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ABSTRACT

Environment-specific quantitative trait loci (QTL) refer to QTL that express differently in different
environments, a phenomenon called QTL-by-environment (Q 3 E) interaction. Q 3 E interaction is a
difficult problem extended from traditional QTL mapping. The mixture model maximum-likelihood
method is commonly adopted for interval mapping of QTL, but the method is not optimal in handling
QTL interacting with environments. We partitioned QTL effects into main and interaction effects. The
main effects are represented by the means of QTL effects in all environments and the interaction effects
are represented by the variances of the QTL effects across environments. We used the Markov chain
Monte Carlo (MCMC) implemented Bayesian method to estimate both the main and the interaction
effects. The residual error covariance matrix was modeled using the factor analytic covariance structure. A
simulation study showed that the factor analytic structure is robust and can handle other structures as
special cases. The method was also applied to Q 3 E interaction mapping for the yield trait of barley. Eight
markers showed significant main effects and 18 markers showed significant Q 3 E interaction. The 18
interacting markers were distributed across all seven chromosomes of the entire genome. Only 1 marker
had both the main and the Q 3 E interaction effects. Each of the other markers had either a main effect
or a Q 3 E interaction effect but not both.

GENOTYPE-BY-ENVIRONMENT (G 3 E ) interac-
tion is a very important phenomenon in quanti-

tative genetics. With the advanced molecular technology
and statistical methods for quantitative trait loci (QTL)
mapping (Lander and Botstein 1989; Jansen 1993;
Zeng 1994), G 3 E interaction analysis has shifted to
QTL-by-environment (Q 3 E ) interaction. In the early
stage of QTL mapping, almost all statistical methods
were developed in a single environment (Paterson

et al. 1991; Stuber et al. 1992). Data from different
environments were analyzed separately and the con-
clusions were drawn from the separate analyses of QTL
across environments. These methods do not consider
the correlation of data under different environments
and thus may not extract maximum information from
the data. Composite interval mapping for multiple
traits can be used for Q 3 E interaction if different
traits are treated as the same trait measured in different
environments ( Jiang and Zeng 1995). This multivar-
iate composite interval mapping approach makes good
use of all data simultaneously and increases statistical
power of QTL detection and accuracy of the estimated
QTL positions. However, the number of parameters of
this method increases dramatically as the number of
environments increases. Therefore, the method may

not be applied when the number of environments is
large. Several other models have been proposed to
solve the problem of a large number of environments
( Jansen et al. 1995; Beavis and Keim 1996; Romagosa

et al. 1996). These methods were based on some special
situations and assumptions. One typical assumption was
independent errors or constant variances across envi-
ronments. These assumptions are often violated in real
QTL mapping experiments.

Earlier investigators realized the problem and adop-
ted the mixed-model methodology to solve the problem
(Piepho 2000; Boer et al. 2007). Under the mixed-
model framework, people can choose which model
effects are random and which are fixed. The mixed-
model methodology is very flexible, leading to an easy
way to model genetic and environmental correlation
between environments using a suitable error structure.
Piepho (2000) proposed a mixed model to detect QTL
main effect across environments. Similar to the com-
posite interval mapping analysis, his model incorpo-
rated one putative QTL and a few cofactors. The Q 3 E
effects in the model were assumed to be random, which
greatly reduced the number of estimated parameters.
However, the fact that only one QTL is included in the
model means that Piepho’s (2000) model remains a
single-QTL model rather than a multivariate model.
Boer et al. (2007) proposed a step-by-step mixed-model
approach to detecting QTL main effects, Q 3 E in-
teraction effects, and QTL responses to specific envi-
ronmental covariates. In the final step, Boer et al.
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(2007) rewrote the model to include all QTL in a
multiple-QTL model and reestimated their effects.

In this study, we extended the Bayesian shrinkage
method (Xu 2003) to map Q 3 E interaction effects of
QTL. In the original study (Xu 2003), we treated each
marker as a putative QTL and used the shrinkage
method to simultaneously estimate marker effects of
the entire genome. In the multiple-environment case,
we can still use this approach to simultaneously evaluate
marker effects under multiple environments but we can
further partition the marker effects into main and Q 3 E
interaction effects. For any particular marker, the mean
of the marker effects represents the main effect and the
variance of the marker effects represents the Q 3 E
interaction effect for that marker. Under the Bayesian
framework, we assigned a normal prior with zero mean
and an unknown variance to each marker main effect and
a multivariate normal prior with zero vector mean and
homogeneous diagonal variance–covariance matrix to
the Q 3 E interaction effects of each maker. In multiple
environments, the structure of the error terms might be
very complicated since we need to consider the correla-
tion of the same genotype under different environments.
In our analysis, we used different variance–covariance
structures to model the error terms. The simplest case
was the homogeneous diagonal matrix, and the most
complex choice was an unstructured matrix. We also
used a heterogeneous diagonal matrix whose parame-
ters are somewhere between the two models. Finally,
we considered several factor analytic models. The
reason to use the factor analytic structure is that it
can separate genetic effects into common effects and
environment-specific effects. In addition, the factor
analytic structure is parsimonious and thus can sub-
stantially reduce the computational burden of the
mixed-model analyses.

THEORY AND METHOD

Hierarchical model: Let yj ¼ ½ yj1 yj2 . . . yjm �T be an
m 3 1 column vector for the observed phenotypic values
of individual j measured from m environments for
j ¼ 1; . . . ;n, where n is the sample size. Let q be the
number of QTL included in the model. The multivar-
iate linear model is

yj ¼ b 1
Xq

k¼1

Zjkgk 1 jj : ð1Þ

In the above model, b ¼ ½b1 b2 . . . bm �T is an m 3 1
vector for the intercepts. The dependent variable Zjk is a
genotype indicator variable for individual j at marker k
and it is defined as Z jk ¼ �1; 1f g for the two genotypes
of a backcross (BC) individual or Zjk ¼ �1; 0; 1f g for
the three genotypes of an F2 individual. The regression
coefficient gk ¼ ½gk1 gk2 . . . gkm �T is an m 3 1 vector of
QTL effects for the m environments. Finally, jj ¼

½jj1 jj2 . . . jjm �T is an m 3 1 vector for the residual errors.
To model the Q 3 E interaction, we assume that gk

follows a multivariate normal distribution,

pðgkÞ ¼ N ðgk j 1mak ; I m3ms2
kÞ; ð2Þ

where 1m is a unity vector with dimension m, Im3m is
an m 3 m identity matrix, ak is the mean value repre-
senting the main QTL effect, and sk

2 is the variance of gk

representing the Q 3 E interaction. This type of model
with further modeling on gk is called a hierarchical
model. In the hierarchical model, the first moment
parameter ak is the main effect and the second moment
parameter sk

2 represents the degree of Q 3 E interac-
tion. The residual error vector jj is assumed to be
multivariate normal with density

pðjjÞ ¼ N ðjj j 0; QÞ; ð3Þ

where Q is an m 3m variance–covariance matrix, which
can be chosen from a class of available forms (to be
discussed later). We have now defined the data and
parameters. The nest step of the Bayesian analysis is to
choose the prior distribution and infer the posterior
distribution for each parameter.

Prior distribution: We often have enough informa-
tion from the data to estimate b and thus a flat
(uninformative) prior was chosen for b; i.e., p(b)¼1.
The main effect for the kth QTL was assigned the fol-
lowing normal prior,

pðakÞ ¼ N ðak j 0; u2
kÞ; ð4Þ

where u2
k is the prior variance. A scaled inverse chi-

square distribution was assigned to u2
k, which is

pðu2
kÞ ¼ Inv � x2ðu2

k j t; vÞ: ð5Þ

A special case of this prior is t¼v¼ 0, leading to
pðu2

kÞ ¼ 1=u2
k , called Jeffreys’ prior. However, as men-

tioned by ter Braak et al. (2005), this prior is improper
and leads to an improper posterior distribution. The
revised prior is proposed by them and is claimed to lead
to a proper posterior distribution. The revised prior is

pðu2
kÞ ¼ Inv � x2ðu2

k j �2d; 0Þ; ð6Þ

where 0 , d # 0.5. In this study we used the proper prior
to avoid any potential problems caused by the improper
posterior distribution. The same scaled inverse chi-
square distribution was also assigned to sk

2,

pðs2
kÞ ¼ Inv � x2ðs2

k j �2d; 0Þ: ð7Þ

Finally, we assumed Q ¼ I m3ms2, where s2 is a common
residual variance and was assigned the same scaled
inverse prior,

pðs2Þ ¼ Inv � x2ðs2 j �2d; 0Þ: ð8Þ

Other structures of Q are considered and described in
a later section.
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Posterior distribution: The Markov chain Monte
Carlo (MCMC) algorithm was used to implement the
Bayesian shrinkage analysis. In the MCMC sampling,
we need to derive only the fully conditional posterior
distribution for each parameter. For example, the fully
conditional posterior distribution for b is denoted by
p(b j . . .), where the dots after the vertical bar represent
the data and all other parameters. Except for the prior
of b, all other priors we chose in the previous section are
conjugate. Therefore, the fully conditional posterior
has the same form as the prior distribution. Derivation
of the posterior distribution was not given and we simply
provided the parameters of the fully conditional poste-
rior distribution for each variable.

The posterior distribution for b is multivariate normal

pðb j . . . Þ ¼ N ðb jmb; SbÞ; ð9Þ

where

mb ¼
1

n

Xn

j¼1

yj �
XQ

k¼1

Z jkgk

 !
ð10Þ

and

Sb ¼
1

n
Q: ð11Þ

The posterior for gk is also multivariate normal,

pðgk j . . . Þ ¼ N ðgk jmk ; SkÞ; ð12Þ

where

mk ¼
1

s2
k

I m3m 1
Xn

j¼1

Z T
jkQ�1Zjk

" #�1

3
1

s2
k

I m3mak 1
Xn

j¼1

ZT
jkQ�1ðyj � b�

X
q
k96¼k Z jk9gk9Þ

" #

ð13Þ
and

Sk ¼
1

s2
k

I m3m 1
Xn

j¼1

ZT
jkQ�1Zjk

" #�1

: ð14Þ

The posterior distribution for ak is normal,

pðak j . . . Þ ¼ N ðak j zk ; nkÞ; ð15Þ

where

zk ¼
1

u2
k

1
m

s2
k

� ��1 1

s2
k

Xm

i¼1

gki ð16Þ

and

nk ¼
1

u2
k

1
m

s2
k

� ��1

: ð17Þ

We now discuss the posterior distributions for all the
variance components, s2, s2

k, and u2
k for k¼ 1, . . . , q. All

of them are scaled inverse chi squares as given below,

pðs2
k j . . . Þ
¼ Inv � x2 s2

k j t 1 m; v 1 ðgk � 1makÞT ðgk � 1makÞ
� �

;

ð18Þ

pðu2
k j � � �Þ ¼ Inv � x2ðu2

k j t 1 1; v 1 a2
kÞ; ð19Þ

and

pðs2 j . . . Þ ¼ Inv � x2ðs2 j t 1 nm; v 1 SSÞ; ð20Þ

where

SS ¼
Xn

j¼1

yj � b�
Xq

k¼1

Z jkgk

 !T

yj � b�
Xq

k¼1

Zjkgk

 !
:

ð21Þ

MCMC sampling: Since all the fully conditional
posterior distributions have closed-form distributions,
either a normal or a scaled inverse chi-square, Gibbs
sampler was used for sampling all the variables, which is
summarized below:

1. Initialize all variables by sampling the values from
their prior distributions.

2. Sample the parameters sequentially from their cor-
responding posterior distributions.

3. Repeat the sampling cycle until the chain reaches a
desired length.

The posterior sample contains all the observations
after burn-in deletion and chain thinning. Post-MCMC
analysis was performed on the posterior sample. We
often ran multiple chains and took the average poste-
rior statistics across the chains as the Bayesian estimates
of the parameters.

Covariance structure: We now introduce several
alternative covariance structures for the residual errors.

Identity matrix: The simple structure described earlier,
Q¼ Ims2, is called the scaled identity matrix structure.
This assumption is oversimplified and should be relaxed
in real data analysis.

Diagonal matrix: The covariance matrix is defined as

Q ¼ D ¼ diag d1 d2 . . . dm½ �; ð22Þ

which represents uncorrelated residual errors but has
taken into account nonhomogenous residual variances
for different environments. This assumption may hold

Q 3 E Interaction 1055



in most situations. Each d was assigned a scaled inverse
chi-square distribution and the fully conditional poste-
rior distribution for di is

pðdi j . . . Þ ¼ Inv � x2ðdi j t 1 n; v 1 SSiÞ; ð23Þ

where

SSi ¼
Xn

j¼1

yji � bi �
Xq

k¼1

Z jkgki

 !2

: ð24Þ

Unstructured matrix: The unstructured covariance
matrix has been used before by Jiang and Zeng

(1995) for multivariate QTL mapping. The only
restriction for matrix Q is positive definite. We assigned

an inverse Wishart prior distribution to Q. This prior is
the multivariate version of the scaled inverse chi-square
distribution,

pðQÞ ¼ Inv - WishartðQ j t; vÞ; ð25Þ

where t . m� 1 is the prior degree of belief and v . 0
is a positive definite matrix with the same dimension as
matrix Q. The posterior distribution remains inverse
Wishart and thus

pðQ j � � �Þ ¼ Inv - WishartðQ j t 1 n; v 1 SSÞ; ð26Þ

where

SS ¼
Xn

j¼1

yj � b�
Xq

k¼1

Zjkgk

 !
yj � b�

Xq

k¼1

Zjkgk

 !T

ð27Þ

is an m 3 m sum of squares matrix, different from the
SS defined in Equation 20.

Factor analytic structured matrix: The covariance matrix
has the following structure,

Q ¼ BBT 1 D: ð28Þ

It is called factor analytic structure because this
structure has been used in factor analysis. This factor
analytic structure was derived on the basis of the fol-

TABLE 1

BIC scores of the six variance–covariance structures for
the barley data analysis

Structure Log likelihood p BIC

Homogeneous �18,055.18 1 36,118.67
Heterogeneous �17,239.85 28 34,712.35
Unstructured �17,234.20 406 37,841.83
First-order factor �17,171.71 56 34,808.72
Second-order factor �17,155.33 84 35,008.60
Third-order factor �17,143.79 118 35,218.19

The number of parameters is denoted by p.

Figure 1.—The estimated main and
Q 3 E interaction effects for markers
of the entire barley genome. (a) Main
effects under the heterogeneous resid-
ual variance model. (b) Q 3 E interac-
tion effects under the heterogeneous
residual variance model. Chromosomes
are separated by the dotted vertical refer-
ence lines. The dashed curves represent
the 99% confidence intervals generated
from the permutation analysis.
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lowing latent variable linear model for the residual
errors,

jj ¼ Buj 1 ej ; ð29Þ

where uj is an r 3 1 latent factor (r , m) with a

pðujÞ ¼ N ðuj j 0; I r Þ ð30Þ

distribution, B is an m 3 r matrix called factor loading,
and ej �N ð0;DÞ is a vector of independent errors and
D ¼ diag d1 d2 . . . dm½ � is a diagonal matrix for the
independent error variances.

Under the factor analytic structure, the MCMC algo-
rithm requires sampling B and uj for j¼ 1, . . . , n, in
addition to other parameters. We now describe the prior
and posterior of these new variables. The prior for uj is
standardized multivariate normal given in Equation 30.
The fully conditional posterior distribution remains
multivariate normal,

pðuj j . . . Þ ¼ N ðuj jmj ; SjÞ; ð31Þ

where

mj ¼ I r 1 ðBT D�1BÞ�1
� ��1BT D�1 yj � b�

Xq

k¼1

Z jkgk

 !

ð32Þ

and

Sj ¼ I r 1 ðBT D�1BÞ�1
� ��1

: ð33Þ

The factor loadings are represented by an m 3 r matrix
B. Let Bl ¼ ½Bl1 . . . Blm �T be the lth column of matrix
B for l¼ 1, . . . , r. We now rewrite Equation 29 as

jj ¼
Xr

l¼1

Bl ujl 1 ej : ð34Þ

Given uj and knowing that

jj ¼ yj � b�
Xq

k¼1

Z jkgk ; ð35Þ

Equation 34 is a typical multivariate regression problem.
The fully conditional posterior distribution of Bl is
multivariate normal,

pðBl j . . . Þ ¼ N ðBl jml ; SlÞ; ð36Þ

where

TABLE 2

Estimated main and Q 3 E interaction effects and their 99% confidence intervals of the null
distributions for the barley yield data

Marker no. (position, chromosome)

Main effect Q 3 E interaction

Effect 99% C.I. Effect 99% C.I.

2 (3.516, 1) — — 10.240 (0, 7.719)
3 (7.892, 1) — — 15.805 (0, 8.066)

13 (111.273, 1) — — 42.046 (0, 6.797)
18 (182.978, 1) — — 7.070 (0, 6.356)
23 (24.59, 2) 4.379 (�0.904, 1.063) — —
32 (145.863, 2) — — 8.974 (0, 5.420)
38 (247.586, 2) �4.447 (�1.868, 1.340) — —
50 (168.297, 3) �7.927 (�0.739, 0.725) — —
51 (172.134, 3) — — 9.226 (0, 6.239)
52 (178.493, 3) — — 20.160 (0, 4.541)
53 (182.222, 3) — — 4.557 (0, 4.214)
54 (185.101, 3) 3.875 (�0.975, 1.018) — —
59 (63.732, 4) — — 9.724 (0, 5.383)
64 (145.469, 4) 4.711 (�1.230, 1.541) 19.317 (0, 5.378)
65 (163.074, 4) — — 22.422 (0, 5.337)
77 (178.118, 5) �4.542 (�1.256, 0.836) — —
86 (41.568, 6) — — 6.603 (0, 4.198)
89 (85.438, 6) — — 7.548 (0, 7.476)
95 (122.839, 6) — — 21.108 (0, 7.386)
96 (131.476, 6) �5.819 (�1.539, 0.884) — —

102 (7.247, 7) — — 77.311 (0, 5.606)
105 (43.111, 7) 5.605 (�0.704, 0.958) — —
106 (47.487, 7) — — 16.614 (0, 6.140)
116 (164.789, 7) — — 9.899 (0, 5.959)
118 (173.542, 7) — — 33.210 (0, 3.860)

All the estimated effects are outside of the 99% confidence intervals.
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ml ¼
Xn

j¼1

u2
jl D
�1

" #�1 Xn

j¼1

ujl D
�1ðjj �

Xr

l96¼l

Bl9ujl9Þ
" #

¼
Xn

j¼1

u2
jl

" #�1 Xn

j¼1

ujl ðjj �
Xr

l96¼l

Bl9ujl9Þ
" #

ð37Þ

and

Sl ¼
Xn

j¼1

u2
jl D
�1

" #�1

¼
Xn

j¼1

u2
jl

" #�1

D: ð38Þ

Having provided the fully conditional posterior dis-
tribution for every variable, we are now ready to conduct
the Gibbs sampler to infer the empirical posterior dis-
tribution for each variable.

APPLICATIONS

Barley data analysis: We used barley data obtained
from the North American Barley Genome Mapping Pro-
ject (Tinker et al. 1996) to demonstrate the application of
the new method. In the barley QTL mapping project,
there were 127 mapped markers covering 1500 cM of the
barley genome. Seven traits were investigated in the
project. In this study, we used the yield trait analysis for
the demonstration. The doubled haploid (DH) popula-
tion was initiated from the cross between Harrington and

TR306. The DH population consisted of 145 lines, each
grown in 28 different environments. The data set was
updated after it was first published in 1996, but the
difference between the original and the updated data
was minor so that we could still compare the current result
with that from the original study.

We used six different covariance structures to ana-
lyze the data, which were (1) the homogeneous (con-
stant) variance Q ¼ I 28s2, (2) the heterogeneous
variances Q ¼ D, (3) unstructured matrix Q (positive
definite), (4) the first-order factor analytic structure
Q ¼ B2831BT

11328 1 D, (5) the second-order factor ana-
lytic structure Q ¼ B2832BT

2328 1 D, and (6) the third-
order factor analytic structure Q ¼ B2833BT

3328 1 D.
The length of the Markov chain consisted of 200,000
sweeps. The first 100,000 sweeps were deleted as burn-
in and thereafter the chain was thinned by keeping 1
observation in every 100 sweeps, producing 1000 obser-
vations in the collected posterior sample for post-MCMC
analysis.

To test the significance of the QTL effects, we con-
ducted a permutation test to generate the null distribu-
tion of each main effect and each Q 3 E interaction
effect. In the permutation analysis, we repeated the
MCMC sampling method as described before but re-
shuffled the phenotypic values. The permutation anal-
ysis was proposed by Che and Xu (2010), who called it
permutation inside the Markov chain. In the permuta-
tion analysis, the length of the Markov chain was 200,000

Figure 2.—Estimated main and Q 3 E
interaction effects using single-marker
analysis. (a) Main effects. (b) Q 3 E inter-
action effects. Chromosomes are sepa-
rated by the dotted vertical reference
lines.
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sweeps. The first 100,000 sweeps were deleted as burn-in
and the chain thinning rate was 1/25. The posterior
sample contained 4000 observations. From the null
distribution, we drew a confidence interval for each
estimated effect. An effect was claimed to be significant
if the estimated value fell outside of the 99% confidence
interval of the null distribution.

Among the six covariance structures, the second
structure Q¼D (a diagonal matrix) detected the maxi-
mum number of QTL (main and Q 3 E interaction
effects). Although more QTL does not mean better, it
is hard to use cross-validation to evaluate different
structures under the MCMC implemented Bayesian
analysis. Bayes factors are often used to evaluate dif-
ferent models. However, the complexity of our pro-
posed model makes the calculation of the Bayes factors
difficult. Therefore, we used the Bayesian information
criteria (BIC) to evaluate the performance of the six
different models. The BIC score was calculated using

BIC ¼ �2 logðLÞ1 p logðnÞ; ð39Þ

where L is the likelihood function evaluated at the
estimated parameters, p is the number of parameters,
and n is the sample size. The Bayesian estimates of the
parameters in L are the posterior means of b, g, and Q.
The BIC scores are shown in Table 1, which indicates
that the second (heterogeneous residual variance)
model performed better than all other models. The

first-order factor analytic model was the second best
model with a BIC score slightly larger than that of the
best model. The result of the best model is depicted in
Figure 1, where the posterior means of the main effects
and the Q 3 E interaction effects are plotted against
the genome locations of the markers. Figure 1 also gives
the 99% confidence intervals for the main and Q 3 E
interaction effects. Eight markers showed significant
main effects and 18 markers showed significant Q 3 E
interaction. The 18 interacting markers were distributed
across all seven chromosomes of the entire genome. Only
1 marker had both the main and the Q 3 E interaction
effects. Each of the other markers had either a main
effect or a Q 3 E interaction effect but not both. The
estimated main and Q 3 E interaction effects for the
markers are given in Table 2.

We also performed an individual marker analysis to
compare the result with that of the Bayesian analysis.
For the individual marker analysis, QTL mapping was
conducted separately for each environment. The aver-
age estimated effect for each marker across the 28
environments represented the main effect while the
variance of the estimated effects across the environ-
ments represented the Q 3 E interaction effect. The
estimated main and Q 3 E interaction effects of the
single-marker analysis are shown in Figure 2. We can see
that Figure 2 is quite similar to Figure 1 in the Bayesian
analysis. The main difference between the two figures
is the different sharpness of the marker effects. The

Figure 3.—Estimated main and Q 3 E
interaction effects for markers of the en-
tire Arabidopsis genome. (a) Main ef-
fects under the unstructured model.
(b) Q 3 E interaction effects (expressed
as differences between the QTL effects in
the two environments) under the un-
structured model. Chromosomes are sep-
arated by the dotted vertical reference
lines. The marker positions are repre-
sented by the ticks on the horizontal line.
The dashed curves represent the 95%
confidence intervals generated from
the permutation analysis.
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Bayesian analysis generated very clean (sharp) signals of
the plots.

Arabidopsis data analysis: The barley data contain
many environments, which is hard to find in most
studies. So we also applied our model to recombinant
inbred line data of Arabidopsis (Loudet et al. 2002),
where two parents initiating the line cross were Bay-0
and Shahdara, with Bay-0 as the female parent. Flower-
ing time was recorded for each line in two environ-
ments: long day (16-hr photoperiod) and short day
(8-hr photoperiod). The population contained 420
lines. A total of 38 microsatellite markers were used
for QTL mapping. We inserted a pseudomarker in every
2 cM of the genome and had a total of 200 markers (38
true markers plus 162 pseudomarkers) in our analysis.

The variance of Q 3 E interaction s2
k may not be

estimated accurately due to small environments. So in
small environments the variance would then simply
serve as a tool to shrink the environment-specific QTL
effects. The bias of s2

k would lead to biased estimation
of main effect as well. Although the MCMC algorithm
remains the same as before, we need to revise our post-
MCMC procedure. We use vector gk to estimate Q 3 E
interaction effects of the kth marker. The differences
between vector gk and its mean represent Q 3 E
interaction effects. In the two-environments case, we
can just use the differences between the two compo-
nents of gk as the Q 3 E interaction effects because
vector gk is a 2 3 1 vector. Since there are only two
environments, we did not use the factor analytic model

Figure 4.—The average main effects across 20 replicated simulation experiments for the entire genome in the first simulation
experiment. (a) Homogeneous residual variance (scaled identity matrix); (b) heterogeneous residual variances (diagonal ma-
trix); (c) unstructured covariance matrix; (d) first-order factor analytic structure; (e) second-order factor analytic structure;
(f) third-order factor analytic structure. The dotted vertical reference lines divide the genome into seven chromosomes. The black
solid needles are the average marker main effects. The true effects of the markers are indicated by the shaded needles.
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to analyze the data. The BIC scores for the three models
(homogeneous, heterogeneous, and unstructured co-
variance matrices) are 3798.49, 3775.64, and 3645.55.
Figure 3 shows the main and Q 3 E interaction effects
of the Arabidopsis data under the unstructured co-
variance model. The 95% confidence intervals for the
main and Q 3 E interaction effects are also given. Four
markers showed significant main effects and six markers
showed significant Q 3 E interaction effects.

Simulation study: The barley data analysis did not
show the advantage of fitting appropriate covariance
structures over the simple diagonal covariance matrix
because the 28 different environments did not seem to
be correlated. Therefore, we conducted two simulation

experiments (simulations 1 and 2) in this section to
demonstrate the importance of covariance structure to
the Bayesian analysis of Q 3 E interaction. We also did a
two-environment simulation (simulation 3) to demon-
strate the fitness of our model for small environments.

In simulation 1, we used the real marker information
from the North American Barley Genome Mapping
Project (Tinker et al. 1996) to simulate the genome. We
simulated 127 markers from seven chromosomes with
marker distances exactly the same as the real data. We
simulated 145 DH lines in 28 environments. The in-
tercept b was given values ranging from 200 to 605 for
the 28 different environments. We assumed that 10 of
the 127 markers had main effects and also Q 3 E

Figure 5.—(a–f) The average Q 3 E interaction effects across 20 replicated simulation experiments for the entire genome in the
first simulation experiment. Chromosomes are separated by the dotted vertical reference lines. The black solid needles are the av-
erage Q 3 E interaction effects. The true effects of Q 3 E interaction are indicated by the shaded needles.
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interaction effects in the 28 environments. In the
simulation experiment, we chose the factor analytic
covariance structure Q ¼ BBT 1 D with B defined as a
28 3 3 matrix, indicating that correlations had occurred
between different environments. The true values of b,
the QTL effects, the B matrix, and the D matrix are given
in Tables 4 and 5. The simulated data were analyzed
using the six different covariance structures described
earlier in the barley data analysis. We expected that the
first three structures (homogeneous variance, hetero-
geneous variance, and unstructured matrices) would
perform poorly but the last three structures (first-order,
second-order, and third-order factor analytic structures)
would perform better, especially the third-order factor
analytic structure.

In the MCMC-implemented Bayesian analysis, the
length of the Markov chain was 50,000 sweeps. The first
25,000 sweeps (burn-in period) were deleted. The chain
thinning rate was 1 in 50. The empirical posterior
sample contained 500 observations for the post-MCMC
analysis. The MCMC experiment with the same simu-
lated data was repeated a few times to make sure that the
chain had converged to the stationary distribution. The results of the simulation studies are depicted in

Figure 4 for the average main effects of 20 replicates and
in Figure 5 for the average Q 3 E interaction effects of 20
replicates. These two figures show that the estimated QTL
effects agreed well with the true effects. Figures 4 and 5
also show that the first four covariance structures (ho-
mogeneous residual, heterogeneous residual, unstruc-
tured covariance, and first-order factor analytic structure)
have some notable background noise, indicating some
false positives had occurred. However, the last two factor
analytic structures have very little background noise.
From the two figures, the background noise of the first
four covariance structures may not be very clear. So we
calculated standard deviations of each marker’s main
effect among the 20 replicates and plotted them in Figure
6, from which we can see the difference among the six
models. The performance of the last two factor analytic
models is very stable for the majority of the markers
without main effects. While the first four structures,
especially the first two, cannot achieve such a nice
performance, which means that among the 20 replicates

TABLE 3

Average BIC score for six different variance–covariance
structures in the simulation study

Covariance structure Log likelihood p BIC

Homogeneous �18,096.83 1 36,201.97
Heterogeneous �17,564.80 28 35,362.26
Unstructured �16,815.18 406 37,003.79
First-order factor �17,176.53 56 34,818.36
Second-order factor �16,887.74 84 34,473.44
Third-order factor �16,858.56 118 34,647.73

The number of parameters is denoted by p.

TABLE 4

True and estimated QTL main effects and Q 3 E interaction
effects from 20 replicated simulation experiments under the

second-order factor analytic covariance structure

Marker no.
(position,
chromosome)

Main effect Q 3 E

True Estimated True Estimated

1 (0, 1) 5 1.14 36 41.33
14 (127.208, 1) �7 �6.51 0.25 0.20
32 (145.863, 2) �1 �0.01 16 19.76
48 (153.931, 3) 10 8.08 4 2.38
52 (178.493, 3) �4 �0.75 25 22.45
65 (163.074, 4) �8 �8.14 49 45.03
71 (109.389, 5) 15 15.52 9 7.66
84 (10.533, 6) �1 0.00 1 0.25
96 (131.476, 6) 0 0.00 64 65.64

110 (122.584, 7) 3 0.01 100 123.19

TABLE 5

The true and estimated intercepts, the B and D matrices used
in simulation 1

E

Intercept B matrix: D matrix

True Estimated true True Estimated

1 200 199.59 50 0 0 7569 7354
2 215 215.11 50 0 0 6561 6698
3 230 230.28 50 0 0 1849 1790
4 245 243.15 50 0 0 2116 2166
5 260 259.01 50 0 0 784 758
6 275 276.03 50 0 0 729 758
7 290 290.02 50 0 0 1296 1324
8 305 305.01 50 0 0 1296 1239
9 320 320.02 50 0 0 5184 5285

10 335 335.68 0 30 0 4225 4207
11 350 350.78 0 30 0 121 138
12 365 365.58 0 30 0 1444 1454
13 380 381.38 0 30 0 529 516
14 395 397.56 0 30 0 1296 1250
15 410 411.56 0 30 0 1521 1503
16 425 425.82 0 30 0 529 529
17 440 441.16 0 30 0 2809 2697
18 455 456.33 0 30 0 529 514
19 470 469.16 0 0 10 2116 2250
20 485 484.17 0 0 10 2304 2359
21 500 498.4 0 0 10 1156 1227
22 515 515.16 0 0 10 729 865
23 530 530.17 0 0 10 1369 1393
24 545 544.75 0 0 10 400 496
25 560 559.78 0 0 10 1369 1476
26 575 575.4 0 0 10 625 705
27 590 589.9 0 0 10 2401 2629
28 605 604.43 0 0 10 841 933

The estimated parameters are from the second-order factor
analytic model. The estimated B is not given (see details in the
simulation study). E stands for environment.
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these models generated some false main effects. Table 3
shows the average BIC scores for the six different
covariance structures. We see that the factor analytic
structure outperformed the other three models. This is
consistent with our expectation. The lowest BIC occurred
in the second-order factor analytic structure. However,
the third-order factor analytic structure (the true model)
was just slightly higher in value than the second-order
structure. The log-likelihood value of the third-order
factor was higher than that of the second-order factor.
Table 4 gives the average estimated main and Q 3 E
interaction effects obtained from the 20 replicates based
on the second-order factor analytic model. When we
compared the estimated main effects and the true effects,
we noted that large main effects were estimated quite
accurately but small effects were shrunken to zero. The
Q 3 E interaction effects were always detectable regard-
less of the sizes of the effects. Table 5 gives the true
intercepts and the residual error variances (the D matrix)

along with their estimated values. The true B matrix is also
given in Table 5. The estimated B was not given here
because the columns of B are independent and thus are
exchangeable. This does not affect the estimate of the
covariance structure. We checked the average estimated
variance–covariance matrix and did observe three sepa-
rate environment groups.

Although the stability test and BIC scores showed the
advantage of the factor analytic model, the differences
of marker main effects for the six models are not very
obvious in Figure 4. So we performed the second sim-
ulation experiment (simulation 2) to further demon-
strate the advantage of the factor analytic model. We
focused mainly on comparison of heterogeneous di-
agonal structure and three factor analytic models. In
this simulation, 100 DH lines in eight environments
were generated with 30 markers. The distance between
two nearby markers was 30 cM. The intercept b was
given values ranging from 200 to 305 for the eight

Figure 6.—(a–f) The standard deviations (stabilities) of estimated main effects across 20 replicated simulation experiments for
the entire genome in the first simulation experiment. The positions of markers with (nonzero) simulated effects are indicated by
the ticks on the horizontal lines at a value of �2.
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environments. We assumed that 3 of the 30 markers had
main effects and also Q 3 E interaction effects in the
eight environments. We also chose the factor analytic
covariance structure Q ¼ BBT 1 D with B defined as an
8 3 2 matrix. The first column of B had values of 20, 10,
10, 5, 0, 0, 0, 0. The second column had values of 0, 0, 0,
0, 15, 15, 10, 2. Matrix D was an identity matrix. Figure 7
shows the estimated main effects of the four models. We
can clearly see many false positive main effects in the
heterogeneous diagonal structure. The BIC scores for
the four models are 4264, 3362, 2495, and 2558, which
also are in favor of the factor analytic models.

In simulation 3, we also generated 100 DH lines using
the same marker information given by simulation 2, but
this time we simulated only two environments. The
intercepts were 200 and 215 for the two environments.
The factor analytic covariance structure was used with B
defined as a 2 3 2 matrix. The first column of B had
values of 1 and 2. The second column had values of 2
and 1. Matrix D was an identity matrix. The MCMC and
post-MCMC analyses of these data used the same setup
as Arabidopsis data analysis. Figure 8 gives the compar-
ison of the true and the estimated main and Q 3 E
interaction effects. From Figure 8, the true and the
estimated marker effects are very close to each other for
all three models. The promising results also demon-
strate that our proposed method is a good choice to
handle data with small environments.

DISCUSSION

The importance of this study is reflected by two
major contributions to Q 3 E study, the multiple-QTL

model and the factor analytic covariance structure. The
multiple-QTL model for Q 3 E is an extension of the
Bayesian shrinkage analysis for mapping QTL in a single
environment (Xu 2003). The factor analytic covariance
structure is available in the literature but has never been
applied to QTL mapping. Other covariance structures
may be considered in future studies, e.g., the autore-
gressive model of order 1 [AR(1)] and compound
symmetry (CS) covariance structures. These alternative
structures can be used to fit models when the environ-
ments represent temporal or spatial variation. The 28
environments in the barley experiments represent 28
different locations (spatial variation). However, the
information about the location was not available to us.
We believe that the factor analytic structure is robust
and can be fit to a wide variety of covariance structures,
ranging from the simplest diagonal matrix to the most
complicated unstructured matrix, by choosing different
orders of the factors. This has been demonstrated by the
similarity of the diagonal matrix and the first-order
factor analytic model in our data analyses. The factor
analytic model is also easy to fit under the general linear
model framework. Both the factor loadings and the
factors themselves have normal posterior distributions
and can be sampled using the Gibbs sampler approach.

The most significant contribution of this study was to
use the variance of QTL effects across environments to
measure the size of the Q 3 E interaction for a particular
QTL. This has significantly simplified the Q 3 E study. If
the number of environments were small, however, the
variance would not be accurately estimated. In this case,
one should use some kind of linear contrast of the
environment-specific effects as a measure of the Q 3 E

Figure 7.—The marker main effects
in the second simulation experiment.
(a) Heterogeneous residual variances
(diagonal matrix); (b) first-order factor
analytic structure; (c) second-order fac-
tor analytic structure; (d) third-order
factor analytic structure. The black
solid needles are the estimated marker
main effects. The shaded needles are
the estimated main effects.
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interaction. Arabidopsis data and simulation 3 are two
examples of such a treatment. The variance would then
simply serve as a tool to shrink the environment-specific
QTL effects. The MCMC sampling procedure remains the
same, but the post-MCMC analysis needs to be modified.

The method developed in the current study applies
only to plants where the same genotype can be replicated
in multiple environments. In animals where the same
genotype cannot be replicated (except identical twins),
some modification is required. For example, if an F2 family
is raised in three environments, each animal may have a
different genotype from other animals. This argument
also applies to QTL-by-sex interaction, where the same
individual cannot be split into male and female. The
modification is not trivial and thus deserves further study.

Although the environment-specific QTL effects, de-
noted by vector gk for the kth marker, are used only to
draw the posterior distributions for the main and Q 3 E
interaction effects, they may be interesting parameters
in their own rights. The posterior mean of each gk can
be used to predict the molecular breeding value of each
line in a particular environment. This information may
facilitate marker-assisted selection (using a few markers)
or genome selection (using all markers of the entire
genome). Genome selection has been an important
strategy for animal (Meuwissen et al. 2001) and plant
breeding (Xu 2003).

The Bayesian method presented here applies only to
multiple-marker analysis; i.e., each marker is treated as a
putative QTL. If the markers are not evenly placed in the

Figure 8.—The marker main effects and Q 3 E interaction effects in the third simulation experiment. (a and b) Homogeneous
residual variance (scaled identity matrix); (c and d) heterogeneous residual variances (diagonal matrix); (e and f) unstructured
covariance matrix. The black solid needles are the estimated effects (main and interaction). The shaded needles are the true
values (main and interaction).
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genome, one may insert some pseudomarkers in
regions not well covered by markers. In the regions with
saturated markers, one may use only a few selected
markers to avoid a potential multicollinearity problem.
With the current molecular technology, genomes of
most species of agricultural importance may be satu-
rated very soon with high-density markers. Pseudo-
marker insertion will no longer be necessary, but
marker selection will become important. One strategy
for marker selection is to include one marker in every
d cM for the Bayesian model. The optimal strategy may
be the moving interval approach proposed by Wang et al.
(2005), in which a fixed number of putative QTL were
included in the model for each chromosome and the
position of the putative QTL can move (jump) among a
few neighboring markers. This approach may be adop-
ted in the second stage of mapping, i.e., fine mapping
after the important QTL regions have been identified.

One drawback of the MCMC-implemented Bayesian
method is the slow computation process due to the large
number of environments and the high dimensionality
of the model. A quick method may be the posterior
mode estimation in which only the conditional poste-
rior modes are presented as the Bayesian estimates for
the parameters of interest. Although the estimates are
no longer Bayesian estimates, the results may be
comparable. This quick posterior mode estimation
may provide preliminary results to be used for further
analysis using the fully Bayesian analysis.

Finally, the entire data analyses were conducted using
a program developed in R. Interested readers may visit
our website (www.statgen.ucr.edu) to download the
program and the sample data to test the method and
analyze their own data.

This project was supported by the National Plant Genome Initiative
of the U.S. Department of Agriculture Cooperative State Research,
Education, and Extension Service grant 2007-02784 (to S.X.).
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