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Abstract
The Krüppel-like factor (KLF) family of transcription factors regulates diverse biological processes
that include proliferation, differentiation, growth, development, survival, and responses to external
stress. Seventeen mammalian KLFs have been identified, and numerous studies have been published
that describe their basic biology and contribution to human diseases. KLF proteins have received
much attention because of their involvement in the development and homeostasis of numerous organ
systems. KLFs are critical regulators of physiological systems that include the cardiovascular,
digestive, respiratory, hematological, and immune systems and are involved in disorders such as
obesity, cardiovascular disease, cancer, and inflammatory conditions. Furthermore, KLFs play an
important role in reprogramming somatic cells into induced pluripotent stem (iPS) cells and
maintaining the pluripotent state of embryonic stem cells. As research on KLF proteins progresses,
additional KLF functions and associations with disease are likely to be discovered. Here, we review
the current knowledge of KLF proteins and describe common attributes of their biochemical and
physiological functions and their pathophysiological roles.
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Chapter I: Background
A. Introduction

Krüppel-like factors (KLFs) are zinc finger-containing transcription factors that regulate
proliferation, differentiation, development, and programmed cell death. Alterations in their
functions have been associated with the pathobiology of numerous human diseases, including
cardiovascular disease, metabolic disorders, and cancer. KLF family members have homology
to the Drosophila melanogaster Krüppel protein, a member of the ‘gap’ class of segmentation
gene products that regulates body segmentation in the thorax and anterior abdomen of the
Drosophila embryo (361). KLFs also share homology with the transcription factor Sp1, one
of the first mammalian transcription factors to be identified and characterized (205). Sp1 binds
GC-rich regions in DNA via three C2H2-type zinc fingers. Because KLF proteins also contain
this zinc-finger structure, they are classified as part of the Sp1/KLF family. Although Sp1 was
initially viewed as a general transcription factor that regulates basal expression of housekeeping
genes, it was later discovered that Sp1/KLF family members regulate a complex set of genes
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that have distinct roles in development and homeostasis of many tissue types. KLF proteins
share common mechanisms of regulation, recruiting transcriptional regulatory proteins that
include transcriptional co-activators and co-repressors, and other chromatin remodeling
proteins. Together, KLFs function in the physiology and pathophysiology of many organ
systems, including cardiovascular, respiratory, digestive, hematological, and immune systems.
Many KLFs are also involved in tumor biology, in reprogramming somatic cells into inducible
pluripotent stem (iPS) cells, and maintaining the pluripotent state of embryonic stem (ES) cells
(198,300,415,416). As the study of KLF proteins progresses, new biological and
pathobiological roles for these factors are constantly being discovered. This review addresses
the current understanding of biochemical, biological, and pathophysiological functions of KLF
family members.

B. Conservation and Phylogenetic Analysis of KLFs
KLF proteins are conserved among mammals from human to rat, with many KLFs also having
homologs in Gallus gallus (chicken), Danio rerio (zebrafish) and Xenopus laevis (frog). In
addition, the Caenorhabditis elegans genome contains 3 predicted KLF homologs, klf-1,
klf-2 and klf-3 (42). Tissue expression of the KLFs varies—some family members are expressed
ubiquitously (e.g. KLFs 6, 10, and 11) whereas others are expressed in specific tissues—KLF1
is expressed predominantly in erythroid cells, KLF2 is highly expressed in lung, and KLFs 4
and 5 are very abundant in the gastrointestinal tract (331). KLF proteins exhibit homology in
their carboxyl-terminal zinc finger domains that allow KLFs to bind GC-rich sites in promoter
and enhancer regions of the genes they regulate. These structural similarities create overlap in
their transcriptional targets. For example, in ES cells, KLFs 2, 4, and 5 can all bind and activate
Esrrb, Fbxo15, Nanog, and Tcl1 (198). However, KLF proteins have distinct amino-terminal
sequences that provide unique regions for interaction with specific binding partners.
Phylogenetic analysis of protein sequences of the 17 human KLFs defines evolutionary
distances of individual family members (Figure 1). Structural homologies of KLFs correlate
with functional similarities; this connection is likely due to homologous protein interaction
motifs in amino-terminal domains. Based on functional characteristics, KLF proteins can be
divided into three distinct groups. KLFs in Group 1 (KLFs 3, 8, and 12) serve as transcriptional
repressors through their interaction with the C-terminal binding protein (CtBP). Family
members in Group 2 (KLFs 1, 2, 4, 5, 6, and 7) function predominantly as transcriptional
activators. KLFs in Group 3 (KLFs 9, 10, 11, 13, 14, and 16) have repressor activity through
their interaction with the common transcriptional co-repressor, Sin3A. KLFs 15 and 17 are
more distantly related based on phylogenetic analysis and contain no defined protein interaction
motifs.

C. Protein Structure of the KLFs
1. The Zinc Finger Domain—Zinc finger domains are common motifs in transcription
factors. The most frequently encountered zinc finger motif is the C2H2 type, in which a zinc
atom is tetrahedrally coordinated by two conserved cysteine and histidine residues that allow
the domain to fold into a ββα structure (40). All members of the KLF family have three zinc
finger motifs at the carboxyl-terminal ends of the proteins that are highly conserved. Their
location within KLF protein structures are shown in Figure 2. The first and second zinc fingers
contain 25 amino acids and the third contains 23 amino acids. Each zinc finger recognizes three
base pairs in the DNA sequence and interacts with nine base pairs in total (294). Several studies
have examined the preferred DNA binding motifs for a number of KLFs, based on binding
studies of promoter regions and oligonucleotide screens (279,376). DNA binding sites are
similar among the KLF proteins; they include GC-rich sequences with a preference for the 5′-
CACCC-3′ core motif, which is present in the β-globin gene promoter recognized by KLF1
(279). A number of other KLF proteins also bind this motif (431,432,464).
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In addition to its role in DNA binding, the zinc finger region may be important for nuclear
import. Nuclear localization signals have been identified in the zinc finger domains of KLFs
1, 4, 8, and 11 (275,325,377,400) and in a basic region of KLF4 immediately amino-terminal
to the zinc fingers (377).

2. Functional Binding Domains—The amino-terminal regions of KLFs vary significantly
and allow them to bind different co-activators, co-repressors, and modifiers, resulting in
functional diversity and specificity. Through the identification of KLF binding partners, several
protein interaction domains have been characterized for subgroups of the KLFs that help define
their function. Figure 2 shows the protein-binding domains within the protein structures of the
KLFs.

C-Terminal Binding Protein (CtBP)-Binding Site: Although KLF3 was initially thought to
function as a transcriptional activator, it was later shown to be a strong repressor, with its
activity localized to a 74 amino-acid sequence in the amino-terminal region (427). In a yeast
two-hybrid screen, KLF3 interacted with the transcriptional co-repressor CtBP. KLF3, as well
as KLFs 8 and 12, bind CtBP via the consensus sequence PXDLS (362,427,432). This
interaction mediates the repressor activities of KLFs 3 and 8, and the ability of KLF12 to repress
expression of the AP-2α gene.

Sin3A-Binding Site: KLFs 10 and 11 also act as transcriptional repressors (90). This activity
maps to three distinct repression sites in amino-terminal regions of the proteins designated R1,
R2 and R3. The R1 domain was later shown to contain a Sin3-interacting domain (SID), a
hydrophobic-rich motif that forms a α-helical structure to support interaction with Sin3
proteins, which are histone deacetylase-dependent co-repressors (488). KLFs 9, 10, 11, 13, and
16 share a conserved α-helical motif AA/VXXL that mediates their binding to Sin3A and their
activities as transcriptional repressors (488). Whereas the protein sequence of KLF14 contains
a putative SID, physical interaction between KLF14 and Sin3A has not been established.
Surprisingly, KLF1, which does not contain a SID, binds and recruits Sin3A to function as a
transcriptional repressor (65). However, this interaction was mediated through the carboxyl-
terminal zinc finger domain of KLF1 rather than an amino-terminal hydrophobic consensus
site.

Chapter II: Biochemical Mechanisms of KLFs
A. Common Interacting Proteins

1. Histone Acetyltransferases (HATs)—Sequence-specific DNA-binding factors like
KLFs regulate transcription by recruiting chromatin modifiers, cofactors, and transcription
machinery to promoters of specific genes. A number of KLFs from Group 1 of the phylogenetic
analysis bind to co-regulators that have acetyltransferase activity, such as cAMP response
element binding-binding protein (CBP), p300, and p300/CBP-associated factor (P/CAF)
(127,246,283,395,491). KLF1 binds CBP/p300 and P/CAF in vivo and is subsequently
acetylated at K288 and K302 (494) (Figure 2). Whereas acetylation of KLF1 at K288 is
associated with its transactivation (370), acetylation at K302 is required for its interaction with
the transcriptional repressor, Sin3A (64). KLFs 5 and 6 also bind CBP/p300 and are acetylated
at defined sites (163,246). KLFs 2 and 4 interact with CBP/p300 (127,147,369) and have
putative acetylation sites that are conserved with the K288 site of KLF1, but these sites have
not been empirically determined.

2. CtBP—KLFs 3, 8, and 12 interact with the transcriptional regulator CtBP through a
consensus binding sequence in their amino-terminal regions (362,427,432). CtBP1 was
originally characterized for its ability to bind the adenovirus E1A protein (39); and vertebrate
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CtBP1 and CtBP2 are established transcriptional repressors. One mechanism by which CtBPs
promote gene silencing is through recruitment of histone deacetylases (HDACs) and histone
methyl transferases to transcriptional complexes. These proteins deacetylate and methylate
histones, respectively, to cause chromatin compaction and transcriptional silencing (78). CtBPs
also have HDAC-independent mechanisms of action; CtBP1 and CtBP2 bind and inhibit HAT
co-activators such as p300/CBP (78) and recruit other repressors that promote chromosome
silencing, such as Ikaros (223) and members of the polycomb group (371). Therefore, the
primary mechanism by which CtBP proteins repress transcription is through the recruitment
of proteins that affect chromatin remodeling.

KLF3 is a negative regulator of adipogenesis and thereby a regulator of fat metabolism (409).
Adipocyte differentiation is normally accompanied by decreased expression of KLF3, and
overexpression of KLF3 blocks differentiation of 3T3-L1 cells in a CtBP-dependent manner.
Given that CtBP binds NADH, CtBP might be a metabolic sensor for KLF3-related repressor
function.

3. Sin3A—KLFs 9, 10, 11, 13, 14, and 16 contain a hydrophobic consensus sequence in their
amino terminus that recruits the transcriptional repressor Sin3A (488). Mammalian Sin3
proteins (Sin3A and Sin3B) are large, multi-domain proteins made up of four highly conserved
imperfect repeats, each of which fold into two amphipathic helices (221). These proteins bind
HDAC1 and HDAC2 and other proteins, including Mad, Ume6, MeCP2, N-CoR, silencing
mediator of retinoid and thyroid receptor (SMRT), and Ikaros (96). Given their size and various
protein interaction sites, Sin3 proteins are likely to provide a scaffold for assembly of multi-
unit complexes that modify chromatin conformation (221). HDACs, as part of these complexes,
are essential for mediating repressor activity, as mutation of the HDAC binding sites in Sin3A
or use of HDAC inhibitors abrogates repressor activity (206,392).

B. Post-translational Modifications
Co-regulatory proteins modify KLF family members via acetylation, phosphorylation,
ubiquitination, and sumoylation to refine their transcriptional activity.

1. Acetylation—A role for acetylation in regulating KLFs first came to light with the
modulation of KLF1 activity by histone acetyltransferases (HATs) (491). Acetylation of KLF1
at K288 is required for binding of KLF1 to the β-globin locus, for recruitment of CBP to the
locus, and for changes in chromatin structure that activate transcription (370). The zinc finger
domain of KLF1 interacts with the amino terminus of histone H3 to coordinate this process.
KLFs 4, 5, 6, and 13 are also acetylated, resulting in enhanced transcriptional activity (127,
246,283,395). In contrast, interaction of KLF5 with HDAC1 blocks binding of KLF5 to p300,
reducing KLF5 binding and activation of transcriptional targets (269).

The acetylation of KLFs is regulated by signaling pathways that affect the association of HATs
and HDACs with KLF proteins. For example, treatment of vascular smooth muscle cells
(SMCs) with all-trans retinoic acid (ATRA) induces phosphorylation of HDAC2, which
disrupts its interaction with KLF4 and allows KLF4 to become acetylated and bind the
SM22α promoter (276). Furthermore, treatment of HaCaT epidermal cells with transforming
growth factor-β (TGF-β induces an interaction between KLF5 and p300 that results in KLF5
acetylation (166). This modification not only affects the cofactors recruited by KLF5 to the
promoter of the gene encoding the cell cycle inhibitor p15 (CDKN2B), but also alters KLF5’s
regulation of CDKN2B, resulting in transcriptional activation rather than repression (166).

2. Phosphorylation—The transcriptional activity of several KLFs is regulated by
phosphorylation. KLF1 is phosphorylated at serine and threonine residues within its
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transactivation region by casein kinase II, which increases transcription of KLF1 target genes
(323). Phosphorylation and dephosphorylation of KLF5 have been reported to affect its binding
to various effector proteins, including c-Jun (176), CBP (499), retinoic acid receptor-α (496),
and the ubiquitin ligase, F-box and WD40 domain protein (Fbw7/hCDC4) (254). In T cells,
phosphorylation of KLF13 by the serine/threonine kinase PRP4 increases KLF13 nuclear
localization and transcriptional activation of chemokine C-C motif ligand 5 (CCL5) (187). In
contrast, phosphorylation of KLF11 by extracellular signal-regulated kinase (ERK)/mitogen-
activated protein kinase (MAPK) disrupts the interaction of KLF11 with Sin3A to prevent
repression of Smad7 (122).

3. Ubiquitination—Ubiquitination is a multi-step protein modification process mediated by
an E1 ubiquitin-activating enzyme, an E2 ubiquitin-conjugating enzyme, and an E3 ubiquitin
ligase (460). E3 ubiquitin ligases bind to the E2 ubiquitin conjugase and a substrate-specific
domain in the target protein. Polyubiquitination provides a signal for the degradation of
substrate proteins by the 26S proteasomal complex whereas monoubiquitination usually alters
the activity of a protein (227). KLFs 1, 2, 4, 5, 6, and 10 are regulated by ubiquitination. KLF1
is ubiquitinated in vivo, and inhibition of the 26S proteasomal complex results in accumulation
of KLF1 protein (341). Thus, ubiquitin-targeted degradation of KLF1 functions to maintain
cellular levels of the protein. Levels of KLFs 4 and 6 are also regulated by degradation via
ubiquitination, depending on physiological requirements. Following serum stimulation of
quiescent HCT116 cells, KLF4 undergoes ubiquitin modification and rapid degradation
through the proteasome pathway (74). Degradation of KLF4 eliminates its cell cycle inhibitory
effects, allowing the cells to re-enter the cell cycle. KLF6 is ubiquitinated and undergoes
proteasomal degradation in cultured cells following exposure to DNA damaging agents (17).
In this study, KLF6 is degraded only with high levels of DNA damage. Lower levels of damage
actually increase KLF6 levels, resulting in cell cycle arrest. Degradation of KLF6 might
therefore regulate cell fate decisions between cell cycle arrest and death, depending on the
extent of DNA damage. A splice variant of KLF6, KLF6-SV1, is ubiquitinated and subject to
rapid degradation (112). In cancer cells that overexpress KLF6-SV1, which is often associated
with poor survival, KLF6-SV1 binds to the pro-apoptotic protein NOXA, resulting in
ubiquitination and degradation of both proteins, promoting cancer cell survival.

KLFs 2 and 5 bind the ubiquitin ligase WWP1, and ubiquitination of these KLFs promotes
their rapid degradation by the proteasomal complex (60,495). In some prostate and breast
cancer cell lines, overexpression of WWP1 has been reported to increase degradation and loss
of KLF5 (59). Similarly, KLF5 interacts with and is ubiquitinated by the E3 ubiquitin ligase
and tumor suppressor, Fbw7/hCDC4, in a CDC4 phosphodegron (CPD)-dependent manner
(254). However, deficiency of Fbw7/hCDC4 from some cancer cells delays turnover of KLF5,
leading to the accumulation of KLF5.

KLF10 provides an example of regulation by mono-ubiquitination. KLF10 is a target of the
E3 ligase Itch, which mediates both mono- and poly-ubiquitination in response to TGF-β
signaling in naïve T cells (438). Mono-ubiquitination of KLF10 by Itch promotes
transcriptional activation of the KLF10 target Foxp3.

4. Sumoylation—Many transcription factors and co-regulators are modified by the small
ubiquitin-like modifier (SUMO) peptide, resulting in enhancement or suppression of their
transcriptional activity. KLF3, which normally functions as a transcriptional repressor,
interacts with the E2 SUMO-conjugating enzyme Ubc9 and is covalently modified by SUMO-1
in vitro and in vivo (332). KLF3 is sumoylated at lysines K10 and K197, and mutations at these
sites compromise the transcriptional repressor activities of KLF3. KLF8 promotes cell cycle
progression through positive regulation of the CCDN1 (cyclin D1) promoter. KLF8 can be
sumoylated through interaction with several SUMO E3 ligase family members including
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protein inhibitor of activated STAT1 (PIAS1), PIASy and PIASxα (455). Overexpression of
SUMO-1 suppresses the cell-cycle promoting effects of KLF8, whereas mutation of the
primary sumoylation site in KLF8 increases its effects on cell cycle progression. KLFs 4 and
5 also interact with the SUMO E3 ligase, PIAS1. PIAS1 promotes KLF4 sumoylation and
subsequent degradation so it no longer represses α-smooth muscle actin (α-SMA) in SMCs
(213). Alternatively, sumoylation of KLF5 increases its nuclear localization and promotes its
activation of the cell cycle genes cyclin D1 and Cdc2 (119,120).

The physiological roles of KLFs 1 and 5 are modulated by sumoylation. In erythroid progenitor
cells, KLF1 acts as a transcriptional repressor of megakaryocyte differentiation by blocking
expression of the transcription factor FLI-1, which is required for megakaryopoiesis (144).
This activity depends on sumoylation of KLF1 at K74—mutation of this site attenuates its
activity as a repressor (380). KLF5 has an important role in lipid metabolism through
peroxisome proliferator-activated receptor-δ(PPAR-δ) signaling (317). Under basal
conditions, KLF5 is sumoylated and associates with transcriptional repressor complexes that
regulate genes associated with lipid oxidation, including CPt1b, Ucp2 and Ucp3. When
PPARδ interacts with an agonist, KLF5 is de-sumoylated and binds to transcriptional activation
complexes that drive expression of genes that control lipid metabolism (317). Thus, KLF5 can
“switch” from transcriptional repression to activation, depending on its sumoylation status.

Chapter III: Cell-Based Functions of KLFs in Normal Biological Processes
A. Proliferation

Many KLF family members function as regulators of cell growth. KLFs 4 and 5, which are
highly expressed in intestinal tissues, have been studied extensively in regulating proliferation.
KLF5 is localized to actively proliferating cells at the base of intestinal crypts and promotes
proliferation of different types of cultured cells, including fibroblasts and epithelial cells (54,
410,473). KLF5 is upregulated in proliferating vascular SMCs and is activated by serum
stimulation of quiescent NIH3T3 cells. KLF5 participates in several growth factor signaling
pathways, including the RAS/MAPK, protein kinase C, and phosphatidyloinositol-3-kinase
(PI3K) pathways (115). KLF5 promotes proliferation by accelerating cells through G1/S and
G2/M phases of the cell cycle. A number of transcriptional targets of KFL5 promote cell cycle
progression, including cyclin D1 (301), cyclin B1 and Cdc2 (297). KLF5 also represses
expression of the cell cycle inhibitory proteins p27 and p15 (56). However, the ability of KLF5
to promote proliferation can be downregulated or reversed in cultured cells through activation
of signaling pathways that suppress cellular proliferation, including retinoic acid receptor
signaling and TGF-β signaling (54,163,164).

In contrast to KLF5, KLF4 inhibits cell cycle progression. In the intestinal mucosa, KLF4 is
expressed in differentiated cells at the luminal surface that have undergone growth arrest
(272,375). Studies in NIH3T3 cells indicate that KLF4 is expressed at very low levels in
actively proliferating cells but is induced as cells enter quiescence following serum-starvation
or contact inhibition (375). Furthermore, transcriptional profiling studies reveal a global
inhibitory function of KLF4 in regulating genes that promote transcription and the biosynthesis
of proteins and cholesterol (458). The primary mechanism by which KLF4 contributes to cell
cycle arrest has been determined from studies of KLF4 in DNA damage-induced growth arrest.
Exposure of cultured cells to DNA damaging agents or γ-irradiation increases the levels of
KLF4 in a p53-dependent manner (479,493). KLF4 binds directly to the promoter of the gene
that encodes the cell cycle inhibitor p21Cip1/Waf1 and recruits p53 to activate expression of
p21Cip1/Waf1 (493). KLF4 also inhibits expression of the cell cycle-promoting genes CCND1
(cyclin D1) (373) and CCNB1 (cyclin B1) (481). Furthermore, in response to DNA damage,
KLF4 suppresses transcription of the gene that encodes cyclin E and prevents chromosomal
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amplification (480). Thus, KLF4 activates cell cycle checkpoints to prevent inappropriate cell
cycle progression and maintain DNA integrity.

KLFs 6 and 8, which are ubiquitously expressed, also regulate cell cycle progression. KLF6
induces G1 cell cycle arrest by upregulating expression of p21Cip1/Waf1 and repressing
CCND1, thus disrupting formation of cyclin D1/cyclin-dependent kinase 4 (CDK4) complexes
(27,373). However, KLF8, as a mediator of focal adhesion kinase signaling, activates the
CCND1 promoter, and ectopic expression of KLF8 promotes cell cycle progression (500).

KLFs 10 and 11, initially identified as TGF-β-inducible genes, play significant roles in TGF-
β mediated cell growth control and differentiation. Ectopic expression of KLF10 can mimic
many of the effects of TGF-β signaling including suppression of proliferation (92,177). KLF10
mediates TGF-β signaling by blocking expression of Smad7, a negative regulator of TGF-β
(202), and activating expression of the positive effector, Smad 2 (203). These events promote
expression of p21Cip1/Waf1 and thereby inhibit cell cycle progression (202). KLF11 mediates
TGF-β/Smad signaling through downregulation of Smad7 by recruiting the transcriptional
repressor Sin3A to the Smad7 promoter (122). KLF11 also suppresses cell growth through
TGF-β dependent regulation of c-Myc (122). Upon TGF-β stimulation of epithelial cells,
KLF11 interacts with Smad3 to bind a TGF-β-inhibitory element (TIE) within the c-Myc
promoter and blocks its expression (43).

As another example of regulating cell growth, KLFs participate in the maintenance of
quiescence in lymphocytes. Naïve lymphocytes are held in a non-cycling, G0 growth phase
until they are activated by specific antigens. Quiescence requires negative regulation of cell
cycle progression and expression of genes that maintain small cell size and low metabolic
activity. Overexpression of KLF2 in Jurkat leukemia T cells inhibits growth and DNA
synthesis. KLF2 promotes a quiescent phenotype by blocking expression of the growth-
promoting c-Myc (44) and upregulating the cell cycle inhibitor p21Cip1/Waf1 (462). Similar
activities have been ascribed to KLF4 in B lymphocytes. KLF4 levels are decreased upon B
cell activation, and ectopic expression of KLF4 induces G1 cell cycle arrest (484). As with
KLF2, the arrest is associated with increased expression of p21Cip1/Waf1 and decreased
expression of c-Myc, as well as reduced expression of CCND1.

KLFs therefore regulate proliferation in a variety of cell types through transcriptional control
of cell cycle regulatory components. Transcriptional targets include cyclins D1, D2, B1, E, and
cyclin-dependent kinase inhibitors p21Cip1/Waf1, p15 and p27, as well as the proliferative factor
c-Myc.

B. Differentiation
KLFs play critical roles in differentiation during development and in maintenance of tissue
homeostasis. As a primary example, KLF1 regulates differentiation during erythropoiesis. The
development of red blood cells requires carefully regulated changes in cell morphology, globin
expression, and heme synthesis. KLF1 mediates the switch from expression of fetal γ-globin
to adult β-globin and regulates transcription of genes that encode cytoskeletal proteins, heme
synthesis enzymes, and blood group antigens (118,183,339). Binding of KLF1 to the CACCC
consensus site at nucleotide position −90 in the β-globin promoter initiates the recruitment of
large transcriptional complexes, including the mammalian SWI/SNF chromatin-remodeling
proteins, BRG1, BAF155, and CBP/p300 (204). KLF1 therefore regulates the maturation of
erythroid cells by allowing the chromatin structure to open and become transcriptionally active.

KLF1 also regulates the lineage progression of megakaryocyte-erythroid progenitor (MEP)
cells. While promoting erythroid maturation, KLF1 simultaneously suppresses megakaryocyte
differentiation by antagonizing the transcription factor FLI-1. FLI-1 is an ETS-related factor
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that is normally expressed in the MEP and its activity is required for megakaryopoiesis.
Expression of FLI-1 is negatively regulated in the MEP by a SUMO-modified form of KLF1
(380). Upon sumyolation, KLF1 interacts with the Mi-2β component of the NuRD repression
complex and recruits HDAC, indicating that Mi-2β/HDAC activity is involved in the SUMO-
dependent repression of FLI-1.

In the intestinal epithelium, KLF4 expression is restricted to terminally differentiated epithelial
cells of the mucosa, where it promotes differentiation (272). Transcriptional targets of KLF4
include Lama1, which encodes the basement membrane component Laminin-1, and the gene
that encodes the enterocyte differentiation marker intestinal alkaline phosphatase (181,336).
A specific role for KLF4 in goblet cell differentiation is demonstrated in studies of
Klf4−/−mice. In these mice, the number of colonic goblet cells is significantly reduced and
goblet cells have aberrant morphology, with low levels of the cell-specific marker MUC2
(211).

A number of KLFs participate in differentiation during adipogenesis. KLFs 2, 3, 4, 5, 6, 7, 11,
and 15 have all been reported to function as positive or negative regulators of adipocyte
differentiation, and their roles are described in detail in Chapter IV, Section F, “The Role of
KLFs in Metabolic Regulation.” Other tissues in which KLFs regulate differentiation include
KLFs 2, 4, and 5 in vascular SMCs (1,234,378), KLF2 in thymocytes (51), KLF13 in
cardiomyocytes (307), KLF7 in olfactory sensory neurons (207), KLF4 in corneal epithelial
cells (413), KLF4 in monocytes (6), KLF5 in lung respiratory epithelial cells (440), and KLF9
in hippocampal adult born neurons (363).

C. Apoptosis
Many of the studies examining the role of KLFs in apoptosis have arisen from observations of
up or downregulation of KLFs in cancer. The most highly characterized KLFs in regard to
apoptosis are KLFs 4, 5, and 6. KLF4 is generally regarded as a tumor suppressor due to its
ability to induce cell cycle arrest. However, when the ability of KLF4 to induce growth arrest
is inactivated (351), it can actually contribute to tumor progression because it also inhibits
apoptosis. KLF4 regulates apoptosis following DNA damage, when cells must either activate
cell cycle checkpoints and repair machinery or commit to apoptosis. In γ-irradiated RKO colon
cancer cells, ectopic expression of KLF4 significantly reduces the percentage of apoptotic cells,
causing them to instead undergo growth arrest (149). In this study, upregulation of KLF4 blocks
expression of the pro-apoptotic protein BAX by inhibiting p53-dependent transactivation of
the BAX promoter. In another study of MDA-MB-134 breast cancer cells, KLF4 modulates
apoptosis by binding directly to the promoter of p53 and suppressing its transcription (352).
KLF4 may be a determining factor in the outcome of p53 responses to DNA damage, depending
on the extent of damage (507). Following low, cytostatic doses of adriamycin, KLF4 is induced
and promotes cell cycle arrest. However, when cells are exposed to high levels of adriamycin,
KLF4 expression is inhibited and p53-dependent apoptosis proceeds. Ectopic expression of
KLF4 prevents cell death in response to high levels of adriamycin. KLF4 is therefore an
important determinant of cell cycle arrest or death induction by p53.

KLF6 is similar to KLF4 in that it regulates growth arrest and can function as a tumor
suppressor. KLF6 is often mutated or deleted in human prostate tumors (305), and ectopic
expression of KLF6 in prostate cancer cells or non-small cell lung cancer induces apoptosis
(189,193). However, silencing of KLF6 in HepG2 and COS-7 cells sensitizes these cells to
apoptosis and increases the sub-G1 population (98,388). Situations in which KLF6 appears to
suppress apoptosis may be attributable to specific splice variants of the KLF6 gene that can act
in a manner distinct from full-length KLF6. For example, the KLF6-SV1 isoform is
overexpressed in ovarian cancer and binds the BH3-only protein NOXA to block apoptosis
(112). Downregulation of this splice variant induces spontaneous apoptosis in ovarian, lung,
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and prostate cancer cell lines (111,112,302,358), suggesting that KLF6-SV1 might be a
therapeutic target for cancer.

Although the exact role of KLF6 in apoptosis is controversial, KLF5 is clearly a suppressor of
apoptosis. In EU-8 leukemia cells that have low levels of KLF5, introduction of ectopic KLF5
induces the expression of survivin, an inhibitor-of-apoptosis (IAP) protein (509). Conversely,
blocking KLF5 expression with small interfering RNA (siRNA) downregulates survivin and
sensitizes leukemia cells to chemotherapeutic-induced apoptosis. As a mechanism of action,
KLF5 binds directly to p53 and blocks p53-regulated repression of survivin (509). In HCT116
colon cancer cells, KLF5 is activated following exposure to 5-fluorouracil and ultraviolet
irradiation (502). Depletion of KLF5 from these cells increases their sensitivity to apoptosis
in response to DNA-damaging agents. In this study, KLF5’s pro-survival activity does not
depend on the activity of p53, but is instead associated with regulation of Pim1—a kinase that
negatively regulates the pro-apoptotic protein BAD. Finally, Suzuki et al. have shown that
KLF5 inhibits apoptosis of SMCs in vascular lesions by interacting with poly(ADP-ribose)
polymerase-1, a nuclear enzyme that controls DNA repair and apoptosis (411).

Chapter IV: Organ-Based Functions in Physiology and Pathophysiology
KLF family members regulate key events in development, maintenance of homeostasis, and
adaptive responses to physiological or pathobiological stimuli in mammalian tissues. The
following sections describe the functions of KLF proteins in various organs and ways in which
their dysregulation contributes to the pathogenesis of diseases. Table I summarizes the
expression, function, and pathobiological roles of mammalian KLFs.

A. The Cardiovascular System
1. Development of the Cardiovascular System—KLF13 is required for cardiac
development—it is expressed in a variety of tissues in the mouse embryo, including the
developing heart (265). At E10.5, Klf13 is present predominantly in the atrial myocardium and
endocardial layer (242). By E12.5, the atria and ventricles both contain Klf13 (242). KLF13
functionally and physically interacts with GATA-4, which regulates cardiac-specific genes
during embryonic and postnatal heart development (55,284). Knockdown of KLF13 in
Xenopus leads to atrial septal defects and hypotrabeculation similar to those observed in
humans or mice with hypomorphic GATA-4 alleles (242). One of the transcriptional targets
of KLF13 is cyclin D1, through which KLF13 regulates cardiac cell proliferation (307).
Klf13−/− mice have enlarged hearts and increased susceptibility to cardiac vacuolar lesions
(157); patients with microdeletion of chromosome 15q13, which includes KLF13, have cardiac
defects (429).

During embryonic development, KLF2 is expressed in vascular endothelial cells (10).
Klf2−/−mice die in utero from intra-embryonic and intra-amniotic hemorrhage, despite normal
vasculogenesis, angiogenesis, and cardiogenesis (234,447). However, the recruitment of
pericytes and vascular SMCs to the tunica media of Klf2−/− embryos is defective, resulting in
compromised vessel integrity that is manifested by aneurysmal dilatation of arteries and veins
and subsequent rupture (234). A subsequent study demonstrated the failure of mural SMCs to
migrate around normally developed endothelial cells in the aorta of Klf2−/− embryos (461).
Interestingly, in mouse embryos, endothelial expression of Klf2 correlates with the rise of fluid
shear forces; conditional deletion of Klf2 from the endothelium results in embryonic lethality
from high-output heart failure (243). In contrast to Klf2−/− mice, mice with endothelial-specific
loss of Klf2 do not suffer from primary vascular abnormality or hemorrhage; instead, increased
cardiac output is a result of loss of peripheral vascular resistance and reduced vessel tone
(243). KLF2 is therefore an important in vivo regulator of hemodynamics whose regulation in
response to fluid shear stress is necessary for normal cardiovascular development.
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2. Pathobiology of the Heart—Whereas KLF13 is highly expressed in fetal heart,
expression of KLF15 in the heart increases significantly following birth and is highest in the
adult heart (134). KLF15 levels are reduced in hypertrophic hearts of rodents following
pressure overload and in biopsy samples from patients with left ventricular hypertrophy due
to chronic valvular aortic stenosis (134). Similarly, expression of KLF15 in neonatal rat
ventricular muscle cells is reduced by prohypertrophic stimuli such as phenylephrine and
endothelin-1 (134). Overexpression of KLF15 in cadiomyocytes reduces cell size and
expression of atrial natriuretic factor and B-type natriuretic peptide—both are expressed in the
fetal heart and associated with cardiac hypertrophy (134). Klf15−/− mice are viable but have
exaggerated, hypertrophic remodeling of the heart in response to pressure overload, manifested
by increased heart weight, left ventricular cavity enlargement, impaired left ventricular systolic
function, and increased expression of hypertrophic genes (134). KLF15 might inhibit cardiac
hypertrophy by attenuating the functions of GATA-4 and myocyte enhancer factor 2 (MEF2)
—transcription factors that are critical effectors of cardiac hypertrophy (97,338).

Following pressure overload, Klf15−/− mice also develop fibrosis and deposition of excessive
amounts of collagen in the heart (441). This phenotype is associated with increased expression
of connective tissue growth factor (CTGF), which has been implicated in the pathogenesis of
fibrotic diseases of the heart (62,312). CTGF expression is regulated by diverse stimuli,
including TGF-β1, which promotes fibrosis (62). Incubation of neonatal rat ventricular
fibroblasts with TGF-β1 reduces expression of KLF15 and increases that of CTGF (441).
Conversely, overexpression of KLF15 suppresses basal and TGF-β1-induced expression of
CTGF (441). These studies demonstrate that KLF15 is a negative regulator of cardiac fibrosis.

In contrast to the anti-fibrotic action of KLF15 in the heart, KLF5 promotes fibrosis. Following
infusion of angiotensin II, a potent mediator of cardiac hypertrophy (270), Klf5+/− mice have
less cardiac hypertrophy and interstitial fibrosis than wild-type mice given angiotensin II
(378). In addition, the level of TGF-β in the hearts of Klf5+/− mice given angiotensin II is
significantly lower than that of wild-type mice, suggesting that TGF-β lies downstream from
KLF5 (378). In cultured cardiac fibroblasts, angiotensin II increases expression of KLF5 and
platelet-derived growth factor (PDGF)-A, which controls tissue remodeling (340). Moreover,
KLF5 is directly responsible for the induction of PDGF-A expression in response to angiotensin
II stimulation (378). The essential role of cardiac fibroblasts in mediating the adaptive response
to pressure overload was recently confirmed in mice with cardiac fibroblast-specific deletion
of Klf5 (417). An attempt to identify compounds that regulate KLF5 activity yielded several
retinoid acid receptor (RAR) ligands. Am80, a synthetic retinoid agonist, reduces PDGF-A
promoter activity in cells that co-express KLF5 and RAR-α (378). Wild-type mice given Am80
have reduced angiotensin II-induced cardiac hypertrophy, which approximates that observed
in Klf5+/− mice given angiotensin II (378). Reagents that alter KLF5 activity might therefore
be developed to control cardiac remodeling.

KLF10 is important during development of the heart. Male Klf10−/− mice develop cardiac
hypertrophy by 16 months (343); other phenotypes include asymmetric septal hypertrophy and
increased ventricular size, wall thickness, and heart weight (343). The hearts of Klf10−/− mice
have evidence of myocyte disarray and myofibroblast fibrosis (343), but the mechanisms by
which KLF10 prevents cardiac hypertrophy are not known.

3. Endothelial Biology and Pathobiology—KLFs 2, 4, and 6 are expressed in endothelial
cells (36,226,477), where they have important roles in cell function and pathobiology (13).
Expression of KLF4 in endothelial cells is induced by shear stress (274) and pro-inflammatory
stimuli (172). Overexpression of KLF4 in endothelial cells activates expression of anti-
inflammatory and anti-thrombotic genes, such as those that encode endothelial nitric-oxide
synthase (eNOS) and thrombomodulin, whereas reduction of KLF4 levels increases tumor
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necrosis factor-α (TNF-α)-induced expression of vascular cell adhesion molecule-1 (VCAM-1)
and tissue factor (172). In one study, overexpression of KLF4 in endothelial cells significantly
reduces TNF-α-induced E-selectin and VCAM-1 expression (277). Moreover, KLF4
significantly reduces adhesion of inflammatory cells to endothelial cells and prolongs clotting
time under inflammatory conditions. These findings support an anti-inflammatory function for
KLF4 in endothelial cells (172).

Endothelial expression of KLF6 is induced after vascular injury and is responsible for the
transcriptional activation of several genes involved in vascular remodeling, including
urokinase plasminogen activator, endoglin, collagen α1(I), TGF-β1, and TGF-β receptor type
I (36,226). This transactivation requires the participation and interaction between KLF6 and
Sp1 (36). KLF6 was shown to regulate endothelial cell motility by negatively regulating, in
conjunction with Sp2, transcription of the gene encoding matrix metalloproteinase-9 (MMP-9)
(105). Disruption of the KLF6/Sp2 repressor complex by small heterodimeric partner, which
is activated by farnesoid X receptor, results in upregulation of MMP-9 and increased cell
motility. KLF6 is therefore an important mediator of vascular remodeling and response to
injury.

Most information on the function of KLFs in endothelial cell biology and pathobiology have
come from studies of KLF2 (13). KLF2 expression is highly upregulated in cultured endothelial
cells subjected to prolonged laminar flow shear stress (108,190,369). These results were
supported by the in vivo observation that KLF2 is restricted to the endothelium of healthy
human aorta, in regions predicted to be exposed to laminar shear stress (108). In contrast, KLF2
expression is decreased or absent from regions of vessels exposed to non-laminar shear stress,
such as bifurcations of the aorta to the iliac and carotid arteries (109)—these bifurcation areas
are also susceptible to atherosclerosis. KLF2 is one of several differentially expressed genes
in endothelial cells subjected to ‘atheroprotective’ waveforms, relative to ‘atheroprone’
waveforms, which are modeled after the flow patterns in arteries from healthy human subjects
(100). Consequences of flow-induced KLF2 expression in endothelial cells include activated
expression of eNOS (107,109,329,369) and repressed expression of angiotensin-converting
enzyme, endothelin-1, and adrenomodullin—all of which are involved in the control of
vascular tone in response to flow (107,109). KLF2 therefore has flow-dependent,
atheroprotective functions in endothelial cells.

The atheroprotective activity of KLF2 was demonstrated by its induction in response to 3-
hydroxy-3-methyblutaryl coenzyme A inhibitors (statins) (195,330,368,426), which protect
against atherosclerosis (24,249). Importantly, upregulation of KLF2 is required for many of
the transcriptional effects of statins in endothelial cells, so KLF2 might mediate their
atheroprotective effects (330). In a background of apolipoprotein E (ApoE−/−) deficiency,
Klf2+/−mice have increased diet-induced atherosclerosis, compared with ApoE−/− mice (14).
Interestingly, peritoneal macrophages isolated from Klf2+/− mice have increased lipid uptake,
compared with wild-type macrophages; this increase might be mediated by the ability of KLF2
to activate expression of aP2, a lipid chaperon involved in macrophage lipid accumulation and
atherogenesis (35,263).

Contrary to the upregulation of KLF2 by shear stress and statins, expression of KLF2 in
endothelial cells is suppressed by pro-inflammatory cytokines such as TNF-α and interleukin
(IL)-1β, which are important in the pathogenesis of atherosclerosis (233,369). TNF-α inhibits
KLF2 via NF-κB and HDAC4, which cooperatively inhibit MEF2—an essential transcriptional
activator of KLF2 (190). Conversely, overexpression of KLF2 in endothelial cells inhibits
IL-1β-dependent induction of the pro-inflammatory molecules VCAM-1 and E-selectin
(369). Consistent with these findings, T-cell rolling and attachment are significantly reduced
in endothelial monolayers transduced with KLF2 (369). Similarly, IL-1β-induced leukocyte-
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endothelial cell interactions are inhibited by ectopic expression of KLF2 (329). Importantly,
KLF2 inhibits endothelial activation by many pro-inflammatory stimuli, including IL-1β, TNF-
α, lipopolysaccharide (LPS), and thrombin (13,329,369). The mechanisms by which KLF2
achieve its anti-inflammatory function are multiple and include nhibition of NF-κB (369),
activator protein-1 (AP-1) (34), and activating transcription factor 2 (137). Thus, KLF2 is an
important regulator of pro-inflammatory cytokine-mediated activation of endothelial cells.

In addition to its anti-inflammatory activity, KLF2 regulates endothelial thrombotic function
by controlling expression of factors that maintain an anti-thrombotic endothelial surface.
Overexpression of KLF2 in endothelial cells induces thrombomodulin and eNOS (253), which
inhibit blood coagulation and platelet aggregation, respectively (125). In contrast, KLF2
inhibits expression of the pro-coagulant factors plasminogen activator inhibitor-1 (PAI-1) and
cytokine-mediated induction of tissue factor (253). KLF2 also inhibits thrombin-mediated
activation of endothelial cells by inhibiting expression of the thrombin receptor protease
activated receptor-1 (329). Consequently, KLF2 overexpression increases blood clotting time
and flow rates under basal and inflammatory conditions (253). These studies demonstrate that
KLF2 is an important transcriptional regulator of endothelial thrombotic function.

KLF2 regulates vascular remodeling through inhibition of angiogenesis, proliferation, and cell
migration (13). In vivo, KLF2 overexpression inhibits vascular endothelial growth factor
(VEGF)-mediated angiogenesis and tissue edema (28). In vitro, ectopic KLF2 expression slows
VEGF-mediated activation of endothelial cells, resulting in reduced intracellular calcium
influx, proliferation, and expression of pro-inflammatory genes (28). KLF2 exerts these anti-
angiogenic effects via its ability to inhibit expression of VEGF receptor 2 (VEGFR2) (28).
Furthermore, KLF2 attenuates endothelial migration by regulating expression of genes that
control cell migration, including VEGFR2 and semaphorin-3 (107). Endothelial expression of
KLF2 has paracrine effects, reducing migration of co-cultured SMCs (261); this is similar to
the failure of SMCs to properly migrate to the developing aorta in Klf2−/− mouse embryos
(461). These findings reveal the important link between endothelial KLF2 expression and SMC
function.

4. Vascular Smooth Muscle Biology and Pathobiology—Several KLFs have
important roles in the biology and pathobiology of vascular SMCs, which contribute to blood
vessel walls; KLFs 4 and 5 are the best characterized (170). In rabbit SMCs, KLF5 regulates
transcription of embryonic smooth muscle myosin heavy chain by binding to a specific
sequence in the gene’s promoter (451). Expression of KLF5 in SMC is developmentally
regulated—it is abundant in fetal but not in adult aortic SMCs of humans and rabbits (184,
451). However, under pathological conditions, such as coronary atherosclerosis, vein graft
hyperplasia, and response to vascular injury, KLF5 expression is reactivated (15,184,313,
314). Following aortic balloon injury, KLF5 becomes expressed in the neointimal layer of the
blood vessels (184). KLF5 is also highly expressed in most human coronary lesion samples
(both primary and restenotic) collected during atherectomy (184)—the presence of KLF5-
positive lesions has been correlated with the incidence of restenosis (184). KLF5 is more
frequently expressed in SMCs cultured from human coronary atherectomy samples that have
the ability for outgrowth; the ability for outgrowth correlates with a shorter time to restenosis
in patients (357). In SMCs, KLF5 expression is induced by various proliferative or
inflammatory stimuli, including angiotensin II, TNF-α, survivin, and MAPKs. Overexpression
of KLF5 induces factors that regulate the vascular injury response such as inducible nitric oxide
synthase (iNOS), PAI-1, PDGF-A, and VEGFRs (15,214,293,378). Together, these findings
indicate that KLF5 induces SMC proliferation in response to injury.

The role of KLF5 in blood vessel pathobiology was demonstrated by the vascular phenotype
of Klf5+/− mice, which also have a cardiac phenotype (see section A2. Pathobiology of the
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Heart) (378). The medial and advential layers of the aortas from Klf5+/− mice are thinner than
those of wild-type mice. The femoral arteries of Klf5+/− mice have impaired response to cuff-
induced injury, with reduced activation and proliferation of SMCs and fibroblasts,
inflammatory responses, and angiogenesis (378). These defects result in smaller areas of
neointimas, and reduced granulation tissues and angiogenesis around the cuffs of femoral
arteries (378). Importantly, Am80, a synthetic retinoid agonist that attenuates KLF5’s
transcriptional activity, reduces neointima and granulation tissues in cuff-injured femoral
arteries of wild-type mice, compared with Klf5+/− mice (378). KLF5 is therefore involved in
several facets of vascular remodeling, including mesenchymal-cell activation, development of
interstitial fibrosis, and angiogenesis.

The mechanisms by which KLF5 promotes vascular SMC proliferation have been examined.
Angiotensin II stimulates proliferation of vascular SMCs and increases the levels of KLF5
mRNA and protein (15,146). Incubation of vascular SMC with angiotensin II stimulates
phosphorylation of KLF5, which increases its interaction with c-Jun and subsequent repression
of the cell cycle inhibitor p21Cip1/Waf1 (176). The phosphorylation of KLF5 in response to
angiotensin II is mediated in part by the MAPK/extracellular signal-regulated kinase (ERK)
kinase-1 (MEK1); incubation of vascular SMCs with the MEK1 inhibitor PD98059 inhibits
KLF5 phosphorylation and its interaction with c-Jun (176). Overexpression of KLF5 stimulates
SMC proliferation, increases cyclin D1 expression, and inhibits apoptosis (412). Moreover,
KLF5 interacts with RAR-α to regulate the smooth muscle phenotype; this interaction is
interrupted by the synthetic retinoid Am80 (145). Am80 inhibits the interaction between KLF5
and RAR-α by inducing dephosphorylation of KLF5 that is mediated by PI3K–AKT signaling
in vascular SMCs (496). These studies delineated the signaling pathways by which KLF5 is
regulated by various stimuli.

In addition to its physiological function in endothelial cells (see section A3. Endothelial
Biology and Pathobiology), KLF4 regulates vascular smooth muscle function. KLF4 binds to
the promoter of the smooth muscle gene SM22α, in a region identified as the TGF-β control
element (TCE), and suppresses the TGF-β-dependent increase in transcription of SM22α and
α-SMA (1). KLF4 also represses serum response factor/myocardin-induced activation of α-
SMA and mediates the repressive effect of PDGF-BB on this gene (256). Expression of KLF4
in SMCs is activated in response to members of the TGF-β superfamily, including TGF-β1 and
several bone morphogenetic proteins (BMPs), which regulate the vascular SMC phenotype
(219). These results indicate that KLF4 is involved in determining the SMC phenotype by
repressing expression of specific genes in response to external stimuli.

Similar to KLF5, expression of KLF4 is very low in normal blood vessels but is increased in
the medial layer following vascular injury (1,482,483). Following injury, SMC differentiation
markers are repressed—this repression is transiently delayed in mice with conditional deletion
of Klf4 (483). Moreover, neointimal formation increases in Klf4 mutant mice in response to
vascular injury, primarily from an increase in cell proliferation (483). KLF4 therefore regulates
expression of differentiation markers and proliferation in SMCs following injury. Furthermore,
KLF4 expression in SMCs is induced by oxidized phospholipids, including 1-palmytoyl-2-(5-
oxovaleroyl)-sn-glycero-3-phosphocholine (POVPC), that accumulate in atherosclerotic
lesions (337). POVPC strongly inhibits expression of SMC differentiation marker such as α-
SMA and SM-myosin heavy chain, but activates those of inflammatory mediators, including
MCP-1 and TGF-β (337). The inhibitory effect of POVPC on SMC gene expression is
coordinated by KLF4, the transcription factor Elk-1, and several HDACs (482). Moreover, in
SMCs, POVPC induces expression of several extracellular matrix proteins (including type VIII
collagen α1 chain) and cell migration—both of these are reduced in the absence of KLF4
(77). Thus, there is much evidence for the role of KLF4 in the pathogenesis of atherosclerotic
vascular diseases.
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Overexpression of KLF4 in vascular SMCs inhibits proliferation via a process that depends on
p53 (450) and is antagonized by the inhibitor of DNA binding 3 (Id3), which promotes
proliferation (449). KLF4 is also required for ATRA to inhibit vascular SMC proliferation
(442); ATRA upregulates KLF4 at transcriptional and post-transcriptional levels (276,442).
KLF4 inhibits SMC proliferation by inhibiting expression of several genes that encode growth
factor receptors, including PDGF receptor β (503). However, KLF4 appears to have pleiotropic
effects on expression of smooth muscle genes—although KLF4 induces expression of
SM22α and α-SMA in response to ATRA (442), it inhibits that of the same genes in response
to TGF-β and PDGF-BB (1,256). This context-dependent nature of KLF4 activity has also
been described in other systems.

Therefore, KLF4 and KLF5 have opposite effects in regulating proliferation of vascular SMCs.
Similar findings have been observed in other cell or tissue types (151). Induction of a
combination of KLF4 and KLF5 in vascular SMCs after injury might provide the balanced
gene expression required to achieve homeostasis. MicroRNA (miR)-145, a non-coding RNA
that regulates expression of KLFs 4 and 5, is highly expressed in normal vascular walls and
freshly isolated vascular SMCs (76,93). Expression of miR-145 is significantly downregulated
in vessel walls with neointimal lesion formation and in vascular SMCs that have de-
differentiated in response to PDGF. MiR-145 controls SMC fate and expression of SMC
markers by regulating transcription factors that include KLFs 4 and 5 (76,93). MicroRNAs can
therefore direct SMC fate and regulate vascular SMCs proliferation under pathological
conditions, in part by influencing expression of KLFs 4 and 5.

B. The Respiratory System
Although there is much information about the functions of KLFs in the cardiovascular system,
few studies have investigated KLFs in the respiratory system; these have focus on the roles of
KLFs in lung development and morphogenesis. KLF2 is expressed at a high level in the lung
(10). Klf2−/− mice die in utero between embryonic days (E) 11.5 and 13.5, making it difficult
to study the function of KLF2 in lung development (447). However, in vitro cultures of lung
bud tissues removed from E11.5 Klf2−/− embryos form normal tracheobronchial trees (448).
To examine lung development at a later stage, chimeric mice were generated by injection of
Klf2−/− ES cells into blastocysts of wild-type mice (448). In mice that survived to adulthood,
Klf2−/− ES cells contribute to all internal organs except lung. In contrast, animals with high
levels of chimerism die at birth and have abnormal lung development and function (448). The
lungs of these animals do not expand, appear to stop growing in the late canalicular stage, and
have undilated acinar tubules and buds in peripheral regions (448). These results indicate that
KLF2 is an important regulator of late-stage lung development.

Klf5 expression is developmentally regulated in mice (315). At E16.5, Klf5 is expressed at high
levels in the bronchiolar epithelium and epithelial lining of the trachea (315). Klf5−/− mice die
at E8.5 (378), so the exact role of KLF5 in lung development cannot be determined. Mice with
conditional, lung-specific deletion of Klf5 (Klf5Δ/Δ) survive until birth but die shortly afterward
from respiratory failure (440). They have abnormalities in lung maturation and morphogenesis
in the respiratory epithelium, bronchiolar smooth muscle, and pulmonary vasculature;
respiratory epithelial cells of the conducting and peripheral airways are immature. Levels of
surfactant phospholipids are reduced and lamellar bodies, the storage form of surfactant, are
rarely found. Expression profiling studies demonstrated that KLF5 regulates genes involved
in surfactant lipid and protein homeostasis, vasculogenesis (including VEGF-A), and SMC
differentiation (440). These observations indicate that KLF5 is required for perinatal
maturation of lung morphology and function.

KLF4 suppresses TGF-β-dependent induction of α-SMA in vascular SMCs via interaction with
the TCE (1) (see section A4, Vascular Smooth Muscle Biology and Pathobiology). A similar
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effect was observed in fibroblasts isolated from rat lungs (185), although the ability of KLF4
to inhibit α-SMA transcription does not soely depend on the TCE (185). Instead, KLF4
physically interacts with Smad3, which mediates the stimulatory effect of TGF-β on α-SMA
transcription through an upstream element called Smad-binding element (SBE) (185).
Interaction between KLF4 and Smad3 therefore prevents binding of Smad3 to the SBE and
TGF-β-dependent, de novo differentiation of lung myofibroblasts (185).

KLF4 might also be involved in the inflammatory response of airway smooth muscle (ASM)
cells, via a post-transcriptional mechanism (231). Several microRNAs are repressed in human
ASM cells following stimulation with inflammatory cytokines such as IL-1β, TNF-α, or
interferon-γ (IFN-γ) (231). One of these, miR-25, targets KLF4, which is upregulated in ASM
cells following cytokine stimulation (231). KLF4 might therefore have a role in the
pathophysiology of lung diseases such as pulmonary fibrosis and inflammatory airway disease.

C. The Hematopoietic System
KLFs regulate erythropoiesis, lymphopoiesis, and formation and functions of monocytes and
macrophages. Erythropoiesis is a complex physiologic process in which pluripotent
hematopoietic stem cells undergo several stages of commitment to precursor and progenitor
cells with gradually restricted potential; this process is controlled by lineage-specific
transcription factors (for review, see (48)). Erythropoiesis requires the highly regulated
expression of β-globin and related proteins that constitute an essential subunit of hemoglobin.
The β-globin gene locus contains a cluster of several related genes on chromosome 11, arranged
in the order in which they are expressed during development: 5′-ε-γG-γA-δ-β-3′ (245). Thus,
hemoglobin ε is the first globin gene expressed (in the yolk sac), followed by fetal hemoglobins
Aγ and Gγ (in the liver), and eventually β-globin at birth (in the bone marrow). Each globin
gene is controlled by specific cis-acting DNA elements in its own promoter. In addition, the
differentiation- and development-specific expression of the β-globin gene locus depends on a
distal regulatory sequence called the locus control region (LCR), which is located
approximately 6 kb upstream from the ε-globin gene (245). The LCR interacts with multiple,
sequence-specific DNA binding transcription factors and is required for high levels of
expression of the β-globin genes at all developmental stages (180).

To understand the regulation of expression of the globin genes, Miller and Bieker performed
subtraction hybridization studies using a Friend mouse eythroleukemia cell line. They
identified a cDNA clone they named erythroid KLF or EKLF (279). Since EKLF was the first
mammalian KLF identified, it was given the name KLF1. KLF1 binds the CACCC element in
the β-globin gene promoter and LCR enhancer and activates a heterologous promoter that
contained the CACCC sequence, as well as the endogenous β-globin promoter (31,279).
Mutations in the CACCC element of the β-globin gene have been associated with β-thalassemia
(232,320,321)—KLF1 cannot transactivate a reporter gene that contains the mutated elements
(132). Expression of Klf1 is restricted to two hematopoietic organs of the adult—mouse the
bone marrow and spleen—and to cell lines of the erythroid lineage (279). KLF1 therefore has
erythroid-specific distribution and function.

The developmental expression pattern of KLF1 indicates its importance in erythropoiesis.
Klf1 expression begins on E7.5 in mice, within primitive erythroid cells at the beginning of
blood island formation in the yolk sac (399). By E9.0, Klf1 is expressed in the hepatic primordia
and liver, which becomes the sole source of Klf1 mRNA in an E14.5 fetus (399). In the adult
spleen, which is an erythropoietic organ in mice, Klf1 is exclusively expressed in the red pulp
(399). This is consistent with data from cell line studies showing that KLF1 is expressed in
erythroid but not lymphoid cell lines (279). The physiological function of KLF1 in
erythropoiesis was demonstrated in experiments with Klf1−/− mice; these mice have normal
embryonic hematopoiesis but develop fatal anemia during early fetal life (E14.5), when
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hematopoiesis starts to occur in the liver (311,335). Klf1−/− mice form enucleated erythrocytes
that are deficient in β-globin, similar to patients with β-thalassemia (311,335). In contrast,
expression of embryonic globin genes during the early stages of embryogenesis is not affected.
These findings indicate that KLF1 is not required for yolk sac erythropoiesis or erythroid
commitment but is essential for the final stage of definitive erythropoiesis in the fetal liver.
The stage-specific and β-globin-specific requirement for KLF1 indicates that it is involved in
the switch from fetal-to-adult hemoglobin (γ to β) in humans. This concept is supported by the
finding that KLF1 binds with higher affinity to the CACCC element from the adult globin gene
promoter than to a similar element in the mouse embryonic (and human fetal) globin gene
promoter (116). The reduction in β-globin transcription in the fetal livers of Klf1−/− mice that
have a single copy of the entire human β-globin locus is accompanied by increased transcription
of the human γ-globin gene (333,459). KLF1 is therefore involved in the fetal-to-adult
hemoglobin switch, mediating an adult stage-specific interaction between the β-globin gene
promoter and the LCR that excludes the γ-globin gene (333,459). Studies in which KLF1 was
expressed in immortalized cell lines from Klf1−/− fetal liver progenitor cells indicated that
KLF1 is involved in coordinating differentiation, hemoglobinization, and erythroid-cell
proliferation (88); erythroid cells from Klf1−/− have defects in cell cycle regulation and
terminal differentiation (339).

ES cells isolated from Klf1−/− mice differentiate into definitive erythroid colonies that contain
reduced levels of hemoglobin. When the Klf1−/− ES cells were injected into blastocysts, they
did not contribute to the mature erythrocyte compartment of the resulting chimeric mice,
indicating that Klf1−/− erythrocytes are short-lived (251). Fetal expression of a human γ-globin
transgene restored globin gene expression to Klf1−/− embryos, but mice do not survive due to
hemolysis (334). Other KLF1 gene targets, beyond the globin genes, therefore appear to be
required for erythrocyte development—several studies have shown that KLF1 regulates
expression of proteins involved in membrane and cytoskeletal stability (118,183,310), Loss of
their regulation might contribute to the severity of the Klf1−/− phenotype of disrupted
erythropoiesis.

In addition to regulating erythrocyte maturation, KLF1 controls the development of
megakaryocytes. Megakaryocytes and erythrocytes are derived from a common progenitor
called the MEP (326). Studies indicate that KLF1 is directly involved in determining the bi-
potential fate of MEP—KLF1 inhibits the formation of megakaryocytes while stimulating
erythroid differentiation (144). Expression of KLF1 is uniquely downregulated in
megakaryocytes after formation of the MEP (144). KLF1 might inhibit megakaryocyte
differentiation by repressing expression of FLI-1 (37,144), which is required for their
development (173,212). Conversely, FLI-1 represses KLF1-dependent transcription (403), so
cross-antagonism between KLF1 and FLI-1 controls erythrocytic versus megakaryocytic
differentiation (403). Lastly, sumoylation of KLF1 is required for it to suppress megakaryocyte
differentiation (380).

The developmental- and erythroid-specific patterns expression patterns of KLF1 prompted
investigations of the mechanisms that regulate KLF1. An enhancer element in the distal
promoter of KLF1, approximately 700 bp upstream of the transcription start-site, and a
proximal promoter element are required for its erythrocyte-specific expression (67). The
erythroid-specific transcription factor GATA-1 binds the enhancer and promoter elements and
transactivates the KLF1 promoter (9,94). Studies in transgenic mice showed that 950 bp of the
KLF1 5′-flanking region is sufficient to induce erythroid-specific expression of a reporter gene
and requires the GATA-1-binding sites (8,466). Using an in vitro system in which ES cells
differentiate into embryoid bodies (EB), it was shown that the BMP-4/SMAD pathway controls
differentiation-dependent expression of KLF1 (2). This study also showed that KLF1
expression is activated before terminal erythroid differentiation in two stages: it is expressed
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at low levels in progenitor cells (before erythroid commitment), which depends on GATA-2
and SMAD5, and then at high levels by committed erythroid cells, which depends on GATA-1
(258). The stage- and lineage-specific dependent control of KLF1 expression indicates that it
is a regulator of lineage fate decisions during hematopoiesis (258).

Although KLF1 has important functions in erythropoiesis, other KLFs are also involved. A
functional screen for KLFs that regulate the human γ-globin promoter through the CACCC
element revealed the presence of 8 KLFs aside from KLF1 in human erythroid cell lines
(490). Levels of KLFs 2, 4, 5, and 12 increase significantly during erythroid differentiation.
Co-transfection studies indicated that KLFs 2, 4, and 13 activate, whereas KLF8 represses, the
γ-globin promoter through its CACCC element (490). The roles of KLF2, and to some extent,
KLF6, in erythropoiesis have been examined. Klf2−/− mice die in utero between E12.5 and
E14.5 from intra-embryonic hemorrhage (234,447). Compared with wild-type mice, E10.5
Klf2−/−embryos are anemic and have significant reductions in expression of mouse embryonic
Ey- and βh1-globin but not ζ-globin genes (21). Expression of the adult βmaj- and βmin-
globin genes is unaffected in the fetal livers of E12.5 Klf2−/− embryos. In mice that carry the
entire human globin locus, KLF2 also regulates the expression of the human embryonic ε-
globin gene but not the adult β-globin gene, suggesting that this developmental stage-specific
role is evolutionarily conserved. KLF2 also regulates maturation and/or stability of erythroid
cells in the yolk sac; Klf2−/− embryos have a significant increase in numbers of primitive
erythroid cells that undergo apoptotic cell death (21).

KLF6 also regulates hematopoiesis (267). Klf6−/− ES cells have significant hematopoietic
defects following differentiation into EBs (267), prolongation of epiblast-like cells, delays in
mesoderm induction, and delayed expression of Klf1 and Gata1 (267). Ectopic expression of
KLF6 increases the hematopoietic potential of wild-type EBs (267), so KLF6 appears to be an
important regulator of ES cell differentiation and hematopoiesis.

KLF1 and KLF2 have compensatory roles in controlling embryonic β-globin gene expression
and primitive erythropoiesis (20). Klf1−/−/Klf2−/− double mutant mice are anemic at E10.5,
with greatly reduced levels of Ey- and βh1-globin mRNAs. Examination of the E9.5 Klf1−/−/
Klf2−/− yolk sacs indicated that erythroid and endothelial cells are more abnormal than in either
Klf1−/− or Klf2−/− mice (20). KLF1 and KLF2 might therefore have redundant functions in
regulating expression of the embryonic β-like globin gene, primitive erythropoiesis, and
endothelial development (20).

D. The Immune System and the Inflammatory Responses
1. T Lymphocytes—Kuo et al. were the first to identify a KLF that regulates T cell functions
(235)—they found that KLF2 is expressed in lymphoid organs, including the thymus, and
exclusively in the medulla, which contains mature, single-positive (SP; CD4+ or CD8+) T cells
(235). In addition, KLF2 is expressed in SP splenocytes but not in the less mature double-
positive (CD4+CD8+) T cells. SP T cells circulate through the blood and peripheral lymphoid
organs in a quiescent state and are activated when the T-cell receptor binds antigen. When T
cells are activated, KLF2 mRNA and protein are rapidly degraded (124,235)—potentially via
WWP1 E3-ubiquitin ligase-mediated degradation (100). Klf2−/− T cells have a spontaneously
activated phenotype and die in the spleen and lymph nodes from Fas ligand-induced apoptosis
(235). KLF2 is therefore required for the quiescent state of mature T cells and for maintenance
of viability in the peripheral lymph organs and blood.

Additional evidence supports a role for KLF2 in T cell quiescence. Ectopic expression of KLF2
in Jurkat T cells induces quiescence, characterized by decreased proliferation, reduced cell size
and protein synthesis, and decreased expression of surface markers of activation (44).
Conversely, Klf2−/− T cells have increased proliferation, cell size, and cell-surface markers of
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activation (44). The mechanism by which KLF2 inhibits T cell activation, growth, and
proliferation might include its ability to inhibit expression of c-Myc (44,168) and stimulate
expression of p21Cip1/Waf1 (462).

Although studies had demonstrated that KLF2 is downregulated upon T cell activation, its
expression appears to be dynamic. For example, expression of KLF2 is re-induced in antigen-
activated CD8+ T cells in the presence of certain cytokines, including IL-7 (124,360). The
ability of IL-7 to induce KLF2 expression in activated T cells is mediated by the MEK5/ERK5
pathway and depends on the transcription factor MEF2 (124,391). Prolonged culture of
activated CD8+ T cells in the presence of IL-7 causes them to acquire characteristics of memory
CD8+ T cells, which maintain stable levels of KLF2 (360); stable expression of KLF2 has been
reported in memory T cells (160,360). In activated T cells, KLF2 might upregulate transcription
of IL-2 (160,360,463). Specific cytokines might therefore induce expression of KLF2 in
activated T cells, possibly to regulate factors required for long-term survival and development
of the memory T-cell phenotype.

In addition to regulating T cell proliferation and survival, KLF2 controls T cell migration and
trafficking. Compared to Klf2+/− cells, Klf2−/− thymocytes have reduced expression of several
receptors required for emigration and peripheral trafficking, including the sphingosine-1-
phosphate receptor (S1P1), CD62L (L-selectin), CCR7, and integrin subunit β7 (51). As a
consequence, Klf2−/− thymocytes have abnormal tissue distribution following adoptive
transfer; they are absent from blood and lymphoid organs and accumulate in the spleen (51).
Pulse-labeling experiments showed impaired emigration of Klf2−/− thymocytes into the
periphery (51). Conversely, primary T cells that express ectopic Klf2 are more efficient in
homing to lymphoid organs (16). KLF2 accomplishes these activities by directly activating
expression of CD62L (L-selectin) (16), a receptor required for T cells to enter lymphoid nodes
(439); and SIP1 (51), which allows T cells to exit the thymus (266). Interestingly, KLF2 and
S1P1 have similar patterns of expression in T cells—they are upregulated in mature
thymocytes, downregulated upon T cell activation, and re-expressed in memory T cells (51).
The PI3K signaling pathway regulates KLF2. PI3K and its downstream nutrient sensor, the
mammalian target of rapamycin (mTOR), determine the repertoire of adhesion and chemokine
receptors expressed by T cells and are required for T-cell trafficking (128,387). PI3K regulates
the transcription factor forkhead box O1 (FOXO1), which regulates KLF2 expression (128).
KLF2 then directly regulates the expression patterns of chemokine receptors that induce T cell
migration (366,457); KLF2 thereby controls the regulatory network that controls T cell
migration and trafficking.

KLF10 has an important role in the development of CD4+CD25+ regulatory T (Treg) cells,
which maintain self-tolerance and immune suppression (138). The transcription factor Foxp3
regulates the Treg cell lineage (138) and TGF-β converts CD4+CD25− naïve T cells into
Foxp3+CD4+CD25+ Treg cells in vitro and maintains Treg cells in vivo (63,129,247). KLF10
induces expression of Foxp3 in T cells following exposure to TGF-β (50,438). KLF10
cooperates with Itch to induce Foxp3 expression (438); both Klf10−/− and Itch−/− T cells are
resistant to the effects of TGF-β and have reduced TGF-β (438). Following incubation with
TGF-β converted Klf10−/− Treg cells are unable to suppress airway inflammation in mice
(438). Moreover, CD4+CD25− T cells that overexpress KLF10 increase TGF-β1 expression,
compared with those that do not overexpress KLF10, and have reduced expression of Th1 and
Th2 markers (50). Conversely, Klf10−/− CD4+CD25− T cells increase expression of Th1 and
Th2 cytokines and cannot be suppressed by wild-type Treg cells (50). Because KLF10
transactivates TGF-β1 and Foxp3 in response to TGF-β, it is involved in a positive feedback
loop that controls T cell activation (50).
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KLF13 was initially identified as a transcription factor that regulates expression of regulated
upon activation normal T cell expressed and secreted (RANTES or CCL5), a chemokine that
generates inflammatory infiltrates and is expressed late after T cell activation (393,394).
Although levels of KLF13 mRNA are similar between naive and activated T cells, only KLF13
protein is abundant in the late stage of T cell activation, so KLF13 is likely to be regulated at
the level of translation (393). Studies have shown that KLF13 expression is translationally
regulated through the 5′-untranslated region of its mRNA in a cell type-specific manner
(309). Overexpression of the translation initiation factor eIF4E and Mnk1 (which
phosphorylates eIF4E) increase KLF13 protein levels (309). These events are regulated by
ERK1/2 and p38 MAPKs and allow T cells to rapidly adjust levels of RANTES expression in
response to changes in the cellular environment, such as stress or exposure to growth factors
(309). The ability of KLF13 to activate RANTES transcription requires the recruitment of
several transcription co-activators and the serine/threonine protein kinase PRP4, which
phosphorylates KLF13 (4,187). Klf13−/−mice have enlarged thymuses and spleens because of
decreased thymocyte apoptosis; KLF13 inhibits expression of the anti-apoptotic factor BCL-
XL (506). In addition, KLF13 influences multiple stages of B- and T-cell development in
vivo (322). KLF13 therefore appears to regulate T cell activation, survival, and development.

2. B Lymphocytes—The most extensively studied KLF in B cell function is KLF4. KLF4
is expressed in early-stage B cell precursors, at the time of immunoglobulin gene rearrangement
(433); its expression continuously increases until B cells are mature (220). Upon B cell
activation, levels of KLF4 are rapidly reduced. Klf4−/− mice have modest reductions in
numbers of pre-B cells and mature B cells in the bone marrow and spleen, respectively. B cells
isolated from Klf4−/− mice have reduced DNA synthesis and delayed entry into the cell cycle
in response to B-cell receptor (BCR) activation, a result of decreased cyclin D2 expression
(220). KLF4 binds directly to the cyclin D2 promoter and activates cyclin D2 expression
(220). KLF4 is therefore a positive regulator of BCR-mediated B cell proliferation. However,
overexpression of KLF4 in pre-B cells transformed by the ABL oncogene induces arrest in the
G1 phase of the cell cycle and apoptosis (216). Transformed B cells that overexpress KLF4
increase expression of p21Cip1/Waf1 and reduce expression of c-Myc and cyclin D2 (216).
Moreover, the anti-proliferative effect of KLF4 on B cells requires its activation by FOXO1
(484).

KLF4 also mediates the proliferative response of memory B cells. Ectopic expression of KLF4
in memory B cells delays cell division and thereby reduces the number of proliferating cells
(156). It is not clear what accounts for the discrepancies observed in the effects of KLF4 on B
cell proliferation but differences could arise from variations in physiologic contexts, genetic
backgrounds, or experimental methodologies.

3. Monocytes and Macrophages—KLFs regulate inflammatory responses in both
endothelial and SMCs (172,233,369). KLFs regulate signaling following activation of
macrophages, and could thereby mediate the development of acute and chronic inflammatory
disorders. KLF4 mediates macrophages signaling in response to inflammatory cytokines, such
as IFN-γ, LPS, or TNF-α, and anti-inflammatory factors such as TGF-β1 (130). KLF4 is rapidly
induced in macrophages incubated with IFN-γ, LPS, or TNF-α and reduced in response to
TGF-β1 (130). In combination with the p65 (RelA) subunit of NF-κB, overexpression of KLF4
in macrophages induces iNOS, a marker of cell activation (130). However, KLF4
overexpression also inhibits PAI-1 (a TGF-β1-regulated gene) without binding to it (130).

KLF4 regulates monocyte differentiation in vitro and in vivo (6,131). Although overexpression
of KLF4 in HL-60 cells confers characteristics of mature monocytes, KLF4 inhibition blocks
phorbol ester-induced monocyte differentiation (6,131). Ectopic expression of KLF4 in
common myeloid progenitors or hematopoietic stem cells induces differentiation of only
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monocytes in clonogenic assays, whereas inhibition of KLF4 increases differentiation of
granulocytes, at the expense of monocytes (131). Hematopoietic Klf4−/− chimeras (generated
by transplantation of Klf4−/− fetal liver cells into irradiated wild-type mice) completely lack
circulating inflammatory cytokines (6). KLF4 is therefore an important promoter of monocyte
differentiation.

Whereas KLF4 activates macrophages to promote inflammation, KLF2 has the opposite effect
(106); its expression is reduced upon monocyte activation and differentiation into
macrophages. Ectopic expression of KLF2 inhibits monocyte activation and their phagocytic
capacity, whereas KLF2 inhibition increases expression of inflammation genes. Reconstitution
of immunodeficient mice with KLF2-overexpressing monocytes significantly reduces
carrageenan-induced acute paw edema formation (106). KLF2 inhibits the transcriptional
activity of both NF-κB and AP-1 by recruitment of co-activator P/CAF, thereby preventing
activation of inflammatory genes (106). These results demonstrate that KLF2, as opposed to
KLF4, is a negative regulator of monocytic activation.

E. The Digestive System
1. Small Intestine and Colon—The mammalian intestinal epithelium is a continuously
renewing system in which cell proliferation, differentiation, migration, and apoptosis are
carefully orchestrated to achieve homeostasis. The epithelium of the small and large intestines
consist of a crypt/villus and crypt/surface epithelium compartment, respectively. The bulk of
the villus and surface epithelium of the small and large intestine, respectively, is composed of
differentiated columnar epithelial cells that are divided into absorptive (primarily enterocytes)
and secretory (including goblet, enteroendocrine and Paneth cells) classes. Paneth cells are
unique to the small intestine under normal conditions. The differentiated epithelial cells are
descendants of the crypt progenitor cells, which themselves are derived from the multi-potent
stem cells, also located in the crypt compartment (19,342,365). Intestinal epithelial homeostasis
is regulated by signaling mechanisms that include the Wnt, Notch, Hedgehog, BMP, and PI3K
pathways (19,342,365).

Both KLFs 4 and 5 control and maintain intestinal epithelial homeostasis (151,272). Expression
of KLFs 4 and 5 in the intestines is developmentally regulated, with higher levels of expression
occurring towards the later stage of fetal development and adulthood (315,422). The temporal
pattern of expression of Klf4 during fetal development correlates with the transition of a pseudo-
stratified epithelial cell layer into a simple columnar monolayer at approximately E15–E17 of
development (422). In the adult, KLF4 and KLF5 are highly expressed in the intestinal
epithelial cells but have different distribution—KLF4 is found primarily in the terminally
differentiated cells in the villi and surface epithelium of the small intestine and colon,
respectively, whereas KLF5 is present primarily in the proliferating crypt epithelial
compartment (89,272,375). This is demonstrated in Figure 3, which shows the distribution of
Klf4 and Klf5 in the mouse colon in conjunction with the proliferation marker, Ki67. The
biological activities of KLFs 4 and 5 are reflective of their cellular distribution; KLF4, when
overexpressed, inhibits cell proliferation, whereas KLF5 promotes it (54,151,272,375). The
cytostatic effect of KLF4 is mediated by induction of the gene that encodes the cell cycle
inhibitor p21Cip1/Waf1 (66) and by inhibition of the genes that encode cyclin D1 and ornithine
decarboxylase (ODC) (71,373); this combination blocks the G1/S transition of the cell cycle.
KLF4 also mediates the cytostatic effect of p53 following DNA damage and by blocking the
G1/S and G2/M phases of the cell cycle (479,481,493). Transcriptional profiling studies have
shown that many of the genes upregulated by KLF4 inhibit the cell cycle and many of those
that are downregulated promote the cell cycle (68).

In non-transformed cells, such as NIH3T3 and several intestinal epithelial cell lines,
overexpression of KLF5 stimulates proliferation and in some cases, leads to anchorage-
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independent growth (22,54,410). This is consistent with the findings that KLF5 expression is
upregulated by mitogens such as serum, phorbol ester, and the oncogenic HRAS (214,297,
301,410). A common mechanism by which these stimuli induce KLF5 expression is through
activation of the MAPK/early growth response gene (EGR)-1 signaling pathway (214,301),
which activates KLF5 transcription (214). KLF5 subsequently stimulates expression of cyclin
D1 and cyclin B1/Cdc2, accelerating cell cycle progression (297,301). Conversely, KLF5
expression in intestinal epithelial cells is inhibited by ATRA, an inhibitor of epithelial cell
proliferation; constitutive expression of KLF5 blocks the growth inhibitory effect of ATRA
(54). KLF5 also mediates the induction of proliferation of colon cancer cells by
lysophosphatidic acid (LPA) (486). The effects of KLF5 on cell proliferation require post-
translational regulation including protein protein interaction and modifications. Interaction
with PIAS1 and modification by SUMO increase KLF5’s pro-proliferative activity (119,
120). Interestingly, whereas KLF4 activates its own promoter, KLF5 inhibits the KLF4
promoter (104,262). This result is reminescen to the opposing activity and cellular distribution
of these KLFs in the intestinal epithelium.

The in vivo functions of KLFs 4 and 5 in the intestine have been partially determined through
studies of knockout mice. Klf4−/− mice die shortly after birth with a defect in skin barrier
function (367). Newborn Klf4−/− mice also have a 90% reduction in the number of goblet cells
in their colon, compared to wild-type controls (211), so KLF4 might regulate intestinal
epithelial differentiation. This finding is consistent with results of in vitro studies
demonstrating that KLF4 regulates expression of intestinal epithelial markers, including
intestinal alkaline phosphatase and keratins (68,181,381). Expression of KLF4 increases with
differentiation of colon cancer cell lines of goblet and absorptive cell lineages (136). Short-
chain fatty acids such as sodium butyrate, which regulates colonic epithelial differentiation,
induce KLF4 expression (70,136), whereas Notch signaling inhibits KLF4 expression.
Inhibition of Notch induces KLF4 expression and increases the number of goblet cells in the
intestine (148,345,504). These results indicate that in the intestinal tract, KLF4 controls
epithelial differentiation.

Klf5−/− mice die in utero whereas Klf5+/− mice are born with intestinal phenotypes such as
misshapen villi and intestinal fibrosis (378). When Klf5+/− mice are infected with Citrobacter
rodentium (a murine bacterial pathogen that causes colonic epithelial hyperplasia), they have
significantly reduced colonic hyperproliferation, compared with wild-type mice (273). These
results indicate that KLF5 mediates colonic crypt cell proliferation in response to bacterial
infection (Figure 4). Expression of KLF5 in intestinal epithelial cells is induced by the bacterial
endotoxin, LPS. LPS-mediated induction of KLF5 increases the transcriptional activity of NF-
κB, leading to induction of inflammatory cytokines such as TNF-α and IL-6, as well as
intercellular adhesion molecule-1 (ICAM-1) (53). Klf5+/− mice are more susceptible to dextran
sodium sulfate (DSS)-induced colitis than wild-type mice—additional evidence that KLF5
regulates epithelial restitution following injury (McConnell and Yang, unpublished
observations).

KLF9 also regulates intestinal morphogenesis. In contrast to KLFs 4 and 5, KLF9 is
predominantly expressed in the SMCs of the small intestine and colon (383). The jejunum of
Klf9−/− mice have shorter villi, reduced proliferation of crypt cells, and alterations in lineage
determination (383). KLF9 therefore directs the production of mediators of crypt cell
proliferation, lineage determination, and migration from intestinal SMCs.

2. Esophagus and Stomach—Several KLFs function in the esophagus and stomach. KLF4
is expressed in the squamous epithelial cells of the esophagus, where it activates the promoters
of two genes that are highly expressed in the esophageal squamous epithelium: the Epstein-
Barr virus ED-L2 and keratin 4 (196). Keratin 4 is also regulated by KLF9 (319). Together,
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Sp1 and KLF4 activate transcription of keratin 19 in esophageal epithelial-derived cell lines
(41).

The esophageal squamous epithelium contains a proliferating layer and a differentiated
suprabasal layer. KLF4 is expressed in the suprabasal layer while KLF5 is expressed in the
basal layer. Overexpression of KLF4 or KLF5 modulates proliferation, apoptosis, and invasion
of human esophageal squamous cancer cell line TE2 (472). Expression of KLF5 coincides with
that of the epidermal growth factor (EGF) receptor (EGFR) (473). Overexpression of KLF5 in
primary esophageal keratinocytes increases proliferation, EGFR levels and MAPK signaling
(473). KLF5 activates EGFR expression by directly binding to a regulatory element of the
EGFR promoter (473). Overexpression of KLF5 also increases migration of primary
esophageal keratinocytes, via its upregulation off integrin-linked kinase (ILK) (474) and
increases proliferation of the basal, but not suprabasal, esophageal epithelial cells (155). KLF5
therefore regulates proliferation and migration of squamous esophageal epithelial cells.

Conditional deletion of Klf4 from mouse stomach (using Cre recombinase, regulated by the
Foxa3 promoter) (210) results in mice that survive to adulthood but have increased proliferation
in the gastric epithelium without evidence of dysplasia or cancer. The Klf4 mutant mice also
have altered differentiation of gastric epithelia, including a dramatic increase in the number of
trefoil factor 2-positive cells—a characteristic of premalignant conditions of the stomach
(210). KLF4 therefore also regulates gastric epithelial homeostasis.

3. Liver and Pancreas—KLF6 regulates the early stages of the fibrotic response during
liver injury. Hepatic stellate cells (HSCs) are the major source of extracellular matrix during
liver fibrosis; they are often activated upon liver injury and during subsequent wound healing
(142). Using a rat model of liver fibrosis, Friedman and colleagues found that KLF6 is induced
during the early phase of HSC activation (238,344). In fibrotic liver, KLF6 transactivates the
promoters of several genes involved in fibrotic injury and repair, such as collagen α1(I) and
TGF-β receptors (218,344). In vivo, KLF6 slows proliferation; mice that overexpress KLF6
specifically in liver have reduced liver size, whereas Klf6+/− mice have increased liver size
(306). Several alternatively spliced forms of KLF6 exist in human and rodents that have
dominant-negative activities (303). A specific, germ-line, single-nucleotide DNA
polymorphism results in a splice variant of KLF6 that is associated with increased risk of
prostate cancer and advanced fibrosis in patients with nonalcoholic fatty liver disease (278,
303).

KLFs 10 and 11 are expressed in the pancreas. KLF10 is expressed in the acinar and ductular
epithelial cell populations of the exocrine pancreas (414). KLFs 10 and 11 belong to the TGF-
β-induced early gene subfamily and mediate the anti-proliferative effect of TGF-β on
pancreatic epithelial cells—a process that involves its downstream effector Smad4 (91,92).
Overexpression of KLF10 in TGF-β-sensitive pancreatic epithelial cells causes apoptosis
(414). KLFs 10 and 11 share an amino-terminal transcription repressive domain called the SID,
which is also required for the growth suppressive effect of KLF11 (90,133,488). KLF11
potentiates TGF-β signaling and transcription in normal epithelial cells by suppressing
expression of Smad7, which normally inhibits TGF-β signaling (122). Transgenic mice that
express KLF11 under the control of a pancreas-specific promoter have smaller pancreases,
compared with the non-transgenic control mice, and down-regulate expression of the oxidative
stress scavengers SOD2 and catalase 1 (133). KLF11 expression renders cells more sensitive
to oxidative drugs, an effect that is rescued by overexpression of SOD and catalase 1 (133).

KLF11 regulates β cell function in the pancreas. It is expressed in human pancreatic islets and
in pancreatic β cell lines (308). β cells cultured in high levels of glucose have higher levels of
KLF11, which activates the insulin promoter (308). KLF11 regulates expression of pancreatic-
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duodenal homeobox-1, which is required for pancreatic organogenesis and activity of insulin-
secreting β cells in adults (434). Genetic analysis of KLF11 among North European populations
revealed the presence of several rare variants that impair KLF11’s transcriptional activity and
are associated with early onset of type 2 diabetes (308). A variant of the promoter of KLF11
has also been linked to insulin sensitivity in a Danish population (167). However, similar
studies failed to demonstrate an association of any genetic variants of KLF11 with type 2
diabetes in Japanese or native American populations (236,260,418).

F. The Role of KLFs in Metabolic Regulation
No fewer than eight KLFs are involved in metabolism, primarily by regulating differentiation
of fat cells (adipocytes) (see (42) for a recent review). The adipose tissue is the major site of
energy storage and determines energy homeostasis, the perturbation of which can lead to
pathological conditions including obesity and diabetes. The differentiation of precursor
adipocytes (pre-adipocytes) into mature adipocytes is regulated by an intricate network that is
best modeled in cell culture systems (348–350). Genes that mediate adipocyte differentiation
are controlled by the transcription factor families C/EBP, PPAR, and sterol regulatory element
binding proteins (SREBP)/adipocyte differentiation and determination factor (349,350). C/
EBPs β and δ are activated in the early phase of adipogenesis, followed by sustained expression
of C/EBPα and PPARγin the late phase of differentiation and the eventual expression of
adipocyte-specific genes (349,350). KLFs are an important part of the regulatory cascade that
leads to adipogenesis (42). The roles of various KLFs as positive and negative regulators of
adipocyte differentiation are summarized in Figure 5.

1. KLFs 2 and 3—KLFs 2 and 3 inhibit adipocyte differentiation. In a well-characterized
3T3-L1 model of differentiation (161), levels of KLFs 2 and 3 are high in undifferentiated pre-
adipocytes and reduced upon differentiation into adipocytes (18,409,464). Overexpression of
KLF2 or 3 blocks adipocyte differentiation (18,409,464), partly through KLF2’s ability to
repress PPARγ expression (18) and KLF3’s ability to inhibit C/EBPα expression (409).

Mouse embryonic fibroblasts (MEFs) that lack Klf2 (Klf2−/−) or Klf3 (Klf3−/−) are more prone
to differentiate into adipocytes, indicating that KLFs 2 and 3 inhibit adipogenesis in vivo
(409,464). Recent studies in Caenorhabditis elegans have implicated a role for the C.
elegans Klf3 homolog in regulation of fat metabolism (487).

2. KLFs 4 and 5—KLFs 4 and 5 promote adipogenesis. KLF4 is expressed very early in the
course of 3T3-L1 differentiation with a pattern similar to that of previously described
transcription factors, Krox20, C/EBPβ, and C/EBPδ (32). KLF4, in conjunction with Krox20,
activates expression of the C/EBPβ gene (32). Importantly, knockdown of KLF4 inhibits
adipogenesis and reduces C/EBPβ levels (32). Interestingly, knockdown of C/EBPβ increases
levels of KLF4 and Krox20, indicating that C/EBPβ normally controls KLF4 and Krox20
expression via a negative feedback loop (32).

Similar to KLF4, KLF5 is also induced at an early stage of 3T3-L1 differentiation that requires
C/EBPs β and δ (318). Then, KLF5 activates expression of PPARγ2 (318). Overexpression
KLF5 spontaneously induces adipocyte differentiation, whereas expression of a dominant-
negative form of KLF5 inhibits adipogenesis (318). Klf5+/− have defects in development of
white adipose tissue and MEFs obtained from Klf5+/− mice have attenuated adipocyte
differentiation (318). These results indicate that KLF5 is a key regulator of adipocyte
differentiation in vitro and in vivo. Furthermore, Klf5+/− mice are resistant to high fat diet-
induced obesity, hypercholesterolemia, and glucose intolerance, despite their consumption of
more food than wild-type mice (317). Instead, Klf5+/− mice have increased energy expenditure,
in part from increased expression genes that encode lipid oxidation in the soleus muscle such
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as carnitine-palmitoyl transferase-1b (Cpt1b) and uncoupling proteins 2 and 3 (Ucp2 and Ucp3)
(317). KLF5 must be sumoylated to repress these oxidizing genes, which allows it to interact
with co-repressors such as nuclear receptor co-repressor and SMRT, as well as unliganded
PPARδ (317). PPARδ agonists stimulate desumoylation of KLF5; KLF5 then associates with
transcriptional activation complexes containing ligand-bound PPARδ and CBP (317). This
activation complex subsequently activates expression of the lipid oxidizing genes (317).
Sumoylation is therefore a molecular switch that controls KLF5 function and the transcriptional
machinery that governs lipid metabolism.

3. KLF6—Delta-like 1 (Dlk1), also called pre-adipocyte factor-1 (Pref-1), regulates
adipogenesis by preventing differentiation of 3T3-L1 cells into adipocytes (390). KLF6
represses Dlk-1 expression and thereby stimulates 3T3-L1 differentiation (390). Conversely,
knockdown of KLF6 prevents adipogenesis (390). The repressive effect of KLF6 on the
Dlk-1 promoter requires HDAC3 activity (390).

4. KLF7—A search for single nucleotide polymorphisms (SNPs) in 12 KLF genes identified
a SNP in KLF7 that was significantly associated with type 2 diabetes in Japanese subjects
(209). Although the same SNP is not associated with diabetes in a Danish population, a minor
allele of a different KLF7 locus protects against obesity in the same population (510). These
studies provided evidence that KLF7 is involved in fat metabolism. Expression of KLF7 is
decreased upon 3T3-L1 adipocyte differentiation and overexpression of KLF7 inhibits
adipogenesis (209). Similarly, overexpression of KLF7 in human pre-adipocytes inhibited their
differentiation into adipocytes and reduced expression of genes involved in adipogenesis,
including C/EBPα and PPARγ (215). Overexpression of KLF7 in differentiated adipocytes
significantly reduces the levels of adipocytokines such as leptin and adiponectin (215). When
overexpressed in an insulin-secreting pancreatic β cell line, KLF7 inhibits expression of insulin
and glucose-induced secretion of insulin (215). In addition, KLF7 inhibits expression of
hexokinase 2 in a skeletal muscle cell line and of glucose transporter 2 in a liver-derived cell
line (215). KLF7 might therefore contribute to the pathogenesis of diabetes by impairing insulin
biosynthesis and secretion in pancreatic β cells and reducing insulin sensitivity in peripheral
tissues. These results are consistent with the observation that (-)-catechin, a component of the
green tea polyphenols, promotes adipogenesis by inhibiting expression of KLF7 and activating
that of adiponectin in 3T3-L1 cells (81)

5. KLF11—The role for KLF11 in regulating pancreatic β cell functions was addressed in
section E3. Liver and Pancreas. KLF11 also regulates cholesterol-mediated gene expression.
Following exposure of vascular endothelial cells to cholesterol, KLF11 represses the gene that
encodes caveolin-1 gene, in which is involved in cholesterol homeostasis (49). Upon depletion
of cholesterol, KLF11 is displaced from a Sp1-site that flanks a sterol-response element in the
caveolin-1 promoter, allowing the binding of SREBP and Sp1 and activation of the
caveolin-1 promoter (49). In response to cholesterol, KLF11 therefore represses genes that
SREBP/Sp1 otherwise activate.

6. KLF15—KLF15 also regulates adipogenesis; its expression is highly upregulated during
differentiation of 3T3-L1 pre-adipocytes into adipocytes (288). Dominant-negative forms or
RNA interference of KLF15 reduce expression of PPARγand block adipogenesis of 3T3-L1
pre-adipocytes (288). KLF15 and C/EBPα act synergistically to increase the activity of
PPARγ2 in 3T3-L1 adipocytes (288). In non-adipocyte cell lines such as NIH3T3 and C2C12,
ectopic expression of KLF15 increases PPARγ levels and lipid accumulation (288). Moreover,
KLF15 expression is increased by ectopic expression of C/EBPα, β, or γ in NIH3T3 cells
(288). KLF15 therefore plays an essential role in regulating adipocyte differentiation through
its regulation of PPARγ expression.
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In addition to its role in adipogenesis, KLF15 is involved in energy metabolism in the liver,
skeletal muscle, and adipocytes. KLF15 regulates expression of the insulin-sensitive glucose
transporter GLUT4 in both adipose and muscle tissues (158). KLF15 also contributes to the
transcriptional activation of mitochondrial acetyl-CoA synthetase 2 in skeletal muscle during
fasting (469). In the liver, expression of KLF15 is increased by fasting and reduced by refeeding
(421). In cultured hepatocytes, KLF15 expression is increased by cAMP and decreased by
insulin (421). Ectopic expression of KLF15 in cultured hepatocytes increases expression of
phophoenolpyruvate carboxykinase (PEPCK), which is required for gluconeogenesis (421).
Consistent with a role for KLF15 in gluconeogenesis, Klf15−/− mice have severe hypoglycemia
after an overnight fast (159). Interestingly, instead of a reduction in PEPCK levels, Klf15−/−

mice have defects in amino acid catabolism that arise from reduced expression of enzymes
required for amino acid degradation in the liver and skeletal muscle; reductions of these
enzymes limit the substrates available for gluconeogenesis (159). The activity of alanine
aminotransferase (ALT), which helps convert the amino acid alanine into the gluconeogenic
substrate pyruvate, is reduced by 50% in the livers of Klf15−/− mice (159). These studies
implicate KLF15 as a critical regulator of gluconeogenesis.

G. KLFs and Bone Metabolism
KLF 10 is the only family member known to be associated with bone metabolism. It was
initially identified as a TGF-β-induced cDNA from a human fetal osteoblast (hFOB) library
(406). Expression of KLF10 is rapidly and significantly induced in hFOB cells incubated with
TGF-β1 and BMP-2, and to a less extent, EGF (406). Other TGF-β superfamily members such
as BMP-4, BMP-6, and activin, also induce KLF10 in hFOB cells but are less potent than TGF-
β1 (178). In addition, KLF10 is rapidly induced by the estrogen 17β-estradiol (E2), in estrogen
receptor (ER)-positive hFOB cells—this induction is antagonized by parathyroid hormone
(419). E2-induced KLF10 inhibits DNA synthesis (419) and proliferation of hFOB cells
incubated with TGF-β (177). In fact, human osteosarcoma cells (MG-63) that have been stably
transfected with a vector that encodes KLF10 display changes similar to those following
incubation with TGF-β (177). KLF10 increases TGF-β signaling through transcriptional
activation of Smad2 and inhibition of Smad7, (202,203).

KLF10’s role in bone physiology has been studied in knockout mice. Klf10−/− mice have a
greater number of osteoblasts, but not osteoclasts, during bone formation than wild-type mice
(405). Following exposure to BMP-2, osteoblasts differentiate, but osteoblasts from
Klf10−/− mice fail to mineralize of support differentiation of osteoclasts (405). As a
consequence, Klf10−/− mice have defects in bone and tendon strength and microarchitecture
(25,26). The defects in bone mineral content, density, and area in Klf10−/− mice appear to be
sex-specific (175). KLF10 was one of five genes whose expression was associated with
volumetric bone density in a SNP study of bone metabolism genes (476).

H. The Nervous System and Neuronal Morphogenesis
Several KLFs participate in neuronal morphogenesis. Klf7 exhibits three phases of expression
in the nervous system of the developing mouse (239). During embryogenesis, Klf7 is highly
expressed in the spinal cord, dorsal root ganglia, and sympathetic ganglia. During early
postnatal development, Klf7 is expressed in the cerebral cortex and is subsequently
downregulated. In adult mice, Klf7 is localized to the cerebellum and dorsal root ganglia. These
phases of expression correspond with establishment of the neuronal phenotype in the
embryonic spinal cord, development of synaptic circuitry in the postnatal cerebral cortex, and
survival and function of adult sensory neurons and cerebellar granule cells. Deletion of Klf7
in mice results in neonatal lethality which is associated with deficits in neurite outgrowth and
axonal misprojection (241). Axonal pathways affected include the olfactory and optic systems,
the cerebral cortex and the hippocampus.
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Klf9 is expressed in dentate granule neurons of the dentate gyrus (DG), a region of the
mammalian brain in which neurogenesis occurs in adulthood (363). Klf9 is upregulated during
the early postnatal period and is expressed in dentate granule neurons during the late stage of
maturation, when the cells are integrated into the hippocampal network. Dentate granule
neurons from Klf9−/− mice show delayed maturation, and adult Klf9−/− mice exhibit impaired
differentiation of adult-born neurons. Thus, Klf9 is necessary for late-phase maturation of
dentate granule neurons both in DG development and during adult hippocampal neurogenesis.

KLF4 was recently identified as an important factor regulating the regeneration potential of
neurons in the central nervous system (CNS) (286). Gene expression profiling was used to
identify factors that are upregulated in retinal ganglion cells (RGCs) during postnatal loss of
axon growth ability. Of the candidate genes identified, KLF4 is the most effective suppressor
of neurite outgrowth when overexpressed in RGCs. Conversely, RGCs lacking KLF4 exhibit
increased axon growth both in vitro and after optic nerve injury in vivo. Other KLFs are also
developmentally regulated in postnatal RGCs—KLFs 6 and 7 which have growth-enhancing
effects are downregulated, whereas KLF9 which is growth-suppressive is highly upregulated.
In agreement with this study, Klfs 6 and 7 are required for regeneration of RGCs in zebrafish
(437). Thus, KLFs that act as positive and negative regulators of axon outgrowth are
coordinated to control the regenerative capacity of CNS neurons.

I. The Role of KLFs in Tumor Biology
Numerous KLFs are involved in the pathobiology of cancer (33,46,121,126,152,355,384,
453). Here we review the role of representative KLF family members in tumor biology.

1. KLF4—As discussed in Section E.1. Small Intestine and Colon, KLF4 was initially
identified as a growth arrest-associated gene in the intestinal epithelium that suppresses DNA
synthesis when expressed ectopically (375). In RKO colon cancer cells, induction of KLF4
leads to G1/S cell cycle arrest, which correlates with an increase in the level of p21Cip1/Waf1

(66). Using cell culture models in which DNA damage is elicited by γ irradiation or methyl
methanesulfonate, KLF4 is transcriptionally activated by the tumor suppressor p53 and
mediates subsequent G1/S and G2/M cell cycle checkpoints by activating transcription of
p21Cip1/Waf1 (479,481,493). KLF4 is necessary for and sufficient to prevent centrosome
amplification following γ-irradiation–induced DNA damage; it does so by inhibiting
expression of the gene encoding cyclin E, which promotes centrosome amplification when
overexpressed (480). KLF4 also represses expression of cell cycle-promoting genes such as
cyclin D1 and ODC in the human colon cancer cell line HT29 (71,373). Agents that have anti-
proliferative agents in colon cancer cells, including IFN-γ (72), sulforaphane (424,425), sodium
butyrate (70), 15-deoxy-Δ12,14-prostaglandin J2 (73), and certain phytochemicals (79,80),
increase levels of KLF4.

The checkpoint function of KLF4 in colon cancer-derived cell lines suggests that it is a tumor
suppressor. Induced KLF4 expression in RKO cells, which do not express endogenous KLF4,
reduces colony formation, cell migration, invasion, and in vivo tumorigenecity (102). KLF4 is
regulated by adenomatous polyposis coli (APC), the most frequently mutated tumor suppressor
gene in colon cancer (103). APC is part of the Wnt signaling pathway responsible for
maintaining intestinal epithelial homeostasis by modulating cellular levels and localization of
β-catenin (19,342,365). Either the presence of Wnt ligands or mutational inactivation of APC
leads to nuclear translocation of β-catenin; formation of nuclear β-catenin/T cell factor 4
(TCF4) transcriptional complex increases cell proliferation (228,289). KLF4 inhibits Wnt
signaling by downregulating β-catenin protein and mRNA levels (404), interacting physically
with β-catenin, and repressing β-catenin/TCF4 transcriptional activity (492). KLF4 therefore
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assists the tumor suppressive activity of APC via regulation of the Wnt/β-catenin signaling
pathway in colon cancer cells.

The tumor suppressor activity of KLF4 in colon cancer has been investigated in primary tumor
samples. The levels of KLF4 mRNA are reduced, compared with control tissues, in the
respective intestinal and colonic adenomas from the ApcMin mice and patients with familial
adenomatous polyposis—both carrying germ-line APC mutations (101). Similarly, KLF4
mRNA levels are lower in adenocarcinoma of the colon compared to normal colon (374). In a
panel of 30 colorectal cancer specimens, the mean level of KLF4 mRNA was reduced by 50%
compared with paired normal colon samples (501). KLF4 mRNA levels are also reduced in
cultured colon cancer cell lines, compared to non-transformed colonic epithelial cells (501).
Reductions in KLF4 expression arise through several mechanisms often involved with tumor
suppressor inhibition, including loss of heterozygosity (LOH), promoter hypermethylation,
and mutations that disrupt protein activity (501). Several studies have validated the loss of
KLF4 expression in colorectal cancer, including those showing that KLF4 mRNA levels are
inversely correlated with Duke stages (86,356,465). Moreover, KLF4 has tumor suppressive
activity in cancers of other regions of the gastrointestinal tract, including the esophagus (259,
443), stomach (85,208,452), and pancreas (454). Expression of KLF4 is also reduced in tumors
that arise outside the gastrointestinal tract, such as in lung (30,186), prostate (139), and urinary
bladder (316).

The tumor suppressive function of KLF4 has been examined in vivo. Between 10 and 20 weeks
of age, ApcMin/Klf4+/− mice develop on average 55% more intestinal adenomas than ApcMin

mice (150). The levels of Klf4 protein in the normal-appearing mucosa of the ApcMin/
Klf4+/−mice are lower than in that of wild-type, ApcMin, or Klf4+/− mice. In contrast, the levels
of β-catenin and cyclin D1 are higher in the intestinal tissues of ApcMin/Klf4+/− mice, compared
with the other genotypes (150). Klf4 levels are further decreased in adenomas derived from
ApcMin/Klf4+/− and ApcMin mice compared to their respective normal surrounding mucosa
(150). There is an inverse correlation between the size of adenoma and Klf4 transcript levels
and a correlation between LOH at Apc and adenoma size (150). Haploinsufficiency of Klf4
therefore promotes Apc-dependent intestinal tumorigenesis, consistent with the observations
that KLF4 is regulated by APC (103) and that KLF4 inhibits Wnt/β-catenin signaling (404,
492). MEFs isolated from Klf4−/−embryos and maintained in cultured are genetically unstable
—they show aneuploidy, DNA damage, chromosome aberrations, and centrosome
amplification (169). These results support a role for KLF4 as a tumor suppressor that maintains
genetic stability (169).

An additional mechanism by which KLF4 suppresses intestinal tumor formation involves
Notch signaling, which suppresses goblet cell differentiation in the intestinal epithelium and
is upregulated in intestinal tumors (197,430). KLF4 is required for goblet cell differentiation
(211); overexpression of Notch in HT29 cells suppresses KLF4 expression and increases
proliferation (148). Conversely, inhibition of Notch by pharmacological or genetic means
increases KLF4 expression and reduces proliferation (148). ApcMin mice given the Notch
inhibitor dibenzazepine (DBZ) have a 50% reduction in numbers of intestinal adenomas,
compared with mice given vehicle alone (controls) (148). Importantly, the normal-appearing
intestinal mucosa and adenomas from DBZ-treated ApcMin mice have increased levels of Klf4
and numbers of goblet cells, as well as reduced cyclin D1 and Ki67 levels, compared with
controls (148). These results were subsequently replicated (504) and suggest that KLF4
mediates the anti-tumor effect of Notch inhibitors such as DBZ (148).

Although there is much evidence that KLF4 is a tumor suppressor, contradictory data exist.
For example, KLF4 mRNA and protein are present in a relatively high proportion of breast
tumor samples, compared with the adjacent uninvolved epithelium (139). Furthermore, nuclear
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localization of KLF4 in early-stage ductal carcinoma of the breast is associated with an
aggressive phenotype that includes shortened survival time (324). The mechanism by which
KLF4 promotes breast carcinogenesis might involve its ability to repress transcription of p53
and Mucin 1, which are often overexpressed in breast tumors (456). KLF4 activates
transcription of Notch1 in mammary epithelial cells and promotes signaling through a non-
canonical Notch1 pathway (257). However, the role of KLF4 as a putative oncoprotein in breast
tissue is controversial. A search of gene expression databases showed that KLF4 mRNA levels
are lower in breast tumor tissues, compared with normal tissues, in 9 of 11 data sets and that
the levels are inversely correlated with tumor grade (5). KLF4 mRNA levels are also correlated
with ER-positive breast tumors (5). In breast cancer cells, KLF4 physically interacts with ER
to inhibit its transcriptional activity and ER-dependent proliferation (5). Exposure of breast
cancer cells to okadaic acid (OA) induces c-Myc and subsequent c-Myc-mediated apoptosis
(489). KLF4 is also induced by OA and is responsible for OA-dependent induction of c-Myc
(489). KLF4 also regulates transcription of the gene encoding laminin α3A (LAMA3A) chain,
a component of the extracellular matrix protein laminin-5, which is produced by normal
mammary epithelial cells but markedly down-regulated in breast cancer cells (280). This loss
of laminin-5 expression is associated with progression of breast cancer (179,264). Notably,
KLF4 protein and DNA binding at the LAMA3A promoter are found in normal mammary
epithelial cells but not in any of the breast cancer cell lines analyzed (280). Further studies are
required to determine whether KLF4 is oncogenic or tumor suppressive in the breast.

KLF4 is also involved in the pathogenesis of squamous cell carcinoma. KLF4 is expressed in
the normal squamous cell epithelium of the skin and oral cavity, in the differentiated suprabasal
layer but not the basal layer (139). KLF4 staining is increased in dysplastic epithelium or
squamous cell carcinoma of the oral cavity (69,139). Conditional expression of KLF4 in basal
keratinocytes of transgenic mice blocks the proliferation-differentiation switch between the
basal and parabasal epithelial cells and leads to hyperplasia, dysplasia, and squamous cell
carcinoma in situ (140). In normal squamous epithelium or hyperplastic epithelium derived
from the skin of KLF4 transgenic mice, expression of KLF4 and the proliferation marker PCNA
are mutually exclusive (188). In contrast, KLF4 and PCNA co-localize in dysplastic or
carcinoma-like lesions epithelium (188). These results indicate that successive increases of
KLF4 in the nuclei of basal keratinocytes increases cell turnover and progression through the
different stages of squamous cell tumorigenesis (188). KLF4 also activates expression of
several retinoic acid receptors, including retinoid acid receptor-γ (RAR-γ) and retinoid X
receptor-α (RXR-α). Exposure of mice to RXR-selective agonists such as 9-cis UAB-30 or
rexinoid prevents formation of skin tumors that arise via induction of KLF4 in the basal
keratinocytes and the appearance of hyperplastic, dysplastic, and squamous cell carcinoma-
like lesions (200).

The mechanisms by which KLF4 could function as a tumor suppressor or oncoprotein are
presented in Figure 6. In untransformed cells, KLF4 inhibits cell proliferation, but KLF4-
induced arrest is bypassed by oncogenic RASV12 due to the upregulation of cyclin D1 (351).
Inactivation of p21Cip1/Waf1-induced cell cycle arrest by the upregulated cyclin D1 overcomes
the suppressive effects of KLF4 and contributes to cell transformation (351). Overexpression
of KLF4 suppresses expression of p53 at the promoter level, allows RASV12-mediated
transformation, and prevents DNA damage-induced apoptosis (351). In a similar study, KLF4
was identified in a functional screen as a transforming protein in adenovirus E1A-immortalized
rat kidney RK3E cells (141). Cells that lack KLF4 exhibit a greater degree of apoptosis
following γ irradiation (149). KLF4’s anti-apoptotic effects are mediated through activation
of p21Cip1/Waf1 and inhibition of p53 activation of the pro-apoptotic gene, BAX (149). KLF4
levels are determined by the extent of DNA damage and different levels of KLF4 determine
the outcome of p53 response to DNA damage (507). Thus, KLF4 is activated after cytostatic,
low-level DNA damage, leading to cell cycle arrest, but is repressed after severe DNA damage,
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leading to apoptosis (507). These studies indicate that KLF4 regulates whether a cell will
undergo cell cycle arrest or apoptosis depending on the level of genetic damage.

2. KLF5—KLF5 promotes proliferation of different cell types. In intestinal epithelial cells,
expression of KLF5 coincides with that of Ki67, a marker of proliferation (273). In vivo, KLF5
mediates the hyperproliferative response of the colonic epithelium following pathogenic
infection by Citrobacter rodentium (273) and the regenerative response in chemical colitis
caused by DSS (McConnell and Yang, unpublished observations). Similarly, nanoparticles
that contain siRNA against KLF5 have anti-tumor activity (467), and ATRA inhibits
proliferation of untransformed intestinal epithelial cells, IEC6, and several colon cancer cell
lines by inhibiting expression of KLF5 (54). Conversely, LPA facilitates proliferation of
intestinal epithelial cells and colon cancer cells by inducing KLF5 (252,486). A recent high-
throughput screening approach identified several novel and potent small molecular inhibitors
of KLF5 that inhibit proliferation of several colon cancer cell lines (29). Moreover,
overexpression of KLF5 in NIH3T3 fibroblasts (410), COS-7 (120), intestinal epithelial cells
(22,54), and colon cancer cells (119) increases rates of proliferation, and in some cases,
anchorage-independent growth. Finally, KLF5 mediates the transforming activity of oncogenic
HRAS and KRAS in NIH3T3 fibroblasts (297,301) and IEC6 cells (299), respectively.
Consistent with these findings, intestinal tumors derived from KRASV12-expressing transgenic
mice and human colon cancer samples with oncogenic KRAS mutations contain increased
levels of KLF5, determined by immunohistochemical analysis (299).

ApcMin/Klf5+/− mice have a 96% reduction in the number of intestinal adenomas compared
with ApcMin mice (271). This reduction in tumor formation correlates with decreased nuclear
localization of β-catenin and reduced expression of the β-catenin targets cyclin D1 and c-Myc
(271). In cultured cells, KLF5 physically interacts with β-catenin, facilitates its nuclear
localization, and modulates β-catenin’s transcriptional activity (271). KLF5 is therefore
required for the tumor-initiating activity of β-catenin during intestinal tumorigenesis in
ApcMin mice. The tumor-promoting effects of KLF5 are supported by the observation that
Klf5 haploinsufficiency reduces intestinal burden in ApcMin mice with the KRASV12 mutation
(298).

The involvement of KLF5 in cancers of the extra-intestinal tissues of the gastrointestinal tract
has been investigated. As addressed in Section E.2. Esophagus and Stomach, overexpression
of KLF5 in esophagus squamous epithelial cells (keratinocytes) regulates proliferation,
migration, and signal transduction (155,473,474). In tumor samples from 247 patients with
gastric cancer, KLF5 expression is correlated with early-stage cancers that are small in size
and have not metastasized to the lymph nodes (237). In several pancreatic cell lines, KLF5
levels are increased independently of MAPK signaling, but increased KLF5 expression do
depend on IL-1β and hypoxia-inducible factor 1-α (HIF1-α) (287). Downregulation of KLF5
expression in pancreatic cancer cells by siRNA reduced expression of the KLF5 targets survivin
and PDGF-A, which promote pancreatic tumor growth (287). The chromosome region that
contains KLF5, 13q22.1-22.2, is frequently amplified in salivary gland tumors, so KLF5 might
also be involved in the pathogenesis of this tumor type (287).

The role of KLF5 in the pathogenesis of breast cancer is somewhat unclear—with some studies
showing that it promotes breast tumor formation. KLF5 frequently undergoes hemizygous
deletion and loss of expression in breast tumors, indicating a possible tumor suppressive role
(57). In addition, KLF5 is actively degraded by the hyperactive E3 ubiquitin ligase, WWP1,
in some breast cancer cell lines (59,74). Conversely, several studies demonstrate that KLF5
promotes breast cancer cell proliferation and survival by upregulating transcription of
fibroblast growth factor binding protein 1 and stabilizing the dual-specificity phosphatase,
MAPK phosphatase 1 (255,505). KLF5 is also induced upon overexpression of ERBB2 (also
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known as HER1 or NEU), which is amplified in some breast tumors (23). In tumor samples
from 90 patients with breast cancer, those that express higher levels of KLF5 have shorter
disease-free survival and overall survival times, compared to those that express lower levels
of KLF5 (423). KLF5 expression is correlated with that of HER2 and the proliferation marker
Ki67 (423). It is not clear why KLF5 is upregulated in some breast tumors and downregulated
in others, but the status of the ER might be a factor—KLF5 inhibits the proliferative action of
estrogen in ER-positive, but not ER-negative, cells (165).

The role of KLF5 in prostate cancer pathogenesis is also unclear. The KLF5 locus is frequently
deleted and downregulated in prostate cancer and overexpression of KLF5 in prostate cancer
cell lines inhibits their growth (58). KLF5 is often degraded by ubiquitin-mediated proteolysis
in prostate cancer cells, as in breast cancer cells (59). However, gene expression profiling
experiments showed that KLF5 transcript levels were consistently increased in prostate cancer
samples, relative to normal prostate epithelium (52). Furthermore, KLF5 increases the
expression of fatty acid synthase and the chemokine receptor, CXCR4 (143,244), which are
involved in prostate cancer proliferation and migration. Further studies are needed to identify
the role of KLF5 in prostate cancer pathogenesis.

The studies described here indicate that KLF5 has a context-dependent proliferative or anti-
proliferative function, sometimes in the same cell types. A number of recent studies explored
the mechanism by which this can be achieved. In an in vitro epidermal epithelial cell system,
proliferative KLF5 becomes anti-proliferative, in the presence of TGF-β (163). KLF5 inhibits
the expression of the cell cycle inhibitor, p15, in the absence of TGF-β, but when TGF-β is
added to cells, KLF5 becomes acetylated and co-activates p15 transcription (163). In a similar
manner, although KLF5 activates c-Myc expression in the absence of TGF-β, it inhibits c-Myc
in the presence of TGF-β (164). These findings suggest that KLF5 activates cell proliferation
in response to TGF-β, which has well-recoginzed pleiotropic effects on cell proliferation.

3. KLF6—An association between KLF6 and cancer was made by Narla et al. who found that
one allele of KLF6 is deleted and the remaining allele is mutated in most primary prostate
tumors (305). Wild-type KLF6 upregulates p21Cip1/Waf1 and inhibits prostate cell proliferation
but mutant forms of KLF6 do not (305), indicating that KLF6 is a prostate tumor suppressor.
LOH and somatic mutations in KLF6 are detected in another study of prostate cancer
specimens, although at a lower frequency than that of Narla et al. (58). More recent studies
confirmed that overexpression of KLF6 in prostate cancer cells reduces proliferation and
induces apoptosis (75,189). Conversely, reduced expression of KLF6 is associated with poor
prognosis in gene expression profiling studies of patients with prostate cancer (154).
Expression of KLF6 is decreased in aggressive, androgen-independent, metastatic prostate
tumors (402). Other studies, however, report that KLF6 mutations are rare events in sporadic
or inherited-forms of prostate cancer (3,224,291).

Numerous studies demonstrated that loss of KLF6 expression or activity, due to LOH,
mutation, or promoter methylation, occur in many other types of cancer, including
hepatocellular (45,182,229,230,306), colorectal (82,83,282,292,346), gastric (84,359), lung
(193,508), head and neck (420), ovarian (114), and brain (47,478) cancers. However, other
studies failed to establish an association between KLF6 and some of these cancer types (38,
222,225,250,285,397).

A large cohort study of men with prostate cancer identified a germ-line SNP in KLF6 that
increases the relative risk of familial and sporadic prostate cancer (303). This polymorphism
occurs in the first intron of KLF6 (denoted as the intervening sequence (IVS) 1–27 G>A or
IVSΔA allele) and generates a functional binding site for the splicing factor SRp40 that
increases transcription of three alternatively spliced forms of KLF6: KLF6-SV1, -SV2 and -
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SV3 (303). The KLF6-SV1 and -SV2 splice variants mislocalize to the cytoplasm, antagonize
wild-type KLF6, and decrease p21Cip1/Waf1 expression (303); expression of these variants is
increased in prostate tumors compared with normal prostate tissues (303) and targeted
inhibition of the KLF6-SV1 variant suppresses prostate cancer cell proliferation, colony
formation, and invasion (304). Conversely, overexpression of KLF6-SV1 accelerates prostate
tumor progression and metastasis in humans and mice (302). These results demonstrate that
dominant-negative KLF6 splice variants contribute to prostate cancer pathogenesis.

KLF6-SV1 has been detected in hepatocellular (475), ovarian (112,114), lung (111,358),
pancreatic (174), and gastric tumors (359), and glioblastoma (47). In hepatocellular carcinoma,
oncogenic RAS signaling stimulates alternative splicing of KLF6 and increases proliferation
(475). In ovarian cancer cells, KLF6-SV1 promotes degradation of the anti-apoptotic protein
NOXA, increasing cell survival (112). KLF6-SV1 also has anti-apoptotic effects in lung cancer
cells (111). Indeed, KLF6-SV1 represents the first therapeutically targeted KLF and inhibitors
of KLF6-SV1 slow tumor growth and progression in several model systems (111–113,359).

4. KLF8—Tumors acquire invasive phenotypes via the epithelial–mesenchymal transition
(EMT) (162), which is mediated by many factors, including focal adhesion kinase (FAK)
(87,354). FAK regulates expression of KLF8, which controls the cell cycle by activating cyclin
D1 expression (500). In human ovarian epithelial and cancer cells, FAK regulates transcription
of KLF8 by activating the PI3K–AKT pathway (444). KLF8 expression is increased in several
types of human cancer cells and tissues and ectopic expression of KLF8 induces transformation
(445). Stable expression of KLF8 in immortalized normal human breast epithelial cells induces
the EMT, repressing transcription of E-cadherin and thereby increasing the motility and
invasiveness of cancer cells (446). (446)

5. KLF9—KLF9 is associated with endocrine-responsive cancers of the female reproductive
tissues such as endometrial cancer (384). Stable expression of KLF9 in the human endometrial
carcinoma cell line Hec-1-A increases DNA synthesis and cell cycle kinetics by inducing genes
involved in cell cycle control (386,497). KLF9 physically interacts with the progesterone
receptor; together, they co-regulate expression of progesterone-responsive target genes (435,
485,498). KLF9 is a negative regulator of ligand-dependent ERα signaling in endometrial
carcinoma cells (436). KLF9 might therefore function in the progesterone and ER signaling
pathways to control endometrial cell proliferation. Human endometrial cancer is associated
with unopposed estrogen activity. Levels of KLF9 mRNA are reduced in endometrial tumor
of higher grades, compared with normal endometrium and low-grade endometrial tumors
(382).

6. KLFs 10 and 11—KLF10 is a TGF-β-inducible early gene that is normally expressed in
the acinar and ductular epithelial cells of the exocrine pancreas; its over-expression causes
apoptosis in pancreatic epithelial cell lines, so KLF10 has tumor suppressive effects (414). The
induction of KLF10-mediated apoptosis increases the sensitivity of pancreatic cancer cells to
gemcitabine; this effect is mediated by suppression of stathmin expression (199). However, a
mutational screen of the KLF10 gene in 22 pancreatic cell lines revealed no sequence alterations
(11).

KLF10 has anti-proliferative effects, promotes apoptosis (7,201,281), and is involved in the
pathogenesis of cancers in addition to pancreatic cancer. Expression of KLF10 is progressively
lost during the transition of normal breast epithelium into invasive carcinoma (347,407).
KLF10 is regulated by estrogen in breast cancer and is part of a gene expression signature that
can be used to discriminate ER-positive from ER-negative tumors (398). In colon cancer cells,
KLF10 expression is increased by 15-hydroxy-eicosatetraenoic acid (15S-HETE), an
endogenous ligand for PPARγ, and induces apoptosis (61). Colon tumors have decreased levels
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of KLF10 and 15-lipoxygenase, the enzyme responsible for 15S-HETE formation, compared
with normal mucosa; colonic tumorigenesis is therefore associated with decreased 15S-HETE
levels (61). In acute lymphoblastic leukemia (ALL), KLF10 inhibits proliferation in response
to stimulation by TGF-β or BMP-6 derived from bone marrow stromal cells (117). However,
the anti-proliferative effect of KLF10 protects the ALL cells against chemotherapy-induced
cell death (117). KLF10 might therefore mediate signals from the microenvironment to
leukemia cells. KLF10 is upregulated in renal clear cell carcinoma as a result of mutation in
the tumor suppressor von-Hippel Lindau protein (194), but further studies are required to
determine the exact role of KLF10 in cancer pathogenesis.

Like KLF10, KLF11 mediates the effect of TGF-β on cell growth and has a role in pancreatic
tumor progression. KLF11 potentiates TGF-β signaling by binding to the mSin3A co-repressor
and terminating the inhibitory Smad7 loop (122). These events are inhibited in pancreatic
cancer cells with oncogenic KRAS mutations—ERK/MAPK phosphorylates KLF11, leading
to disruption of the interaction between KLF11 and mSin3A (122). Expression of an ERK-
insensitive, mutant form of KLF11 restores mSin3A binding and Smad7 repression and
increases TGF-β signaling in pancreatic cancer cells (122). In response to TGF-β stimulation,
KLF11 and Smad3 bind the TIE and inhibit transcription of c-Myc; this silencing is required
for TGF-β-mediated inhibition of epithelial cell proliferation (43). In pancreatic cancer cells
with oncogenic mutations in KRAS, hyperactive forms of ERK counteract TGF-β–induced
repression of c-Myc and induce proliferation by disrupting the KLF11/Smad3 complex and
inhibiting its binding to the TIE in the c-Myc promoter (43). ERK signaling thereby antagonizes
the tumor suppressor activity of TGF-β, blocking ability of KLF11 to inhibit c-Myc expression
(43).

7. KLF12—KLF12 was initially identified as a repressor of the transcription factor AP-2α
(192). KLF12 is located on chromosome region 13q21-q22, which houses a putative breast
cancer susceptibility gene and is the site of somatic deletions in different malignant tumors
(353). In contrast, this chromosome region is frequently amplified in salivary gland and gastric
tumors (153,296). Knockdown of KLF12 induces growth arrest of HGC27 gastric cancer cells
(296). Overexpression of KLF12 in NIH3T3 and AZ-521 cells increases their invasive potential
(296). KLF12 mRNA levels are increased in 11 of 28 samples of gastric tumors from patients,
compared to normal gastric epithelium (296), and correlate with tumor size (296). These results
suggest that KLF12 has an important role in the progression of gastric cancer.

J. KLFs and Somatic Cell Reprogramming
The ability to reprogram somatic cells into pluripotent, ES-like cells has many potential clinical
applications in regenerative medicine. The importance of KLF proteins in somatic cell
reprogramming was revealed by Takahashi and Yamanaka, who identified four transcription
factors that could reset the fate of somatic cells: Klf4, Oct3, Sox2, and c-Myc (415,416). One
mechanism by which KLF4 participates in ES cell self-renewal is through its upregulation in
ES cells by leukemia inhibitory factor (LIF), which maintains pluripotency of ES cells (248).
ES cells that overexpress KLF4 have a greater capacity to self-renew based on secondary
embryoid body (EB) formation. Furthermore, EBs transduced with KLF4 express higher levels
of Oct4, consistent with the notion that KLF4 regulates ES cell self-renewal (248). Global
analysis of promoter occupancy by the four somatic cell reprogramming factors (Klf4, Oct4,
Sox2 and c-Myc) and five additional factors important for pluripotency (217) revealed an
integral role for KLF4 in a transcriptional hierarchy regulating ES cell pluripotency. Klf4 was
identified as an upstream regulator of a large, feed-forward transcription factor loop that
contains Oct4, Sox2, and c-Myc, as well as other common downstream factors such as Nanog
(217) (see Figure 7). The study also indicated that c-Myc has a distinct role in regulating cell
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proliferation and chromosomal accessibility in ES cells, based on the identification of c-Myc
promoter targets that were independent of the other pluripotency-inducing factors.

The ability of KLF4 to maintain immortality of iPS cells may arise from its cooperation with
c-Myc. In a manner similar to the cooperation between KLF4 and RAS to affect transformation
(352) (Figure 6), KLF4 and c-Myc may cooperate to promote iPS cell self-renewal, with KLF4
suppressing apoptosis induced by c-Myc and c-Myc neutralizing the cytostatic effect of KLF4
by suppressing p21Cip1/Waf1 (470). In this way, the balance between KLF4 and c-Myc may
establish the immortalized state of iPS cells.

To identify additional factors that can generate iPS cells, Nakagawa et al. substituted the
different factors used in somatic reprogramming with their respective homologs (295). They
reported the successful generation of iPS clones upon substitution of Klf2 for Klf4 or L-Myc
for c-Myc. Other substitutions, including Klf5 for Klf4, Sox1 for Sox2, and N-Myc for c-Myc
resulted in positive clones, although fewer in number. No iPS clones developed when only
three factors, devoid of Klf4, were used for reprogramming. The requirement for Oct4 and
Klf4 in reprogramming somatic cells has been substantiated (110,372).

Jiang et al. examined the contribution of KLFs 2, 4, and 5 to ES cell self-renewal (198). These
KLFs are downregulated in ES cells induced to differentiate with retinoic acid. Depletion of
Klf2, 4, or 5 in mouse ES cells does not affect ES self-renewal, and pair-wise depletion of the
three factors likewise has no effect. In contrast, depletion of all three factors results in ES cell
differentiation. The authors used chromatin immunoprecipitation studies to show that Klfs 2,
4, and 5 share gene targets with Nanog, including a number of genes that regulate pluripotency
such as Esrrb, Pou5f1, Sox2 and Tcf3. Furthermore, these Klfs bind two upstream regions in
the Nanog promoter, including a Nanog-enhancer element, and promote Nanog expression.
These findings indicate that KLFs and Nanog work in concert to provide a core circuitry that
regulates ES cell self-renewal (198).

Oct4 and LIF have additive effects that induce KLFs to sustain ES cell self-renewal, providing
further support for the role of KLFs in ES cell maintenance. Oct4 primarily induces Klf2,
whereas LIF/STAT3 signaling selectively increases Klf4 expression (171). Induction of both
KLFs is necessary to maintain ES cell pluripotency, identity, and self-renewal (171).

KLF5 also plays a key role in self-renewal of mouse ES cells (123,327). Parisi et al. reported
that Klf5 is present in undifferentiated ES cells and co-localizes with Oct3/4 and Nanog. They
also found that nuclear Klf5 localization correlates with that of Oct3/4 and Nanog in the pre-
implantation embryos and in blastocysts at E3.5. In vitro depletion of Klf5 results in the
morphological differentiation of ES cells, with a concomitant reduction in Oct3/4 and Nanog
mRNA levels. Interestingly, Klf4 or Klf2 mRNA levels are unchanged upon Klf5 depletion.
Overexpression of Klf5 prevents ES cell differentiation following removal of LIF, but the cells
retain expression of Oct3/4 and Nanog. Furthermore, Klf5 was shown to regulate transcription
of Oct3/4 and Nanog. Parisi et al. concluded that Klf5 is important for ES cell self-renewal
and cannot be completely substituted by either Klf4 or Kfl2 (327).

Ema et al. studied Klf5−/− ES cells and made similar observations (123). Klf5−/− embryos fail
to develop past E6.5 because of their failure to implant, which results from trophoectoderm
defects—this time frame is earlier than what had been reported previously (378). Klf5−/− ES
cells carried in culture exhibit expression of several differentiation marker genes and
spontaneously differentiated at a high frequency. Overexpression of Klf5 in ES cells, on the
other hand, decreases expression of differentiation markers and maintained pluripotency in the
absence of LIF. To investigate the redundancy of KLFs in ESC self-renewal, Ema et al.
examined whether Klf4 could rescue the differentiation defects observed in the Klf5−/− ES
cells. Overexpression of Klf4 maintains Klf5−/− ES cells in an undifferentiated state, but the
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cells proliferate more slowly. Klf4 and Klf5 therefore suppress differentiation, but have
opposing effects on proliferation (123).

A great deal of work remains to fully understand the molecular mechanisms of somatic
reprogramming. KLFs are clearly key factors in self-renewal and pluriopotency of ES cells,
but it will be important to determine the redundant and non-redundant features of individual
KLFs in promoting a self-renewing, pluripotent state. Additional work is also required to
elucidate the interactions between KLF proteins and other factors that control the stepwise
transition in gene expression from somatic cell to pluripotent cell.

Chapter V. Conclusion
Since the initial characterization of KLF1 over 15 years ago, a large body of knowledge has
been compiled regarding the biochemical and physiological functions of KLF family members.
Studies of KLF proteins in mouse model systems and human diseases have elucidated the
normal biological roles of the KLFs as well as their involvement in disease processes. However,
further studies are needed to identify factors that determine the specific functions of individual
KLFs, given the redundancy of family members and their common transcriptional targets. One
factor contributing to KLF specificity may be post-translational modifications of KLFs, such
as acetylation, sumoylation, and phosphorylation. These modifications have been shown to
“switch” the transactivating or repressor functions of KLFs by altering their binding partners
and changing affinities for target promoters. Structural analyses of KLF proteins will also help
elucidate their specific functions—especially studies of their diverse amino-terminal regions.
Finally, continued identification of novel KLF-binding proteins and co-factors in
transcriptional complexes will provide information about their specific actions.

In defining functional processes in which KLFs participate, mouse models with disruptions of
individual Klf genes are providing significant information about Klf expression patterns and
functions during embryonic development and cell-specific lineage differentiation. Analyses of
mice with tissue-specific deletion or inducible disruptions of Klfs are also helping to define
tissue-specific functions. Furthermore, treatment of Klf KO mice with various stressors is
yielding a more complete understanding of the participation of KLFs in stress responses.
Another model system, C. elegans, provides an elegant tool for studying the role of KLFs in
biological processes. KLF activity can be disrupted in C. elegans by expression of mutant
forms or through RNA interference. Thus, this organism has been used to explore the
participation of KLFs in fat storage and energy metabolism (42). The genetics of C. elegans
also makes this system useful for the investigation of conserved regulators and downstream
targets of KLF proteins.

Involvement of KLFs in the pathogenesis of cardiovascular disease and cancer have been
recognized for some time; however, new activities await discovery, such as the participation
of KLFs in regulating fat metabolism—currently an area of intense research. The participation
of KLFs in somatic cell reprogramming has also generated much excitement for their possible
application to regenerative medicine. Opportunities for development of targeted therapies will
arise as we continue to expand our understanding of the normal biological functions of KLFs
and their contribution to disease.
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Abbreviations

ALL Acute lymphoblastic leukemia

APC Adenomatous polyposis coli

ASM Airway smooth muscle

ATRA All-trans retinoic acid

AP-1 Activator protein-1

BCR B cell receptor

BMP Bone morphogenetic protein

BTEB Basic transcription element binding protein

CBP CREB-binding protein

CCL5 Chemokine C-C motif ligand 5

C/EBP CCAAT/enhancer-binding protein

CNS Central nervous system

CtBP C-terminal binding protein

CTGF Connective tissue growth factor

DBZ Dibenzazepine

DG Dentate gyrus

DSS Dextran sodium sulfate

EB Embryoid body

EGF Epidermal growth factor

EMT Epithelial mesenchymal transition

eNOS Endothelial nitric oxide synthase

ER Estrogen receptor

ERK Extracellular signal-regulated kinase

ES Embryonic stem

EZF Epithelial zinc finger

FAK Focal adhesion kinase

Fbw7 F-box and WD40 domain protein 7

FOXO1 Forkhead box O1

HAT Histone acetyltransferase

HDAC Histone deacetylase

hFOB Human fetal osteoblast

HSC Hepatic stellate cell

IEC6 Intestinal epithelial cell 6 (rat)

IFN-γ Interferon-γ

IL Interleukin

iNOS Inducible nitric-oxide synthase
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iPS Induced pluripotent stem

IVS Intervening sequence

KLF Krüppel-like factors

LAMA3A Laminin α3A

LCR Locus control region

LIF Leukemia inhibitory factor

LOH Loss of heterozygosity

LPA Lysophosphatidic acid

LPS Lipopolysaccharide

MAPK Mitogen-activated protein kinase

MEF Mouse embryonic fibroblast

MEF2 Myocyte enhancer factor 2

MEK MAPK/ERK kinase

MEP Megakaryocyte erythroid progenitor

MMP-9 Matrix metalloproteinase-9

OA Okadaic acid

ODC Ornithine decarboxylase

PAI-1 Plaminogen activator inhibitor-1

P/CAF p300/CBP-associated factor

PDGF Platelet-derived growth factor

PEPCK Phophoenolpyruvate carboxykinase

PI3K Phosphatidyloinositol-3-kinase

PIAS Protein inhibitor of activated STAT1

POVPC 1-Palmytoyl-2-(5-oxovaleroyl)-sn-glycero-3-phosphocholine

PPAR Peroxisome proliferation-activated receptors

RANTES Regulated upon activation, normal T cell expressed and secreted

RAR Retinoid acid receptor

RGC Retinal ganglion cell

RXR Retinoid X receptor

S1P1 S1P receptor

SBE Smad binding element

15S-HETE 15-Hydroxy-eicosatetraenoic acid

SNP Single-nucleotide polymorphism

SID Sin3-interacting domain

siRNA Small interfering RNA

α-SMA α-Smooth muscle actin
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SMC Smooth muscle cell

SMRT Silencing mediator of retinoid and thyroid receptor

SNP Single nucleotide polymorphism

SP Single-positive

SREBP Sterol response element binding protein

SUMO Small ubiquitin-like modifier

TCE TGF-β control element

TCF4 T cell factor 4

TIE TGF-β-inhibitory element

TGF-β Transforming growth factor-β

TNF-α Tumor necrosis factor α

Treg Regulatory T cells

VCAM-1 Vascular cell adhesion molecule-1

VEGF Vascular endothelial growth factor
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Figure 1. Phylogenetic tree of human KLFs
Multiple sequence alignment and phylogenetic analysis were performed using the ClustalW
tool, Version 2.0.12. Analysis was conducted on full-length protein sequences of the 17 human
KLF proteins. Structural analysis corresponded with the division of KLFs into distinct groups
that have functional similarities.
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Figure 2. Protein structure of human KLF family members
KLF proteins are grouped according to common structural and functional domains. KLFs are
highly homologous in their carboxyl-terminal DNA-binding regions, which contain three
C2H2 zinc finger motifs. The family members were grouped based on: (1) the ability to bind
acetylases (KLFs 1, 2, 4, 5, 6, and 7); (2) the presence of a CtBP-binding site (KLFs 3, 8, and
12); or (3) the presence of a Sin3A-binding site (KLFs 9, 10, 11, 13, 14, and 16). Established
sites of acetylation are marked by stars.
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Figure 3. Localization of Klf4 and Klf5 in the mouse colon
Immunofluorescence staining of Klf 4 or 5 (green) with the proliferation marker, Ki67 (red),
was conducted on mouse colon. Klf4 (green) is present in the nuclei of terminally differentiated
epithelial cells in the upper regions of colonic crypts. In contrast, Klf5 is localized to nuclei of
proliferating epithelial cells at the base of the crypts. Ki67 highlights regions of active
proliferation. Although Klf4 and Ki67 staining patterns do not overlap, Klf5 and Ki67 exhibit
considerable co-localization, indicated by yellow staining.
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Figure 4. Reduced mucosal hyperplasia in Klf5+/− mice following infection with the enteric
pathogen, Citrobacter rodentium
In these experiments, C57BL/6 (WT) and Klf5+/− mice were infected with the rodent-specific
pathogen, Citrobacter rodentium. Colonic tissues from uninfected and C. rodentium-infected
mice were isolated at 14 days post-infection (p.i.) and were subjected to histological staining
with hematoxylin and eosin (H&E) or immunofluorescence staining for expression of Klf5
(green) or the proliferation marker, Ki67 (red). Hyperplasia induced by infection was
significantly reduced in the Klf5+/− mice [from McConnell, et al. (273)].
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Figure 5. Contribution of KLFs in regulating adipocyte differentiation
Pre-adipocytes progress through an early stage of differentiation in which they become
committed to their fate, followed by a late stage of terminal differentiation into mature
adipocytes. Various members of the KLF family contribute to transcriptional control of this
process and have positive and negative effects on adipogenesis [Adapted from Nagai, Friedman
and Kasuga, Editors (294)].

McConnell and Yang Page 71

Physiol Rev. Author manuscript; available in PMC 2011 October 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 6. A model for the role of KLF4 in tumor suppression and oncogenesis
Following DNA damage, expression of KLF4 is activated in a p53-dependent manner.
Increased levels of KLF4 lead to increased expression of p21Cip1/Waf1 and decreased expression
of BAX, with the net effect being to tip the balance away from apoptosis towards cell cycle
arrest. However, in the presence of activated RAS or E1A, the growth inhibitory effects of
p21Cip1/Waf1 are negated by high levels of cyclin D1. The combination of high levels of KLF4
expression in the presence of oncogenic RAS or E1A lead to active proliferation and suppressed
apoptosis, which contribute to carcinogenesis. KLF6 likewise acts as a tumor suppressor
through induction of p21Cip1/Waf1. The growth-suppressing activity of KLF6 can be offset by
oncogenic RAS which induces alternative splicing of KLF6, generating a mutant form that
promotes cell proliferation and suppresses apoptosis [Adapted from Ghaleb, et al. (149)].
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Figure 7. Klf4 as part of a transcriptional regulatory circuit for somatic cell reprogramming
A model of the transcriptional hierarchy of the reprogramming transcription factors: Klf4,
Sox2, Oct4, c-Myc. Klf4 is shown as an upstream regulator of feed-forward transcription loops
—it binds the promoters of Oct4, Sox2, c-Myc and the downstream target Nanog. Klfs 2 and
5 can substitute for Klf4 in somatic cell reprogramming [Adapted from Kim, et al. (217)].
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