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ABSTRACT

Social interactions among individuals are abundant both in natural and domestic populations. Such
social interactions cause phenotypes of individuals to depend on genes carried by other individuals, a
phenomenon known as indirect genetic effects (IGE). Because IGEs have drastic effects on the rate and
direction of response to selection, knowledge of their magnitude and relationship to direct genetic effects
(DGE) is indispensable for understanding response to selection. Very little is known, however, of statistical
power and optimum experimental designs for estimating IGEs. This work, therefore, presents expressions
for the standard errors of the estimated (co)variances of DGEs and IGEs and identifies optimum ex-
perimental designs for their estimation. It also provides an expression for optimum family size and a
numerical investigation of optimum group size. Designs with groups composed of two families were
optimal and substantially better than designs with groups composed at random with respect to family.
Results suggest that IGEs can be detected with �1000–2000 individuals and/or �250–500 groups when
using optimum designs. Those values appear feasible for agriculture and aquaculture and for the smaller
laboratory species. In summary, this work provides the tools to optimize and quantify the required size of
experiments aiming to identify IGEs. An R-package SE.IGE is available, which predicts SEs and identifies
optimum family and group sizes.

SOCIAL interactions among individuals, such as
competition and cooperation, are fundamental to

evolution by natural selection (Darwin 1859; Hamilton

1964; Wilson 1975; Frank 1998; Keller 1999; Clutton-
Brock 2002). Most research on social interactions among
individuals has focused on the fitness cost and benefit
of such interactions. This focus on fitness effects seems
to originate from an interest in the factors determining
evolutionary success of populations and from the ob-
servation of altruistic and cooperative behaviors, which
seem to contradict the intuitive notion of ‘‘survival of
the fittest.’’

Effects of social interactions, however, are not limited
to fitness. There is increasing evidence that not only
fitness, but also trait values of individuals are affected by
genes in other individuals (reviewed in Wolf et al. 1998;
Mcglothlin and Brodie 2009). Such effects are
known as indirect genetic effects (IGE; Cheverud and
Moore 1994; Moore et al. 1997) or associative effects
(Griffing 1967; Muir 2005). An IGE is a heritable
effect of one individual on the trait value of another
individual. A well-known example in mammals is the
maternal-genetic effect of a mother on preweaning
growth rate of her offspring (Willham 1963; Mousseau

and Fox 1998). The IGE modeling approach has its
roots in quantitative genetic models for maternally
affected traits, which are widely used in agriculture
(Dickerson 1947; Willham 1963; Cheverud 1984;
Kirkpatrick and Lande 1989; Lynch and Walsh

1998), but is increasingly applied to other traits, both
in animals and plants (e.g., Muir 2005; Petfield et al.
2005; Mutic and Wolf 2007; Bergsma et al. 2008;
Cappa and Cantet 2008; Bleakley and Brodie 2009;
Chenoweth et al. 2010).

IGEs may have drastic effects on the rate and direction
of response to natural or artificial selection (Griffing

1967, 1976, 1981a,b; Moore et al. 1997; Wolf et al. 1998;
Agrawal et al. 2001; Bijma and Wade 2008; Mcglothlin

et al. 2010). Griffing (1967), for example, showed that
IGEs may cause traits to respond in the direction oppo-
site to selection. This theoretical expectation has been
confirmed empirically in selection experiments (Muir

1996, 2005). Bijma et al. (2007a) showed theoretically
that IGEs may substantially increase the heritable var-
iance determining a population’s potential to respond
to selection. Moreover, IGEs alter the impacts of multi-
level selection and relatedness among individuals on
response to selection (Griffing 1976, 1981a,b; Agrawal

et al. 2001; Bijma and Wade 2008; Mcglothlin et al.
2010). The above clearly illustrates that knowledge of
IGEs and their relationship to direct genetic effects
(DGEs) is indispensable for understanding response to
natural or artificial selection.
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The magnitude of IGEs and their contribution to
heritable variance can be estimated empirically using
mixed models that are common in the field of animal
breeding (Muir and Schinckel 2002; Van Vleck and
Cassady 2004, 2005; Muir 2005; Arango et al. 2005;
Bijma et al. 2007b; Chen et al. 2008; Mcglothlin and
Brodie 2009). Such models are empirically powerful,
because they allow estimating IGEs without knowledge
of the underlying mechanisms and without the need to
observe the interactions per se. Mixed models including
IGEs can be fitted to field data, using restricted maxi-
mum likelihood estimation (Patterson and Thompson

1971; Kruuk 2004; Muir 2005; Bijma et al. 2007b). Using
field data on domestic pigs, for example, Bergsma et al.
(2008) found that IGEs contributed more than half of
heritable variance in growth rate.

At present, knowledge of the magnitude of IGEs and
their relationship to DGEs is limited. More knowledge is
required to better understand the relevance of IGEs for
evolution by natural selection and for genetic improve-
ment in livestock, aquaculture, and plants. Very little is
known, however, of the factors determining the stan-
dard errors (SE) of the estimated genetic parameters for
IGEs, which hampers the optimization of experimental
designs. Although the variance of IGEs can be estimated
when groups of interacting individuals are composed at
random with respect to family, it is unknown whether
such designs are efficient. Moreover, it has been shown
that genetic covariance components are not identifiable
when groups consist of entire families, when families are
allocated to groups in a systematic manner (Bijma et al.
2007b), or when fixed group effects are fitted (Cantet

and Cappa 2008).
Here I present equations for the SE of the estimated

variances, covariance, and correlation of DGEs and
IGEs. Accuracy of the prediction equations is evaluated
using stochastic simulations. Subsequently, the predic-
tion equations are used to identify optimum experi-
mental designs for estimating IGEs.

BACKGROUND

This section briefly summarizes the quantitative ge-
netic theory of IGEs and may be skipped by readers
familiar with this theory. An IGE is a heritable effect
of one individual on the trait value of an other. IGEs
can be modeled in two alternative ways (reviewed in
Mcglothlin and Brodie 2009): first, using a trait-
based model, where an individual’s IGE is a direct
consequence of its trait value (Falconer 1965; Moore

et al. 1997) and second, using a variance-component
model, where the genetic variance in trait value is
partitioned into a direct component due to the focal
individual’s genotype, and an indirect component due
to the genotypes of its interactants (Willham 1963;
Griffing 1967). Here I use the variance-component
model, because it allows identification of the full

variance due to IGEs without requiring knowledge of
the trait(s) or mechanisms underlying them.

Consider a population consisting of groups of nw

members each, where social interactions occur among
the members of a group. Then the trait value of focal
individual i may be modeled as the sum of a direct effect
rooted in the focal individual itself, PD;i , and the sum of
the indirect effects, P S;j , of each of its nw� 1 group mates,

Pi ¼ P D;i 1
Xnw�1

j¼1

P S;j : ð1Þ

Hence, i denotes the focal individual, j one of its nw� 1
group mates, D direct effects, S indirect effects, andPnw�1

j¼1 the sum taken over the nw�1 group mates of
focal individual i. (S, suggesting ‘‘social,’’ is used as
subscript for indirect effects, since I may be confused
with i or 1. See Table 1 for a notation key.)

Both direct and indirect effects may be decomposed
into an additive genetic (i.e., heritable) component, A,
and a remaining nonheritable component, E (Griffing

1967),

P i ¼ AD;i 1 ED;i 1
Xnw�1

j 6¼i

AS;j 1
Xnw�1

j 6¼i

ES;j ; ð2Þ

where AD;i is the DGE of the focal individual, ED;i the
corresponding nonheritable direct effect, AS;j the IGE
of group mate j, and ES;j the corresponding nonherit-
able indirect effect.

On the population level, the magnitude of DGEs and
IGEs is measured by their (co)variances. Hence, interest
is in the variance of DGE, s2

AD
, the variance of IGE, s2

AS
,

and their covariance, sADS
. Moreover, interest is in the

total heritable variance arising from the joint effect of
DGEs and IGEs. The total heritable impact of an indi-
vidual’s genes on the mean trait value of the population
is given by the individual’s total breeding value (TBV;
Bijma et al. 2007a)

TBVi ¼ AD;i 1 ðn � 1ÞAS;i : ð3Þ

Note that, in contrast to the trait value, the TBV in
Equation 3 is entirely a heritable property of the focal
individual. It is a generalization of the classical breeding
value and is the heritable property relevant for response
to selection in traits affected by IGEs. The total heritable
variance in the trait due to both DGEs and IGEs, i.e.,
the magnitude of the heritable differences among in-
dividuals determining the potential of the population
to respond to selection, equals the variance in TBVs
among individuals (Bijma et al. 2007a),

s2
TBV¼ s2

AD
1 2ðnw � 1ÞsADS 1 ðnw � 1Þ2s2

AS
: ð4Þ

The s2
TBV expresses heritable variance in absolute

units. Interpretation is often facilitated by expressing
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heritable variance relative to phenotypic variance. In
classical theory, heritability measures heritable variance
relative to phenotypic variance, h2 ¼ s2

A=s2
P (Falconer

and Mackay 1996). By analogy, in case of IGEs we may
define the ratio of total heritable variance over pheno-
typic variance (Bergsma et al. 2008),

t2 ¼ s2
TBV

s2
P

: ð5Þ

A comparison of h2 and t2 reveals the proportional
contribution of IGEs to heritable variance.

PREDICTION OF STANDARD ERRORS

This section presents expressions for the SE of es-
timated values of s2

AD
, s2

AS
,sADS

, s2
TBV, and t2, for two

experimental designs.
Experimental designs: Two experimental designs

were investigated; groups were either composed at
random with respect to family, or groups were com-
posed of members of precisely two families. For both
designs there was a one-way classification of families,
where N unrelated families each contribute n individu-
als, yielding a total of T ¼ Nn individuals with records.
Genetic relatedness within family, r, is the same for all
families. The T individuals are allocated to ng groups,
each of size nw, so that T ¼ ngnw.

Random group composition: In this design, the individ-
uals making up a group are sampled at random with
respect to family. Hence, there is no relatedness among

group mates, other than by chance, so that genotypes of
group mates are independent.

Two families per group: In this design, each group is
composed of members of two distinct families, each
family contributing 1

2 nw individuals (Table 2). Hence,
group size is an even number, and each family contrib-
utes to ngf ¼ n/(1

2 nw) groups. Thus each family is
combined with ngf distinct other families. This design
leads to a block structure, with ngf 1 1 families per block.
Each of the ngf 1 1 families within a block is combined
with each of the other ngf families in that block, each
combination occurring precisely once. In the stochastic

TABLE 1

Notation key

Symbol Meaning

DGE, IGE Direct genetic effect, indirect genetic effect
T, N, n Total number of individuals, number of families, family size, T ¼ Nn
i, j Focal individual, group mate of focal individual
nw,ng,ngf Group size, number of groups, number of groups per family, T ¼ ngnw

P D;i , PS;i Direct effect of i, indirect effect of i
AD;i , AS;i Direct genetic effect of i, indirect genetic effect of i
ED;i , ES;i Direct nongenetic effect of i, indirect nongenetic effect of i
TBVi , t2 Total breeding value of i (Equation 4), relative heritable variance (Equation 5)
s2

AD
, s2

AS
Variance of DGE among individuals, variance of IGE among individuals

sADS
, r g Covariance between DGEs and IGEs, correlation between DGEs and IGEs

sEDS
, r E Covariance and correlation between nongenetic direct and indirect effects

s2
P , s2

TBV Phenotypic variance among individuals, variance of TBVs among individuals
k, l, m Focal family, index for records within family, effective no. records per family
zkl lth effective record on family k for use in ANOVA (Equation 6)
f k , ekl Effect of kth family, residual of lth record on family k, zkl ¼ f k 1 ekl .
s2

z , s2
f , s2

e Full variance of records, between-family variance, residual variance
nopt;x Optimum family size for parameter x
SE, SEðx̂Þ Standard error, standard error of estimate of x
d Degree of dilution of indirect effects with group size (Equation 18)
s2

PS;2
Variance of indirect effects in groups of two individuals

s2
AS;2

Variance of IGEs in groups of two individuals

Throughout, hats (^) denote estimates, whereas symbols without hats refer to true values.

TABLE 2

Example of the design with groups composed of two families

Family B

Family A 2 3 4 5 6

1 2/2 2/2 2/2 2/2 2/2
2 2/2 2/2 2/2 2/2
3 2/2 2/2 2/2
4 2/2 2/2
5 2/2

Group size equals nw ¼ 4. Each group consists of members
of two families, each family contributing 2 individuals. Family
size equals n ¼ 10, so that each family is combined with ngf ¼
10/(½ 3 4) ¼ 5 other families. Thus a block consists of 6 fam-
ilies, each being combined with each of the 5 other families in
that block. Hence, there are ngb¼ ngf (ngf 1 1)/2¼ 5 3 6/2¼
15 groups per block, ngb 3 nw ¼ 15 3 4 ¼ 60 individuals per
block, and nb ¼ T/60 blocks.
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simulations, design parameters were chosen such that
the number of blocks was an integer number.

Expressions for SEs: Prediction equations for the SE
of estimated genetic parameters are based on one-way
ANOVA, partitioning the full variance into a between-
and within-family component. Thus records were mod-
eled as

zkl ¼ f k 1 ekl ; ð6Þ

where zkl is the lth effective record on family k, f k is
the effect of the kth family, and ekl is the residual.
The definition of an effective record zkl will depend on
the experimental design and on the genetic parameter
of interest. In general, the zkl refers to the variable that
provides information on the genetic parameter of
interest in the experimental design considered (Appen-
dix B). There are m effective records per family and Nm
effective records in total.

Additive genetic variances: From one-way ANOVA, the
SE of an estimated genetic variance equals (Appendix A)

SEðŝ2
AÞ �

1

r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

N � 1
s4

f 1
2s2

f s2
e

m
1

s4
e

mðm � 1Þ

� �s
; ð7Þ

where s2
f denotes the between-family variance and s2

e

the residual variance,

s2
e ¼ s2

z � s2
f : ð8Þ

Equations 7 and 8 are used to predict SEðŝ2
AD
Þ,

SEðŝ2
AS
Þ, and SEðŝ2

TBVÞ. Application of those equations
requires knowledge of s2

z and s2
f , which depend on the

parameter and experimental design of interest, and are
given in Tables 3 and 4.

Direct–indirect additive genetic covariance: The SE of the
estimated genetic covariance, SEðŝADS

Þ, was obtained
from a general expression for the variance of an
estimated covariance (Appendix A),

SEðŝADSÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
SEðŝ2

AD
Þ SEðŝ2

AS
Þ

2
1

s2
ADS

N � 1

s
: ð9Þ

The values of SEðŝ2
AD
Þ and SEðŝ2

AS
Þ required for Equa-

tion 9 follow from Equations 7 and 8.
Relative genetic variance: The SE of the ratio of total

heritable variance over phenotypic variance is given by

SEðt̂2Þ?SEðŝ2
TBVÞ

s2
P

; ð10Þ

where SEðŝ2
TBVÞ follows from Equations 7 and 8. This

approximation assumes that s2
P is accurately known, or

equivalently that Varðŝ2
P Þ � s4

P and Covðŝ2
TBV; ŝ

2
P Þ � 0.

Additive genetic correlation: The SE of the estimated
correlation between DGEs and IGEs,

r̂g ¼
ŝADS

ŝAD ŝAS

ð11Þ

was approximated by using a Taylor-series expansion
(Appendix A), yielding

SEðr̂gÞ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VarðŝADSÞ

s2
AD

s2
AS

1
s2

ADS
VarðŝAD ŝASÞ
s4

AD
s4

AS

s
; ð12Þ

where VarðŝADS
Þ is given by the square of Equation 9.

Equation 12 ignores covariances among the compo-
nents of r̂g. The VarðŝAD

ŝAS
Þ, required for Equation 12,

was calculated as (Appendix A)

VarðŝAD ŝASÞ �
Varðŝ2

AD
Þ

4s2
AD

1 s2
AD

" #
Varðŝ2

AS
Þ

4s2
A

S

1 s2
A

S

" #

� s2
AD

s2
A

S
:

ð13Þ

The values of Varðŝ2
AD
Þ and Varðŝ2

AS
Þ, required for

Equation 13, follow from the square of Equation 7.
Accuracy of predicted SEs: To evaluate the precision

of predicted SEs, experimental populations were sto-
chastically simulated, variance components were esti-
mated using ASReml (Gilmour et al. 2006), and realized
SEs of estimates were calculated from the variance
among the estimates of 1000 replicates (Appendix C).
Accuracies of predicted SEs were evaluated for a range
of input parameters (Table 5). A basic scheme with 50
families of 100 members each was used as default. In the
basic scheme, direct and indirect effects contributed
equally to phenotypic variance, heritabilities of direct
and indirect effects were 0.3, and total heritable vari-
ance was 60% of phenotypic variance (T 2 ¼ 0.6).

Results show that predicted SEs are accurate, both for
groups composed at random (Table 6) and for groups
composed of two families (Table 7), except for the
genetic correlation between DGEs and IGEs. When the

TABLE 3

Components of SEs with random group composition

Parameter Expression

All VC m ¼ n
s2

P ¼ s2
PD

1 ðnw � 1Þs2
PS

Covw ¼ 2sPDS
1 ðnw � 2Þs2

PS

ŝ2
AD

s2
z ¼ s2

P s2
f ¼ rs2

AD

ŝ2
AS

s2
z ¼

s2
P 1 ðnw�2ÞCovw

nw�1 s2
f ¼ rs2

AS

ŝ2
TBV s2

z ¼ n w s2
P 1 ðn w � 1ÞCovw

� �
s2

f ¼ rs2
TBV

SEs for the estimated genetic variance of interest follow
from substituting s2

z and s2
f for that parameter into Equations

7 and 8. See also Equations 19 and 20, and see Appendix B for
a derivation.
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true r g deviated considerably from zero (Alt. 1 through
5, and 7), SEðr̂gÞ was severely overpredicted. Errors in
the predicted SEðr̂gÞ originated from correlations be-
tween the components of r̂g (Equation 11), which were
ignored in the derivation (Appendix A). Hence, SEs of

ŝADS
, ŝ2

AD
, and ŝ2

AS
were predicted accurately, but SEðr̂gÞ

was inaccurate due to correlations among ŝADS
, ŝ2

AD
, and

ŝ2
AS

. Moreover, the approximate SEs reported by AS-
Reml (Gilmour et al. 2006) were generally in good
agreement with the empirical SEs from the simulations.
In conclusion, prediction equations presented above
are accurate, except for SEðr̂gÞ in cases the true r g

deviates considerably from zero.

OPTIMUM DESIGNS

Optimum family sizes for ŝ2
AD

, ŝ2
AS

, ŝ2
TBV, and t2:

Robertson (1959) showed that the optimum family size
for estimating an intraclass correlation, t ¼ s2

f =s2
z , equals

nopt;t � 1=t: ð14Þ

Since (classical) heritability follows directly from the
intraclass correlation, h2 ¼ t=r , nopt;t also represents the
optimum family size for estimating heritability. With re-
spect to optimum family size, IGEs introduce two com-
plications. First, with IGEs there are multiple genetic
parameters, each of which may be of interest, and
optimum family size may differ among parameters.
Second, the parameters h2

S ¼ s2
AS
=s2

P and t2 ¼ s2
TBV=s2

P

are not true intraclass correlations, because the denom-
inators of those ratios differ from the s2

z used in the
ANOVA for those parameters (Tables 3 and 4). As a
consequence, Robertson’s nopt;t cannot be applied
directly to h2

S and t2.
Approximate expressions for optimum family sizes

for ŝ2
AD

, ŝ2
AS

, and ŝ2
TBV can be obtained as follows. The

sdevðt̂ Þ originates mainly from uncertainty in ŝ2
f rather

than ŝ2
z . Thus the optimum family size for estimating s2

f

TABLE 4

Components of SEs with group composed of two families

Parameter Expression

All VC m ¼ 2n=nw

s2
P ¼ s2

PD
1 ðnw � 1Þs2

PS
1 2rð12 nw � 1Þ sADS

1 ð12 nw � 1Þs2
AS

� �
Covw;fam ¼ 2sPDS

1 ðnw � 2Þs2
PS

1 r s2
AD

1 2ð12 nw � 2ÞsADS
1 ð12 n2

w � 2nw 1 3Þs2
AS

� �
Covw;nonfam ¼ 2sPDS

1 ðnw � 2Þs2
PS

1 2 rð12 nw � 1Þ sADS
1 ð12 nw � 1Þs2

AS

� �
Varð �P famÞ ¼

s2
P 1 ð12 nw � 1ÞCovw;fam

1
2 nw

ŝ2
AD

s2
z ¼ ð 1 1 f2ÞVarð �P famÞ � 2fCovw;nonfam s2

f ¼ rs2
AD

f ¼
1
2 nw � 1

1
2 nw

ŝ2
AS

s2
z ¼

4 Varð �P famÞ
n2

w

s2
f ¼ rs2

AS

ŝ2
TBV s2

z ¼
4

nw

s2
P 1 ð1

2
nw � 1ÞCovw;fam 1

1

2
nwCovw;nonfam

� �
s2

f ¼ rs2
TBV

SEs for the estimated genetic variance of interest follow from substituting s2
z and s2

f for that parameter into Equations 7 and 8.
See also Equations 19 and 20, and see Appendix B for a derivation.

TABLE 5

Schemes used for validation of prediction equations

Scheme Deviation from basic schemea

Alt. 1 r g ¼ r E ¼ 0.7
Alt. 2 r g ¼ r E ¼ �0.7
Alt. 3 r g ¼ 0.7, r E ¼ �0.7
Alt. 4 r g ¼ �0.7, r E ¼ 0.7
Alt. 5 r g ¼ 0.7
Alt. 6 r E ¼ 0.7
Alt. 7 r g ¼ �0.7
Alt. 8 r E ¼ �0.7
Alt. 9 nw¼ 2, ng¼ 2,500, s2

PS
¼ 1, T¼ 2450

Alt. 10 nw ¼ 10, ng ¼ 500, s2
PS
¼ 1

9
Alt. 11 h2

S ¼ 0.1

Alt. 12 h2
S ¼ 0.5

Alt. 13 s2
PS
¼ 1

9

Alt. 14 s2
PS
¼ 1

Alt. 15 N ¼ 20, n ¼ 250
Alt. 16 N ¼ 100, n ¼ 50
Alt. 17 n ¼ 40, T ¼ 2,000
Alt. 18 n ¼ 200, T ¼ 10,000
Alt. 19 N ¼ 100, n ¼ 10, T ¼ 1,000
Alt. 20 N ¼ 200, n ¼ 10, T ¼ 2,000

a Basic scheme: N ¼ 50 families, n ¼ 100 members per
family, so that T ¼ 5000; nw ¼ 4 individuals per group, so
that ng ¼ 1250 groups; s2

PD
¼ 1, s2

PS
¼ 1

3 , h2
D ¼ s2

AD
=s2

PD
¼

0.3, h2
S ¼ s2

AS
=s2

PS
¼ 0.3, r g ¼ r E ¼ 0. For schemes with

groups composed of two families, T was adjusted when
needed to obtain an integer number of blocks.
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is close to the optimum family size for estimating t.
Hence, from Equation 14, the approximate optimum
number of records per family for estimating a genetic
variance equals mopt;s2 � s2

z=s2
f . Thus, for schemes with

groups composed at random, where n ¼ m (Table 3),
approximate optimum family size equals

nopt;s2;random � s2
z=s2

f ; ð15Þ

and for schemes with groups composed of two families,
where n ¼ 1

2 nwm (Table 4), approximate optimum
family size equals

nopt;s2;2fam �
1

2
nw s2

z=s2
f : ð16Þ

These results can be applied for the parameter of
interest by using the appropriate s2

z and s2
f from Table 3

or 4. Finally, under the assumptions given above, optimum
family size for t2 is approximately equal to that for s2

TBV,

nopt;t2 � nopt;s2
TBV
: ð17Þ

To evaluate precision of Equations 15 and 16, op-
timum family sizes were obtained numerically using

Equation 7 by varying n from 1 through T, and storing
the family size yielding the lowest predicted SE encoun-
tered in this range. Results showed that Equations 15
and 16 are very accurate. For all schemes in Table 5, the
relative difference between the numerically obtained
minimum SE and the result from Equations 15 and 16
was smaller than 1% (results not shown).

An impression of optimum family sizes can be ob-
tained by using estimates available in the literature.
Using estimates of Bergsma et al. (2008) for growth rate
in fattening pigs with nw � 8, optimum half-sib family
sizes for groups composed at random are nopt;s2

AD
¼ 19

for DGE, and nopt;s2
AS
¼ 200 for IGE. For groups

composed of two families, those values are nopt;s2
AD
¼

29 and nopt;s2
AS
¼ 69. Using estimates of Ellen et al.

(2008; line WB) for survival time in cannibalistic laying
hens with nw ¼ 4, optimum half-sib family sizes are
nopt;s2

AD
¼ 42 and nopt;s2

AS
¼ 113 for groups composed at

random, and nopt;s2
AD
¼ 52 and nopt;s2

AS
¼ 82 for groups

composed of two families. These values suggest that
estimation of IGEs using groups composed at random
may require rather large families. Moreover, the differ-

TABLE 6

Precision of predicted SEs for groups composed at random

Scheme

Error%

ŝ2
AD

ŝADS
ŝ2

AS
ŝ2

TBV T̂ 2 r̂g

Basic 2 0 �1 1 5 1
Alt. 1 1 �11 �3 �2 3 146
Alt. 2 3 3 1 1 2 129
Alt. 3 4 0 0 2 9 121
Alt. 4 0 8 �1 �1 �1 47
Alt. 5 3 �6 �1 0 7 134
Alt. 6 1 �4 �1 �2 1 �5
Alt. 7 2 7 �1 0 1 85
Alt. 8 3 1 0 2 6 2
Alt. 9 �1 2 2 3 5 �2
Alt. 10 2 �1 0 3 5 �10
Alt. 11 2 0 �3 0 2 �7
Alt. 12 2 1 0 1 7 2
Alt. 13 2 0 �1 �1 2 �1
Alt. 14 2 2 0 2 7 0
Alt. 15 �2 1 �1 �2 3 0
Alt. 16 2 �3 4 2 5 �6
Alt. 17 �1 �1 4 2 5 �10
Alt. 18 3 �4 1 0 3 �5
Alt. 19 1 �1 4 4 6 �38
Alt. 20 0 �6 �1 1 2 �33

See Table 5 for description of schemes. Error% ¼ 100% 3
(predicted � empirical)/empirical. Empirical SEs were based
on stochastic simulations with 1000 replicates. With 1000 rep-
licates, the relative SE of the empirical SE equals SEðŝÞ=s �
1=

ffiffiffiffiffiffiffiffiffiffi
2000
p

� 0.022 (Stuart and Ord 1994). Therefore, when
predictions equal the true values, E[error%] ¼ 0, and the SE
of error% given the predicted value equals �2.2%. Then the
expected absolute error equals E[jerror%j] � 1.8%, and
jerror%j . 4.4% indicates significant bias (P , 0.05; two-
sided, not accounting for multiple testing).

TABLE 7

Precision of predicted SEs for groups composed
of two families

Scheme

Error%

ŝ2
AD

ŝADS
ŝ2

AS
ŝ2

TBV T̂ 2 r̂g

Basic 3 2 �2 �3 0 2
Alt. 1 1 �5 �2 �1 5 147
Alt. 2 4 �1 1 �3 �1 140
Alt. 3 1 2 �1 �1 5 101
Alt. 4 5 7 1 �3 �2 95
Alt. 5 2 �2 �2 �1 5 121
Alt. 6 3 1 �2 �3 1 1
Alt. 7 4 3 1 �5 �3 117
Alt. 8 3 2 �1 �3 1 2
Alt. 9 �1 2 4 0 4 �1
Alt. 10 0 1 6 3 6 1
Alt. 11 2 3 �1 �2 �1 �1
Alt. 12 4 1 �2 �3 3 3
Alt. 13 2 2 1 �2 1 3
Alt. 14 5 1 �3 �4 1 1
Alt. 15 3 7 �1 0 4 4
Alt. 16 2 2 3 2 5 2
Alt. 17 0 1 4 7 10 �3
Alt. 18 0 6 �1 3 6 7
Alt. 19 8 �1 1 �4 �5 �44
Alt. 20 8 6 4 2 1 �36

See Table 5 for description of schemes. Error% ¼ 100% 3
(predicted � empirical)/empirical. Empirical SEs were based
on stochastic simulations with 1000 replicates. With 1000 rep-
licates, the relative SE of the empirical SE equals SEðŝÞ=s �
1=

ffiffiffiffiffiffiffiffiffiffi
2000
p

� 0.022 (Stuart and Ord 1994). Therefore, when
predictions equals the true values, E[error%] ¼ 0, and the SE
of error% given the predicted value equals �2.2%. Then the
expected absolute error equals E ½jerror %j� � 1.8%, and
jerror%j . 4.4% indicates significant bias (P , 0.05; two-
sided, not accounting for multiple testing).
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ence between optimum family size for DGEs vs. IGEs is
much larger with groups composed at random than with
groups composed of two families. This pattern is typical,
as illustrated in Figure 1. Hence, when interest is in both
DGEs and IGEs, the use of groups composed of two
families is attractive, because optimum family sizes are
more similar for both parameters.

OPTIMUM GROUP SIZE

The above equations shown that the SEs of estimated
genetic parameters depend on group size. Relative
performance of experimental designs may, therefore,
depend on group size as well, and statistical power can
be improved by optimizing group size.

Dilution of IGEs: The effect of group size on the SE
of estimated genetic parameters is complicated by a
potential effect of group size on the magnitude of IGEs
(Arango et al. 2005; Hadfield and Wilson 2007; Bijma

2010). An individual’s IGE on a single recipient may
become smaller in larger groups, because its total IGE is
divided over more group mates. The degree of dilution,
meaning the decrease of indirect effects in larger
groups, will depend on the trait of interest. With
competition for a finite amount of feed per group, for
example, an individual consuming 1 kg has an average
indirect effect of P S;i ¼ �1=ðnw � 1Þ on each of its group
mates. Hence, the indirect effect is inversely propor-
tional to the number of group mates, indicating full
dilution. The other extreme of no dilution may be
illustrated by a highly contagious infectious disease,
where an individual may infect all its group mates,
irrespective of group size. Here the indirect effect each

group mate receives is independent of group size,
indicating no dilution.

Following Bijma (2010), dilution of indirect effects
was modeled as

P S;i;nw
¼ 1

ðnw � 1Þd P S;i;2; ð18Þ

where P S;i;nw
is the indirect effect of individual i in a

group of nw members, P S;i;2 is the indirect effect of i
when it has a single group member (i.e., when nw ¼ 2),
and d is the degree of dilution. With no dilution, d ¼ 0,
indirect effects do not depend on group size, P S;i;nw

¼
P S;i;2, as with the infectious disease. With full dilution,
d ¼ 1, indirect effects are inversely proportional to the
number of group members, P S;i;nw

¼ P S;i;2=ðnw � 1Þ, as
with the finite amount of feed. The magnitude of d can
be estimated empirically (Arango et al. 2005; Bijma

2010; Canario et al. 2010). Dilution affects the relation-
ship of phenotypic variance with group size; for d , 0.5
phenotypic variance increases with group size, whereas
for d . 0.5 phenotypic variance decreases with group
size (Bijma 2010). It is assumed here that IGEs and
nongenetic indirect effects are diluted in the same
manner as phenotypic indirect effects (i.e., Equation 18
applies also to AS and ES).

The following results illustrate the effect of group size
on the SEs of estimated variance components, which will
depend on the degree of dilution. Results were very
similar for fixed and optimum family sizes and are
presented for optimum family sizes only, first for groups
composed at random, and subsequently for groups
composed of two families.

Groups composed at random: Depending on the
situation, the size of an experiment may be limited either
by the total number of individuals or by the number of
groups. Results are presented first for a fixed number of
individuals and subsequently for a fixed number of groups.

Fixed number of individuals (T): With fixed T, the
number of groups decreases as group size increases,
ng ¼ T=nw. The effect of group size on SEs differs
between DGEs and IGEs. For DGEs, SEs increased with
group size when d , 0.5 and decreased with group size
when d . 0.5 (Figure 2A). This relationship originates
from the impact of dilution on phenotypic variance,
which increases with group size for d , 0.5.

For IGEs, SEs increased with group size, particularly
with strong dilution (Figure 2C). When d ¼ 0, SEs were
identical for groups of 2 and 3 individuals. This relation-
ship originates from two mechanisms. First, group size
affects the variance of the record of interest, s2

z (Table 3),
higher s2

z yielding higher SEs. With d¼ 0, s2
z was minimal

for groups of �3 individuals, explaining lowest SEs for
those group sizes. Second, with dilution, s2

AS
decreases

with group size, which decreases the intraclass correla-
tion (Equation 25b) and therefore increases SEs. Hence,
with strong dilution, smaller groups are considerably
better. Results for total genetic variance were similar to

Figure 1.—Optimum half-sib family size for schemes with
groups either composed at random or consisting of two fami-
lies. A value of d ¼ 0.5 was used for the entire figure, and there-
fore, the phenotypic variance is the same for all group sizes.
(See Bijma 2010, the accompanying article in this issue, and sec-
tion ‘‘Dilution of IGEs’’.) With h2

D ¼ h2
S ¼ 0.3, s2

PD
¼ s2

PS;nw¼2 ¼
1. r g ¼ r E ¼ 0, r ¼ 0.25. For schemes with two families per
group, optimum family size was identical for s2

AD
, s2

AS
, and s2

TBV.
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those for indirect genetic variance, smaller groups
yielding lower SEs (results not shown).

Fixed number of groups (ng): With a fixed number of
groups, the total number of individuals increases as
group size increases, T ¼ ngnw. The effect of group size
on SEs differs between DGEs and IGEs. For direct effects,
relative SEs decreased with group size, except for d¼ 0, in
which case SEs were nearly independent of group size
(Figure 2B). This relationship originates from the in-
crease of T with group size, which is counterbalanced by
an increase of s2

P when d ¼ 0. Hence, for d . 0, SEðŝ2
AD
Þ

can be decreased substantially by using more individuals.
For IGEs, SEs were lowest for groups of two or three

individuals (Figure 2D), and increased slightly with
larger group sizes. For d¼ 0, groups of three individuals
were clearly better than groups of two individuals. This
relationship originates from an increase in pheno-
typic variance and dilution of IGEs, which counter-
balances the benefit of greater T. Results for total genetic
variance were similar to those for indirect genetic
variance.

In conclusion, to estimate the variance due to IGEs
while using groups composed at random, it is optimal to
have small groups of two or three individuals. This result
applies irrespective of whether the number of individ-

uals or the number of groups is the limiting factor in the
experimental design.

Groups composed of two families: Results are pre-
sented first for a fixed number of individuals and sub-
sequently for a fixed number of groups.

Fixed number of individuals (T): For direct effects, SEs
mostly increased with group size, particularly for d ¼ 0
(Figure 3A). This result originates from an increase in
s2

z with group size, which reduces the intraclass corre-
lation and thus increases the SE of ŝ2

AD
in larger groups.

Also for IGEs, SEs increased with group size, particularly
for d ¼ 1 (Figure 3C). This relationship originates from
two mechanisms. First, with dilution (d . 0), s2

AS

decreases with group size, which increases the relative
SE. Hence, stronger dilution favors smaller groups.
Second, when groups are composed of two families,
an increase in group size tends to increase the intraclass
correlation, particularly when s2

AS
is small, which favors

larger groups. Compared to groups composed at
random, the second mechanism limits the increase of
SEs with group size (Figure 3C vs. Figure 2C). Results for
total genetic variance were similar to those for indirect
genetic variance (not shown).

Fixed number of groups (ng): For direct effects, relative
SEs decreased with group size, particularly for d ¼ 1

Figure 2.—Relationship
between SEs and group
size, for groups composed
at random. (A) Direct ge-
netic variance, T ¼ 2000.
(B) Direct genetic vari-
ance, ngroups ¼ 500. (C) In-
direct genetic variance, T¼
2000. (D) Indirect genetic
variance, ngroups ¼ 500.
(A–D)h2

D ¼ h2
S ¼ 0.3,

s2
PD
¼ s2

PS;2
¼ 1. r g ¼ r E ¼

0, r ¼ 0.25 (half-sibs). Fam-
ily size is optimum (Equa-
tion 15). Because s2

AS

varies with group size when
d 6¼ 0, results focus on the
relative SE, SEðŝ2

AS
Þ=s2

AS
.
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(Figure 3B). This relationship originates mainly from
the increase of T with group size. Also for IGEs, relative
SEs decreased with group size (Figure 3D). Benefits of
increasing group size were largest for small d and small
s2

AS
. For example, with d ¼ 0 and s2

PS;2
¼ 0.2, the

SEðŝ2
AS
Þ=s2

AS
decreased from 0.51 for nw ¼ 2 to 0.10 for

nw ¼ 20 (results not shown in Figure 3). Hence, when
IGEs are expected to be small and the number of groups
is the limiting factor in the experimental design, then
the use of large groups, each composed of two families,
is a powerful scheme.

Figures 2 and 3 show that the impact of dilution is
opposite for DGEs vs. IGEs. For direct effects, SEs are
lowest with full dilution, whereas for IGEs, SEs are lowest
with no dilution. Moreover, Figure 2, A and B, vs. Figure 2,
C and D, shows that, for random groups and d . 0.5, there
is a conflict between optimum group sizes for direct
genetic variance, which are large, and optimum group
sizes for indirect genetic variance, which are small. This
conflict is largely absent when groups are composed of
two families, particularly when the number of groups is
limiting (Figure 3, A and B, vs. Figure 3, C and D).

In conclusion, when groups are composed of two
families, optimum group size to estimate the variance
due to IGEs depends on the factor limiting the size of the
experiment; small groups tend to be optimal when the

number of individuals is limiting, whereas large groups
tend to be optimal when the number of groups is limiting.

Group composition: To compare both experimental
designs, predicted SEs were compared between schemes
with groups composed at random and schemes with
groups composed of two families, for all schemes listed in
Table 3 (results not shown). Differences between both
designs were small for DGEs. For IGEs, schemes with
groups composed of two families were superior, particu-
larly when groups were large (Table 5, Alt. 10). Predicted
SEs were identical for both designs when groups con-
sisted of two individuals.

Figure 4, A and B, shows that schemes with groups
composed of two families become increasingly superior
when group size increases, superiority being largest for
d¼ 0. Figure 4, C and D, shows the relative performance
of both schemes when compared at optimum group
sizes, as a function of d. When the total number of
individuals is limiting, superiority of two-family schemes
is limited and only present for d , 0.5 (Figure 4C). When
the number of groups is limiting, superiority of two-
family schemes is substantial (Figure 4D). In that case,
optimum group size for two-family schemes is large (nw

was limited to a maximum of 20 in Figure 4), whereas
optimum group size for random schemes is small,
ranging from two to four. In conclusion, if number of

Figure 3.—Relationship
between SEs and group
size, for groups composed
of two families. (A) Direct
genetic variance, T ¼
2000. (B) Direct genetic
variance, ngroups ¼ 500.
(C) Indirect genetic vari-
ance, T ¼ 2000. (D) In-
direct genetic variance,
ngroups ¼ 500. (A–D) h2

D ¼
h2

S
¼ 0.3, s2

PD
¼ s2

PS;2
¼ 1.

r G ¼ r E ¼ 0, r ¼ 0.25
(half-sibs). Family size is
optimum (Equation 16).
Because s2

AS
varies with

group size when d 6¼ 0, re-
sults focus on the relative
SE, SEðŝ2

AS
Þ=s2

AS
.
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groups is the limiting factor in the experiment and it is
possible to use groups of more than two members, then
there is substantial benefit of putting two families in each
group rather than using groups composed at random.

DISCUSSION

IGEs attract increasing attention, as illustrated by
the increasing number of publications (e.g., Bleakley

and Brodie 2009; Wilson et al. 2009; Chenoweth

et al. 2010; Hsu et al. 2010; Mcglothlin et al. 2010;
Muir et al. 2010). This development is warranted,
given the large impact of IGEs on both the direction
and magnitude of response to genetic selection and
the increasing empirical evidence of their existence
(see Introduction). Thus IGEs exist and cannot be
ignored. Accurate knowledge of the genetic parame-
ters of IGEs and of their relationship to DGEs is
required to quantify the consequences for response
to selection, in natural, agricultural, and laboratory
populations.

This work has provided the tools to quantify the
required size of experiments aiming to identify IGEs
and to optimize experimental designs. The expressions
for SEs of estimated genetic parameters are accurate for
the variance of DGEs and IGEs, for their covariance, and
for the total genetic variance. The expression for the SE
of the estimated genetic correlation between DGEs and
IGEs requires further improvement. An expression for
optimum family size was provided as well, and optimum
group size was investigated numerically. For IGEs,
schemes with groups composed of two families were
clearly better than schemes with groups composed at
random. The R-package SE.IGE was developed, which
predicts SEs and identifies optimum family and group
sizes for each parameter.

Results suggest that, when optimum designs are im-
plemented, presence of IGEs can be demonstrated
successfully when the number of individuals is at least
�1000–2000, or the number of groups is at least �250–
500 (Figures 2 and 3; obviously, this will depend on the
true parameters, which are unknown a priori). For

Figure 4.—Ratio of SEðŝ2
AS
Þ for schemes with two families per group over that for schemes with random groups. (A) For fixed

T ¼ 2000 B. For fixed ngroups ¼ 500. (C) For fixed T ¼ 2000 and optimum group size. (D) For fixed ngroups ¼ 500 and optimum
group size. (A–D) h2

D ¼ h2
S ¼ 0.3, s2

PD
¼ s2

PS;2
¼ 1. r g ¼ r E ¼ 0, r ¼ 0.25 (half-sibs). Family size is optimum (Equations 15 and 16).
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example, when using the estimates of Bergsma et al.
(2008), the P-value for the variance of IGEs is just below
5% when T ¼ 2000 in a half-sib design with two families
per group and groups of eight members. Using the
estimates of Ellen et al. (2008; line WB), T ¼ 2000, and
in groups of four members, the corresponding P-value is
below 5% for a half-sib design and below 1% for a full-sib
design. Those experimental sizes are within the feasible
range for many species in agriculture and aquaculture
and for the smaller laboratory species. This work has
considered a simple population structure, where re-
latedness is the same for all families and members of
different families are unrelated. Extension to more
complex family structures, such as full-sib families
within half-sib families, would be useful.

This work has compared two experimental designs,
showing that schemes with groups composed of two
families yield lower SEs for the variance of IGEs than
schemes with groups composed at random. The mech-
anism is as follows. With 1

2 nw family members in a group,
the phenotypes of the group mates belonging to the
other family contain 1

2 nw IGEs from the focal family.
With a random group composition, in contrast, the
phenotypes of the group mates contain only a single
IGE from the focal family. Hence, the two-family scheme
has the effect of increasing the family component in the
phenotype, which increases the intraclass correlation.
This increase in intraclass correlation can be observed
in the expression for s2

z, which has a factor n2
w in the

denominator (Table 4). Since larger effects can be
estimated more precisely, this reduces the SEðŝ2

AS
Þ. This

effect is counteracted by a difference in the effective
number of records per family, which equals m ¼ n for
random schemes but m ¼ n=ð12 nwÞ for two-family
schemes (Tables 3 and 4). Hence, moving from random
schemes to two-family schemes increases the relative size
of the effect by a factor of 1

2 nw, but reduces the effective
number of records by the same factor. Investigation of
Equation 7, however, reveals a positive net effect.

Although a formal proof of optimality of the two-family
design is difficult, the above suggests that this design is
probably optimal or near optimal. Consider the full
range of schemes with nf families per group, each family
contributing nm members, so that nw ¼ nfnm. The
extremes of this range are given by taking all members
from different families, nf ¼ nw and nm ¼ 1, which is near
identical to the random scheme, and by the two-family
scheme, nf ¼ 2 and nm ¼ 1

2 nw. (With a single family per
group, nf ¼ 1 and nm ¼ nw, genetic parameters of
DGEs and IGEs are statistically nonidentifiable.) Within
this range, the size of the family effect in the phenotypes
of the group mates of that family equals nmAS;k , and
the number of effective records per family equals
m ¼ n=nm. Investigation of Equation 7 shows that in-
creasing the size of the effect while reducing the effec-
tive number of records by the same factor reduces the SE
of ŝ2

f (unless m is very small). Hence, this suggests that

using the highest possible number of family members per
group is optimal, which is the two-family scheme.

In any power calculation, predicted SEs depend on
the true values of the parameters to be estimated.
Hence, application of prediction equations presented
here requires prior assumptions on those true values.
Such prior assumptions may be obtained from knowl-
edge of traits underlying the indirect effects, e.g., from
the intensity of behavioral interactions among individ-
uals and the heritability of such behaviors or from
existing estimates of genetic parameters taken from the
literature. The expressions for SEs presented here are
formulated in terms of the true parameters for total
direct and indirect effect, s2

PD
, sPDS

, and s2
PS

, and the
corresponding genetic parameters, s2

AD
, sADS

, and s2
AS

.
However, while the genetic parameters are statistically
identifiable, the parameters for total direct and indirect
effect are not. The reason is that the nongenetic pa-
rameters s2

ED
, sEDS

, and s2
ES

are nonidentifiable, because
there exist multiple combinations of those parameters
yielding the same nongenetic variances between and
within groups. The between-group variance equals
s2

g ¼ 2sEDS
1 ðn � 2Þs2

ES
, whereas the within-group vari-

ance equals s2
e ¼ s2

ED
� 2sEDS

1 s2
ES

. Hence, the litera-
ture will include estimates of s2

g and s2
e, rather than s2

PD
,

sPDS
, and s2

PS
(e.g., Appendix C). This issue is resolved by

reformulating the expressions in Tables 3 and 4 in terms
of s2

g and s2
e, using

s2
PD

1 ðnw � 1Þs2
PS
¼ s2

AD
1 ðnw � 1Þs2

AS
1 s2

g 1 s2
e;

ð19Þ
and

2sPDS 1 ðnw � 2Þs2
PS
¼ 2sADS 1 ðnw � 2Þs2

AS
1 s2

g: ð20Þ

Hence, expression presented here can be imple-
mented using prior values taken from the literature,
on the condition that authors present not only the
estimated genetic parameters, but also the estimated
between-group and residual variance.
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APPENDIX A

This appendix shows the derivations of Equations 7,
9, 12, and 13.

Equation 7: With one-way ANOVA, expected mean
squares are (Stuart et al. 1999)

EMSf ¼ ms2
f 1 s2

e ðA1aÞ

EMSe ¼ s2
e; ðA1bÞ

so that the estimated family variance equals

ŝ2
f ¼ ðMSf �MSeÞ=m: ðA2Þ

The variance of ŝ2
f follows from the variances of the

mean squares, using the general result that (Stuart

et al. 1999)

VarðMSÞ ¼ 2EMS2

df
: ðA3Þ

Combining Equations A1–A3 yields

Varðŝ2
f Þ �

2

N � 1
s4

f 1
2s2

f s2
e

m
1

s4
e

mðm � 1Þ

� �
: ðA4Þ

The last term in this expression uses (T�1)/T � 1.
Finally, using ŝ2

A ¼ ŝ2
f =r , r denoting additive genetic

relatedness among family members, yields Equation 7.
The r equals ½ for full-sib families and ¼ for half-sib
families (Falconer and Mackay 1996).

Equation 9: The derivation of SEðŝADS
Þ is based on an

approximation of the variance of an estimated covari-
ance. Consider df paired observations on two random
variables, say x and y, following a bivariate normal dis-
tribution with zero mean, Covðxi ; xj 6¼iÞ ¼ Covðyi ; yj 6¼iÞ ¼
Covðxi ; yj 6¼iÞ ¼ 0, and Covðxi ; yiÞ ¼ Covðx; yÞ ¼ rsxsy,
where r denotes the correlation between x and y
within a pair. (With respect to a covariance, the assump-
tion of zero mean is equivalent to assuming the mean
known. Hence, this derivation ignores that the mean
has to be estimated from the sample.) Interest is in
VarðŝxyÞ. With

EðxÞ ¼ EðyÞ ¼ 0; ŝxy ¼
1

df

X
df

xy;

so that VarðŝxyÞ ¼ ð1=df ÞVarðxyÞ. Next, we use VarðxyÞ ¼
Var EðxyjyÞ½ � 1 E VarðxyjyÞ½ � (Stuart and Ord 1994).
Under normality, EðxyjyÞ ¼ yEðxjyÞ ¼ rðsx=syÞ y2. From
the moments of the normal distribution (Stuart and
Ord 1994), Varðy2Þ ¼ 2s4

y , so that Var EðxyjyÞ½ � ¼ 2r2s2
xs2

y .
Moreover, under normality, VarðxyjyÞ ¼ y2VarðxjyÞ ¼
ð1� r2Þs2

xy2, so that E VarðxyjyÞ½ � ¼ ð1� r2Þs2
xs2

y . Com-
bining both terms and substituting r2s2

xs2
y ¼ s2

xy yields

VarðŝxyÞ �
s2

xs2
y 1 s2

xy

df
: ðA5Þ

Application of this result to the direct-social genetic
covariance requires knowledge of s2

x , s2
y , and sxy.

Because DGE and IGEs are not directly observed, one
cannot simply substitute those parameters by the true
genetic parameters. Rather, the s2

x and s2
y represent

the ‘‘effective variance’’ of the ‘‘record’’ providing
information on DGE and IGE, respectively. Those
effective variances can be backcalculated from the
SEs of the estimated variances of x and y. Using the
general result that Varðŝ2

xÞ ¼ 2s4
x=df , the effective

variances are s2
x ¼ SEðŝ2

xÞ
ffiffiffiffiffiffiffiffiffiffi
df =2

p
, and s2

y ¼
SEðŝ2

y Þ
ffiffiffiffiffiffiffiffiffiffi
df =2

p
. Moreover, the sxy in Equation A5

represents the covariance between the records pro-
viding information on the DGE and IGE, respectively.
Because covariances are not affected by taking aver-
ages, the true value of sxy can be used. Substituting the
above results into Equation A5 yields

VarðŝxyÞ �
SEðŝ2

xÞ SEðŝ2
y Þ

2
1

s2
xy

df
: ðA6Þ

Applying this result to DGEs and IGEs, substituting df¼
N�1, and taking the square root yields Equation 9.

Equations 12: The estimated genetic correlation equals

r̂g ¼
ŝADS

ŝAD ŝAS

:

This derivation ignores covariances among ŝ2
AD

, ŝ2
AS

,
and ŝADS

. Then Varðr̂g Þ can be predicted using a first-
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order Taylor-series approximation of a ratio, say x/y,
giving x=y � �x=�y 1 �y�1ðx � �xÞ � �x �y�2ðy � �yÞ. Assum-
ing Covðx; yÞ � 0,

Varðx=yÞ � s2
x=�y2 1 �x2s2

y =�y 4: ðA7Þ

Substituting �x ¼ sADS
, s2

x ¼ Var½ŝADS
�, �y ¼ sAD

sAS
, and

s2
y ¼ Var½ŝAD

ŝAS
� and taking the square root yield

Equation 12.
Equation 13: Application of Equation 12 requires

Var ŝAD
ŝAS

½ �, the variance of a product. Consider the prod-
uct

ffiffiffi
x
p ffiffi

y
p

, where x corresponds to ŝ2
AD

, and y corresponds
to ŝ2

AS
. Using VarðabÞ ¼ Var EðabjbÞ½ � 1 E VarðabjbÞ½ �, and

assuming Covð ffiffiffixp ;
ffiffi
y
p Þ � 0 and

ffiffiffi
x
p �

ffiffiffi
�x
p

, yields
Var

ffiffiffi
x
p ffiffi

y
p� �
� Var

ffiffiffi
x
pð Þ1 �x½ � Var

ffiffi
y
p� �

1 �y
� �

� �x �y. Next,
a first-order Taylor-series approximation for the square
root of a variable yields

ffiffiffi
x
p �

ffiffiffi
�x
p

1 ð1=2
ffiffiffi
�x
p
Þðx � �xÞ, so

that Varð ffiffiffixp Þ � s2
x=4�x. Analogously Varð ffiffiyp Þ � s2

y =4�y.
Substituting those results yields

Var
ffiffiffi
x
p ffiffi

y
p� �
� s2

x

4�x
1 �x

� �
s2

y

4�y
1 �y

" #
� �x �y: ðA8Þ

Substituting �x ¼ s2
AD

, s2
x ¼ Var ŝ2

AD

� �
, �y ¼ s2

AS
, and s2

y ¼
Var ŝ2

AS

� �
yields Equation 13.

APPENDIX B

This appendix shows the derivation of results pre-
sented in Tables 3 and 4.

Table 3, s2
z , and s2

f for groups composed at random:
When groups are composed at random with respect to
family, group mates are genetically independent. The
effective number of records in this design equals the
number of individuals per family (see derivations
below), so that

m ¼ n: ðB1Þ

From Equation 1, phenotypic variance equals

s2
P ¼ s2

PD
1 ðnw � 1Þs2

PS
; ðB2Þ

and the covariance between phenotypes of group mates
equals

Covw ¼ 2sPDS 1 ðnw � 2Þs2
PS
: ðB3Þ

Direct genetic variance: The DGE of a family is ex-
pressed in the phenotypes of the family members
themselves. Hence, in terms of Equation 6, the record
of interest for DGEs is the phenotypic value of the lth
member of family k,

zkl ¼ Pkl : ðB4Þ

Thus the full- and between-family variances are

s2
z ¼ s2

P ðB5aÞ

s2
f ¼ rs2

AD
: ðB5bÞ

Indirect genetic variance: The IGE of an individual is
expressed in the phenotypes of its group mates. Hence,
the group mates of the members of a family provide
information on the IGE of that family. Thus the record
of interest for IGEs is the mean phenotypic value of the
nw � 1 group mates of the lth member of family k,

zkl ¼
1

nw � 1

Xnw�1

j¼1

P j ; ðB6Þ

j denoting the group mates of l. From Equation B6, the
full variance equals

s2
z ¼

s2
P 1 ðnw � 2ÞCovw

nw � 1
: ðB7aÞ

The expected value of zkl , given family k, equals the
IGE of family k, f k ¼ AS ;k . Thus the between-family
variance equals

s2
f ¼ rs2

AS
: ðB7bÞ

Total heritable variance: An individual’s total heritable
effect equals TBVi ¼ AD;i 1 ðnw � 1ÞAS;i , of which the
AD;i is expressed in its own phenotype, and the AS;i in
the phenotypes of each of its nw � 1 group mates.
Hence, the summed phenotypes of the focal individual
and its nw � 1 group mates expresses the TBV of the
focal individual. Thus the record of interest for TBVs is
the sum of phenotypic values of all nw individuals
belonging to the group of the lth member of family k,

zkl ¼
Xnw

j¼1

P j ; ðB8Þ

j denoting group members of l, including l itself. From
Equation B8, the full variance equals

s2
z ¼ nw s2

P 1 ðnw � 1ÞCovw

� �
: ðB9aÞ

The expected value of zkl, given family k, equals the
TBV of family k, f k ¼ TBVk . Thus the between-family
variance equals

s2
f ¼ rs2

TBV: ðB9bÞ

Table 4, s2
z , and s2

f for groups composed of two
families: In this design, each group consists of mem-
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bers of two families, each contributing 1
2 nw individuals

(Table 2). The effective number of records in this
design equals the number of groups to which a family
contributes (see derivations below), so that

m ¼ 2n=nw: ðB10Þ

Phenotypic variance depends on relatedness. Relat-
edness within group equals r between members of the
same family and zero between members of different
families. From

P i ¼ PD;i 1
Xnw�1

j¼1

P S;j ;

phenotypic variance equals

s2
P ¼ s2

PD
1 ðnw � 1Þs2

PS
1 2

Xnw�1

j¼1

CovðP D;i ;P S;jÞ

1
Xnw�1

j¼1

Xnw�2

j 0¼1

CovðP S;j ;P S;j 0 Þj 6¼j 0 :

Only covariances between family member are non-
zero. Since i has 1

2 nw � 1 family members in the same
group,

2
Xnw�1

j¼1

CovðP D;i ;P S;jÞ ¼ 2r
�

1
2 nw � 1

�
sADS :

In

Xnw�1

j¼1

Xnw�2

j 0¼1

CovðP S;j ;P S;j 0 Þj 6¼j 0

there are ð12 nw � 1Þmembers of the family of i together
contributing ð12 nw � 1Þð12 nw � 2Þrs2

AS
, and 1

2 nw members
of the other family together contributing
1
2 nwð12 nw � 1Þrs2

AS
, yielding a total of 2rð12 nw � 1Þ2s2

AS
.

Collecting terms yields

s2
P ¼s2

PD
1 ðnw � 1Þs2

PS
1 2r

�
1
2 nw � 1

�
sADS 1

�
1
2 nw � 1

�
s2

AS

h i
:

ðB11Þ

The covariance between phenotypes of group mates
belonging to the same family follows from

Cov P D;i 1
Xnw�1

j¼1

P S;j ; P D;i 0 1
Xnw�1

j 0¼1

P S;j 0

0
@

1
A;

where i and i’ belong to the same family, and j and j’
denote the group mates of i and i’, respectively. This
covariance can be split into a term due to unrelated
individuals, which is the same as for groups composed at

random and equals 2sPDS
1 ðnw � 2Þs2

PS
, and a remain-

ing term due to relatedness. Carefully collecting terms
shows that components due to relatedness are: (1) rs2

AD

from CovðPD;i ;P D;i0 Þ, (2) 2r ð12 nw � 2ÞsADS
from the co-

variance between DGEs and IGEs among members of
the same family, (3) ð14 n2

w � 1:5 nw 1 3Þ rs2
AS

from IGEs
of the focal family, and (4) ð14 n2

w � 1
2 nwÞ rs2

AS
from IGEs

of the other family. Collecting terms yields

Covw;fam ¼ 2sPDS 1 ðnw � 2Þs2
P
S

1 r s2
AD

1 2
�

1
2 nw � 2

�
sADS 1

�
1
2 n2

w � 2nw 1 3
�
s2

AS

h i
:

ðB12Þ
The covariance between phenotypes of group mates

belonging to different families can be derived analo-
gously. Components due to unrelated individuals con-
tribute 2sPDS

1 ðnw � 2Þs2
PS

. Components due to
relatedness are 2ð12 nw � 1ÞrsADS

from the covariances
between DGEs and IGEs of family members and
2ð12 nw � 1Þ2rs2

AS
from the covariances between IGEs of

family members. Collecting terms yields

Covw;nonfam ¼ 2sPDS 1 ðnw � 2Þs2
PS

1 2 r ð12 nw � 1Þ sADS 1 ð12 nw � 1Þs2
AS

h i
:

ðB13Þ

Moreover, the variance of the mean phenotype of the
1
2 nw group mates belonging to the same family equals

Varð �P famÞ ¼
s2

P 1 ð12 nw � 1ÞCovw;fam
1
2 nw

: ðB14Þ

Direct genetic variance: With two families per group, the
mean phenotype of the 1

2 nw group mates of a family
depends not only on the DGE of that family, but also on its
IGE. Given family k, the expected mean of the 1

2 nw

members of family k in group l equals E ½ �P kl jk� ¼
AD;k 1 ð12 nw � 1ÞAS;k . The ð12 nw � 1ÞAS;k arises because
each family member has ð12 nw � 1Þ group mates belong-
ing to its own family. Moreover, given family k, the
expected mean phenotype of the other family in the
group, say k’, equals E ½ �Pk 0l jk� ¼ 1

2 nwAS;k . A linear com-
bination of both expected means yields an estimate of the
DGE of family k, E ½ �Pkl � f �P k0l � ¼ AD;k , where

f ¼
1
2 nw � 1

1
2 nw

: ðB15Þ

Thus the record of interest for DGEs is

zkl ¼ �Pkl � f �P k0l ; ðB16Þ

where �Pkl is the mean phenotypic value of the 1
2 nw

member of family k in the lth group to which family k
contributes, and �P k0l is the mean phenotypic value of the
1
2 nw members of the other family in that group. Hence, l
indexes the 1 through 2n=nw groups to which a family
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contributes, so that the number of records equals m ¼
2n=nw. From Equation B16, the full variance equals

s2
z ¼ ð 1 1 f2ÞVarð �P famÞ � 2f Covw;nonfam; ðB17aÞ

and the between-family variance equals

s2
f ¼ rs2

AD
: ðB17bÞ

Indirect genetic variance: As shown above, given family k,
the expected mean phenotype of the other family in group
l equals E ½ �Pk0l jk� ¼ 1

2 nwAS;k , so that E ½ �Pk 0l jk�=ð12 nwÞ ¼
AS;k . Thus the record of interest for IGEs is

zkl ¼
�Pk0l

1
2 nw

: ðB18Þ

The full variance, therefore, equals

s2
z ¼

Varð �P famÞ
1
4 n2

w

; ðB19aÞ

and the between-family variance equals

s2
f ¼ rs2

AS
: ðB19bÞ

Total heritable variance: In any group, each of the 1
2 nw

members of family k receives a contribution AD;k 1

ð12 nw � 1ÞAS;k to its phenotype. Moreover, each of
the 1

2 nw members of the other family, k’, receives
a contribution 1

2 nwAS;k . Hence, given family k, the
expected value of the sum of phenotypes of all
nw members of group l equals E

Pnw

j¼1 P kl ;j jk
h i

¼
1
2 nw AD;k 1 ðnw � 1ÞAS;k½ � ¼ 1

2 nwTBVk , where j denotes
members of the lth group to which family k contrib-
utes. Thus the record of interest for the TBVs is

zkl ¼
1

1
2 nw

Xnw

j¼1

P kl ;j : ðB20Þ

The full variance, therefore, equals

s2
z ¼

4

nw
s2

P 1

 
1

2
nw � 1

!
Covw;fam 1

1

2
nwCovw;nonfam

" #
;

ðB21aÞ
and the between-family variance equals

s2
f ¼ rs2

TBV : ðB21bÞ

APPENDIX C

Stochastic simulation and data analysis: Simulated
population structures are described in the main text.
DGEs and IGEs were sampled from a bivariate normal
distribution,

aD

aS

� �
�N ð0;C5AÞ;

where aD and aS are vectors of DGEs and IGEs for all
individuals, respectively,

C ¼ s2
AD

sADS

sADS s2
AS

" #
;

and A is the so-called numerator relationship matrix,
containing coefficients of additive genetic relatedness
between all individuals (Emik and Terril 1949;
Henderson 1976). Elements Aij of A equaled r
when i and j were from the same family, and zero
otherwise.

Variance components were estimated from simulated
data using restricted maximum likelihood (ReML) as
implemented in ASReml (Gilmour et al. 2006), with the
model (Arango et al. 2005; Muir 2005; Bijma et al.
2007b)

y ¼ m 1 ZDaD 1 ZSaS 1 Zgg 1 e; ðC1Þ

where y is a vector of phenotypes of all individuals, m the
overall mean, ZD an incidence matrix linking phenotypes
of individuals to their own DGE, ZS an incidence matrix
linking phenotypes of individuals to the IGEs of their
group mates, and Zg an incidence matrix linking pheno-
types of individuals to their group. The g is a vector of
random group effects with VarðgÞ ¼ Is2

g, and e is a vector
of residuals with VarðeÞ ¼ Is2

e, I denoting an identity
matrix. Results showed that variance components esti-
mated using Equation C1 were unbiased. Fitting model C1
yields estimates of the genetic parameters of interest, s2

AD
,

sADS
, and s2

AS
, and of the nongenetic parameters s2

g and
s2

e. Variance components for nongenetic direct and
indirect effects, s2

ED
, sEDS

, and s2
ES

are not statistically
identifiable, and therefore not fitted (see discussion).

The g accounts for the covariance between group
mates arising from nonheritable indirect effects, s2

g ¼
2sEDS

1 ðnw � 2Þs2
ES

(Bergsma et al. 2008). If sEDS
is

negative and sufficiently large, the 2sEDS
1 ðnw � 2Þs2

ES

can be a negative value, so that the nongenetic co-
variance between group mates is negative, and fitting a
random group effect is inappropriate. In those cases,
therefore, the random group effect was omitted from
the model, and residuals were allowed to be correlated
within group, using VarðeÞ ¼ Rs2

e, where Rii¼ 1, Rij ¼ r

when i and j are in the same group, and Rij ¼ 0 when i
and j are in different groups. The r represents the
correlation between residuals of group mates, which is
estimated from the data (Bijma et al. 2007b). Both
models are equivalent when r . 0 (Bergsma et al. 2008).
When r . 0, we fitted random group effects rather than
correlated residuals, because it was computationally less
demanding and showed better convergence.
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