Skip to main content
. 2010 Nov;186(3):1013–1028. doi: 10.1534/genetics.110.120493

TABLE 6.

Precision of predicted SEs for groups composed at random

Error%
Scheme Inline graphic Inline graphic Inline graphic Inline graphic Inline graphic Inline graphic
Basic 2 0 −1 1 5 1
Alt. 1 1 −11 −3 −2 3 146
Alt. 2 3 3 1 1 2 129
Alt. 3 4 0 0 2 9 121
Alt. 4 0 8 −1 −1 −1 47
Alt. 5 3 −6 −1 0 7 134
Alt. 6 1 −4 −1 −2 1 −5
Alt. 7 2 7 −1 0 1 85
Alt. 8 3 1 0 2 6 2
Alt. 9 −1 2 2 3 5 −2
Alt. 10 2 −1 0 3 5 −10
Alt. 11 2 0 −3 0 2 −7
Alt. 12 2 1 0 1 7 2
Alt. 13 2 0 −1 −1 2 −1
Alt. 14 2 2 0 2 7 0
Alt. 15 −2 1 −1 −2 3 0
Alt. 16 2 −3 4 2 5 −6
Alt. 17 −1 −1 4 2 5 −10
Alt. 18 3 −4 1 0 3 −5
Alt. 19 1 −1 4 4 6 −38
Alt. 20 0 −6 −1 1 2 −33

See Table 5 for description of schemes. Error% = 100% × (predicted − empirical)/empirical. Empirical SEs were based on stochastic simulations with 1000 replicates. With 1000 replicates, the relative SE of the empirical SE equals Inline graphicInline graphic ≈ 0.022 (Stuart and Ord 1994). Therefore, when predictions equal the true values, E[error%] = 0, and the SE of error% given the predicted value equals ∼2.2%. Then the expected absolute error equals E[|error%|] ≈ 1.8%, and |error%| > 4.4% indicates significant bias (P < 0.05; two-sided, not accounting for multiple testing).