi et al. (2001) 
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Population split with 

isolation with migration 

(IM) of two populations 

sequence 

Inf sites 

 1,  2,  A,time split (t=T/N1), scaled 

migration rates M1,M2 

MCMC sampling P(G, |D) 
Haplotype freq 

(mut info) 
YES (300) Nielsen and Wakely 2001 

Exponential pop size 

change 

microsat 

SMM 

current size N0,  

past size N1,  
MCMC sampling P(G, |D) 

Allele freq 

(mut used) 
NO Storz and Beaumont (2002) 

Exponential pop size 

change 
K allele model 

 (2N0μ); r (N0/N1) ratio current/past 

pop size; 

MCMC sampling P(Param|D) 

IS - L( ) at each MCMC step 

Allele freq 

(no mut info) 
 Beaumont (2003) 

Population split with 

isolation with migration 

(IM) of two populations 

SMM, Inf sites 

and others 

 1,  2,  A, time split (t=Tμ),  

migration rates  

M1,M2 (M=mμ) 

MCMC sampling P(G, |D) 
Haplotype freq 

(mut info) 
YES (20) Hey and Nielsen (2004) 

n-island model 
microsat 

SMM 
, scaled migration M Importance sampling 

Allele freq  

(mut info) 
YES (30) De Iorio et al. (2005) 

 

 

Mutation Models: Inf sites – infinite sites model; SMM – Single stepwise mutation model 

 

Algorithm: MCMC – Markov chain Monte Carlo; IS – Importance sampling; P( ) - probability; L( ) - Likelihood;  D – observed data;  – parameters of the model;  

G – gene genealogies;  

 

Simulation Study: YES – simulation study performed and number of simulations 

 

This table summarizes information regarding most full-likelihood coalescent-based methods published between 1995 and 2005. We chose this period because it corresponds to the period during 

which most full-likelihood methods were used and because after 2005, many methods not easily summarised were developed using the general ABC approach. Here we summarize the demographic 
and mutation models assumed, the type of data analysed (sequence or microsatellites), the computational approach, and the number of simulated data sets used to test them. It should be noted that the

number of simulations given here should not be taken at face value as it was sometimes difficult to determine the exact number of data sets generated by the authors. We thus consider this table as a 

first attempt to quantify the amount of simulation work carried out to test the validity of highly computational methods in inferring parameters. We note that all simulated data sets analysed in these 

studies were simulated under the model. In other words, none of  these studies performed a robustness test. We also note that it is still a major improvement over ``network-based'' methods such as 

NCPA that have never been shown to work by their authors. 
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