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Context—Echocardiographic measures of left ventricular (LV) structure and function are
heritable phenotypes of cardiovascular disease.

Objective—To identify common genetic variants associated with cardiac structure and function
by conducting a meta-analysis of genome-wide association data in 5 population-based cohort
studies (stage 1) with replication (stage 2) in 2 other community-based samples.

Design, Setting, and Participants—Within each of 5 community-based cohorts comprising
the EchoGen consortium (stage 1; n=12 612 individuals of European ancestry; 55% women, aged
26–95 years; examinations between 1978–2008), we estimated the association between
approximately 2.5 million single-nucleotide polymorphisms (SNPs; imputed to the HapMap CEU
panel) and echocardiographic traits. In stage 2, SNPs significantly associated with traits in stage 1
were tested for association in 2 other cohorts (n=4094 people of European ancestry). Using a
prespecified P value threshold of 5×10−7 to indicate genome-wide significance, we performed an
inverse variance-weighted fixed-effects meta-analysis of genome-wide association data from each
cohort.

Main Outcome Measures—Echocardiographic traits: LV mass, internal dimensions, wall
thickness, systolic dysfunction, aortic root, and left atrial size.

Results—In stage 1, 16 genetic loci were associated with 5 echocardiographic traits: 1 each with
LV internal dimensions and systolic dysfunction, 3 each with LV mass and wall thickness, and 8
with aortic root size. In stage 2, 5 loci replicated (6q22 locus associated with LV diastolic
dimensions, explaining <1% of trait variance; 5q23, 12p12, 12q14, and 17p13 associated with
aortic root size, explaining 1%-3% of trait variance).

Conclusions—We identified 5 genetic loci harboring common variants that were associated
with variation in LV diastolic dimensions and aortic root size, but such findings explained a very
small proportion of variance. Further studies are required to replicate these findings, identify the
causal variants at or near these loci, characterize their functional significance, and determine
whether they are related to overt cardiovascular disease.

Alterations in cardiac structure and function adversely affect the prognosis of individuals in
the general population. In community-based cohorts, the presence of left ventricular (LV)
hypertrophy and increased LV mass predict the development of coronary heart disease,1,2

congestive heart failure (CHF),2 stroke,2,3 cardiovascular disease (CVD), and all-cause
mortality.2,4 Likewise, increased LV wall thickness predicts CVD events,5 LV dilation
predicts CHF,6 and asymptomatic LV systolic dysfunction predicts CHF and death.7 Left
atrial size is related to incidence of atrial fibrillation,5 stroke, and death.8 Aortic root size is
associated with risk of CHF, stroke, and mortality.9 Thus, traits obtained from
echocardiography serve not only as measures of cardiac structure and function but also as
intermediate phenotypes for clinical CVD outcomes.

These echocardiographic phenotypes are heritable10–18 and have been linked to genetic loci.
19–21 Candidate gene studies have identified several single-nucleotide polymorphisms
(SNPs) in genes such as ACE (GenBank J04144),22–24 PPARA (GenBank L02932),25

GNB3 (RefSeq NM_002075),26 and CYP11B2(GenBank X54741)27 that may contribute to
variability in LV mass. However, many of the studies suggesting specific genetic
associations were small, based on selected samples, failed to adjust for key confounders and
were not replicated.28–32

Genome-wide association analyses have led to the discovery of previously unsuspected
common variants underlying risk for complex diseases unconstrained by prior knowledge.33

The present investigation uses a 2-stage approach and leverages the availability of whole
genome scans in 5 community-based samples to perform a prospective combined meta-
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analysis of findings from these studies to identify genomic variation associated with
echocardiographic traits (stage 1), followed by replication in 2 other population-based
samples (stage 2).

METHODS
EchoGen Consortium Organization

The EchoGen consortium includes 7 cohort studies that enrolled participants of European
ancestry and had both genome-wide variation data and echocardiographic measurements
(see below for details of the cohorts); 3 of these cohorts (Cardiovascular Health Study,
Rotterdam Study, and Framing-ham Heart Study) are part of the Cohorts for Heart and
Aging Research in Genomic Epidemiology (CHARGE) consortium.34 All participating
studies approved guidelines for collaboration and arrived at a consensus not only on
phenotype definitions including harmonization, covariate selection, and analytic plans for
within-study analyses but also on a prospective meta-analysis of results. The institutional
review boards at the parent institutions for each cohort study approved the informed consent
procedures, examination and surveillance components (including DNA collection), the data
access and security processes, genotyping protocols, and the genome-wide association
design. All participants provided written informed consent and gave permission to have their
DNA used for research purposes.

Five studies contributed genome-wide association data to the discovery (stage 1) phase, and
2 studies contributed data to the replication (stage 2) phase. A description of these samples
follows.

Stage 1 Cohorts
Cardiovascular Health Study—The Cardiovascular Health Study is a population-based
cohort study of risk factors for coronary heart disease and stroke in adults aged 65 years or
older conducted at 4 field centers.35 The original cohort of 5201 persons of primarily
European ancestry was recruited in 1989–1990 from random samples of the Medicare
eligibility lists and an additional 687 individuals of African ancestry were enrolled
subsequently for a total sample of 5888. Those with prevalent coronary heart disease
(n=1195), CHF (n=86), peripheral vascular disease (n=93), valvular heart disease (n=20),
stroke (n=166), or transient ischemic attack (n=56) at baseline were excluded from the
genome-wide associations. Because the other cohorts were predominantly of European
descent, the African American participants were excluded from this analysis. Participants
were eligible for the present investigation if their genotyping was complete and they had
available echocardiographic phenotype information at their first (1989–1990) or second
(1994–1995) examinations (n=3279).

Rotterdam Study—The community-based Rotterdam Study was founded in 1990 to
examine the determinants of disease and health in the elderly with a focus on neurogeriatric,
cardiovascular, bone, and eye diseases.36 Inhabitants of a suburb of Rotterdam, the
Netherlands (n=7983), aged 55 years or older were included. Participants were visited at
home for a standardized questionnaire and were subsequently examined at the research
center in 1990–1993 and every 3 to 4 years thereafter. For the present investigation, data
from the fourth round of examination (2002–2004) were used. Of 3550 eligible participants,
2199 were free of myocardial infarction (MI) and CHF and had both echocardiographic and
genome-wide association data available.

Multinational Monitoring of Trends and Determinants in Cardiovascular
Disease Study—In 1984, the World Health Organization instituted a Multinational
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Monitoring of Trends and Determinants in Cardiovascular Disease (MONICA) study, which
was continued since 1996 in the Southern German region of the Augsburg (KORA).37 The
MONICA-KORA study investigated the CVD risk factor profile of randomly selected
individuals of the Augsburg population (Bavaria, Germany) in cross-sectional surveys. The
study design, sampling frame, and data collection have been described elsewhere.37 A total
of 4856 men and women participated in the study, of which only 2376 participants residing
within or close to the city of Augsburg were offered an echocardiographic examination for
logistical reasons. Participants (n=3006) had a follow-up examination (KORA F3) in 2004–
2005, of whom 1644 participants between 35 and 79 years of age had genome-wide
associations conducted.38 Of these, 589 had available echocardiograms and were free of
prevalent MI and CHF.

Framingham Heart Study—The Framingham Heart Study is a longitudinal
observational, community-based cohort initiated in 1948 in Framingham, Massachusetts, to
prospectively investigate CVD and its risk factors. The children (and spouses of the
children) of the original cohort, labeled the Offspring cohort, were recruited in 1971, and
have been examined approximately every 4 years since.39 At each clinic examination,
participants receive routine questionnaires, a physical examination, anthropometry,
electrocardiograms, and blood tests. At the second (1978–1982), fourth (1987–1990), fifth
(1991–1995), and sixth (1996–1998) examination cycles participants underwent
transthoracic echocardiography (see supplementary material at http://www.jama.com). The
offspring cohort participants with available echocardiographic information at any of these 4
examinations and who were free of MI and CHF at these examinations (n=3245) were
eligible for the present investigation.

Gutenberg Heart Study—The Gutenberg Heart Study was initiated in 2006 to achieve a
contemporary German sex-specific cardiovascular risk score. It is a community-based,
prospective cohort study including approximately 17 000 participants, aged 35 to 74 years
from the city of Mainz and the district Mainz-Bingen. The sample is stratified according to
sex (50% women) and decade of age. A large variety of noninvasive cardiovascular
phenotypes have been assessed including 2-dimensional echocardiography. By September
2008, 5000 individuals have been enrolled; 3300 study participants with genome-wide
association data and echocardiographic measurements and who were free of prevalent MI
and CHF were eligible for the present investigation.

Stage 2 Cohorts
Study of Health in Pomerania—The Study of Health in Pomerania (SHIP) is a
longitudinal population-based cohort study conducted in West Pomerania, the northeast area
of Germany.40 For the baseline examinations, a sample of 6267 eligible persons aged 20 to
79 years was drawn from population registries. Only individuals with German citizenship
and main residency in the study area were included. Selected persons received a maximum
of 3 written invitations. In case of nonresponse, letters were followed by a telephone call or
by home visits if contact by telephone was not possible. The SHIP population finally
comprised 4310 participants (response, 68.8%). Baseline examinations were conducted
between 1997 and 2001. Between 2002 and 2006 all participants were re-invited for an
examination follow-up, in which 3300 participants (83.5% of eligible persons) took part.
Echocardiography at baseline was conducted only in those 45 years or older but had no age
restriction at follow-up. A total of 3212 individuals who were free of prevalent MI and CHF
were eligible for the present study.

Austrian Stroke Prevention Study—The Austrian Stroke Prevention Study is a
community-based prospective cohort study on the cerebral effects of vascular risk factors in
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the normal elderly population of the city of Graz, Austria.41 From 1991–1994, 509 persons
without neuropsychiatric disease were randomly selected from the official community
register (stratified by sex and 5-year age groups) to undergo neuroimaging, cognitive testing,
and echocardiography. In 1999–2003, an additional 567 individuals were randomly selected
to undergo the same imaging procedures, thereby increasing the size of the baseline cohort
to 1076 individuals aged 45 to 85 years. Blood was drawn from all study participants for
DNA extraction and all consented to genetic testing. Of the 996 study participants from
whom DNA was extracted, 908 underwent transthoracic echocardiography. We excluded 26
individuals because of prevalent MI or CHF, leaving 882 eligible for the present analysis.

Echocardiographic Methods
In each cohort, participants underwent routine transthoracic echocardiography at selected
examinations (1 each for the Rotterdam and Gutenberg studies; 2 for the Cardiovascular
Health Study, MONICA-KORA, SHIP, and Austrian Stroke Prevention Study, and 4 for the
Framingham Heart Study; data from all available echocardiographic examinations of each
cohort [including the most recent ones] were included). Measurements of LV internal
dimension, the thicknesses of the posterior wall and interventricular septum, and the
diameter of the aortic root (all measured at end-diastole) and the left atrium at end-systole
were obtained by using a leading edge technique and averaging measurements in 3 cardiac
cycles according to the American Society of Echocardiography guidelines.42 Left
ventricular wall thickness was calculated as the sum of posterior wall and interventricular
septum measurements. The LV mass was calculated by using the formula 0.8 [1.04{(LV
diastolic internal dimension + interventricular septum + posterior wall)3 −(LV diastolic
internal dimension)3}] + 0.6.43 The LV systolic dysfunction was defined as the presence of
reduced fractional shortening (<0.29, which corresponds to an ejection fraction of 50%) on
M-mode or a diminished ejection fraction (<50%) on 2-dimensional echocardiography.44

Details of ultrasonographic instrumentation are provided in the “Echocardiographic
Methods” section and in eTable 1 of the supplementary material (available at
http://www.jama.com). The present investigation focused on 6 echocardiographic traits: LV
mass, LV diastolic internal dimension, LV wall thickness, aortic root, and left atrial size
(continuous traits), and LV systolic dysfunction (a binary trait). For cohorts with multiple
echocardiographic examinations, we used the average of all available measurements
obtained at the eligible examinations for our analyses.

Genotyping Methods and Imputation
The 7 studies included in this meta-analysis used different genotyping platforms: the
Illumina Human CNV370-Duo for the Cardiovascular Health Study, the Illumina Infinium
Human Hap 550-chip v3.0 for the Rotterdam Study, Illumina Human610-Quad Bead Chip
for the Austrian Stroke Prevention Study, Affymetrix Human Mapping 500K Array Set for
MONICA-KORA, Affymetrix Human Mapping 500K Array Set and 50K Human Gene
Focused Panel for the Framingham Heart Study, and the Affymetrix Human SNP Array 6.0
for the Gutenberg Study and SHIP. Therefore, to facilitate meta-analyses, all studies used
their genotype data to impute to the 2.5 million nonmonomorphic, autosomal, SNPs
described in HapMap (CEU population, release 22, build 36; http://hapmap.org).45,46

Imputation of unmeasured genotypes in order to combine results data across genotyping
platforms is an essential and accepted tool in the conduct of genome-wide association
studies.34 Stated simply, the application of imputation techniques on each specific
genotyping platform allowed us to estimate the association of all 2.5 million polymorphic
HapMap SNPs in each study. The Cardiovascular Health Study used the BIMBAM
algorithm software for imputation (available at
http://stephenslab.uchicago.edu/software.html),47 whereas the Rotterdam, Framingham,
Gutenberg, Austrian Stroke and Prevention, and MONICA-KORA studies used the MACH
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algorithm software (http://www.sph.umich.edu/csg/abecasis/MaCH). SHIP used the
IMPUTE algorithm software
(http://www.stats.ox.ac.uk/~marchini/software/gwas/impute.html). All studies imputed the
genotype dosage, from 0 to 2, which is the expected number of minor alleles. Extensive
quality control analyses were performed in each cohort. Imputation methods and quality
control filters are described in the “Genotyping Methods” section of the supplementary
material (available at http://www.jama.com).

Statistical Methods
We chose a 2-stage design with a larger stage 1 (followed by joint analysis) to combine
statistical efficiency with power for detecting variants with modest effects.48 For stage 1,
separate within-cohort analyses (n=5 cohorts) were performed for each echocardiographic
trait using an additive genetic model relating the trait to genotype dosage (0–2 copies of the
minor allele) for each SNP, adjusting for age, sex, height, and weight. The Cardiovascular
Health Study additionally adjusted for study site. For continuous phenotypes, linear
regression was used. For LV systolic dysfunction, we used a log-additive model in
unconditional logistic regression to compare those with and without the condition. In the
Framingham Heart Study alone, we used mixed-effects models (linear or logistic depending
on trait) to account for familial correlations. The association of each echocardiographic trait
to each genotype was quantified by the regression slope (β), its standard error [SE(β)], and P
value. Genomic control correction was applied in each study prior to the meta-analysis.49

After verifying strand alignment across studies, we conducted a prospective meta-analysis of
results from within-cohort analysis (n=5 cohorts) for each echocardiographic trait. We
combined the results from individual studies with inverse-variance weighting for each SNP
using the R software (http://www.r-project.org). The approach did not pool raw participant-
specific data, which could induce problems associated with phenotypic heterogeneity or
population structure/admixture; hence, the approach is robust. We selected an a priori
genome-wide statistical significance threshold of 5×10−7, the threshold used by the
Wellcome Trust Case-control Consortium.50 For 2.5 million tests, this threshold provides an
expectation of less than 1.25 false-positive results across the genome. Post–meta-analytic
filters were an average weighted minor allele frequency of more than 0.005 for continuous
traits and more than 0.03 for the binary trait of LV systolic dysfunction.

For stage 2, we selected the top SNP at each genetic locus that was associated with an
echocardiographic trait and achieved genome-wide significance in stage 1 (as defined
above); a locus was defined as a set of HapMap SNPs associated with the most significantly
associated SNP with an R2 of 0.5 or greater. We related the top SNPs to corresponding
echocardiographic traits in the 2 replication samples. To be considered replication, we
required that the direction of the β (for a SNP) must be in the same direction in the
replication study as in the discovery analysis. Using a 1-sided P value is therefore necessary
in order for the P value distribution to be correct under the null hypothesis. Accordingly, we
only calculated replication P values for SNPs with βs in the appropriate direction and
defined statistical significance based on a 1-sided P value less than .05 (uncorrected). We
queried HapMap for evaluating if any of the replicated SNPs at a locus was correlated with a
nonsynonymous SNP (R2>0.5). We estimated that our stage 2 sample size of 4094
individuals yielded more than 80% power to detect associations of a magnitude similar to
that observed in stage 1 for each trait at a 1-sided α of .05 (eTable 2 available at
http://www.jama.com).
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RESULTS
Table 1 displays the clinical and echocardiographic characteristics of the 7 samples
contributing to the 2 stages of the present investigation. The genomic inflation factor (λ)
was small in each of the 5 studies contributing to stage 1 (<1.09 for all traits in all cohorts).
The quantile-quantile (Q-Q) plots of observed against expected P value distributions are
shown in eFigure 1 (available at http//:www.jama.com [panels A-F]) and the meta-analytic
λ for all traits was 1.02 or less. The Q-Q plots show a marked excess of statistically
significant associations over that expected by chance alone for LV diastolic dimensions and
aortic root size (eFigure 1, panels B and E, respectively).

SNPs Related to Echocardiographic Traits Meeting Threshold for Genome-wide
Significance in Stage 1

Figure 1 illustrates the primary findings from the stage 1 meta-analysis and displays the
genome-wide P values for interrogated SNPs across the 22 autosomal chromosomes
separately for each of the 6 echocardiographic traits. Table 2 lists the 16 genetic loci (and
the SNP with the lowest P value at each locus) associated with echocardiographic traits that
were marked by 1 or more SNPs with P<5×10−7, the prespecified genome-wide significance
threshold: 3 loci each for LV mass and LV wall thickness, 1 locus each for LV diastolic
internal dimension and LV systolic dysfunction, and 8 loci for aortic root diameter. There
are 18 SNPs representing the 16 loci because 2 LV diastolic internal dimensions SNPs are
correlated, as are 2 SNPs on chromosome 17 that are related to aortic root size (R2≥0.5). No
SNP was associated with left atrial size at the genome-wide significance threshold. The
section “Loci Associated With Echocardiographic Traits in Stage 1” of the supplementary
material provides a description of these genetic loci and eTable 3 amplifies the details of the
SNPs listed in Table 2 with regard to their imputation status and the quality of imputation.
We provide in eTables 4 through 9 a list of all SNPs associated with each of the
echocardiographic traits at a meta-analytic P<1×10−5 level. (All supplemental material is
available at http://www.jama.com.)

SNPs Related to Echocardiographic Traits in Stage 2 (Replication)
Table 2 shows the association and 1-sided P value for each stage 1 locus in the stage 2
replication samples. Seven of the 17 SNPs (representing 15 loci; 1 LV mass SNP was not
subjected to replication, given very low minor allele frequency) tested in Table 2 replicated,
including 2 for LV diastolic dimensions, and 5 for aortic root dimensions. Five of these 7
replicated SNPs were genotyped in at least 1 of the replication cohorts (eTable 3 available at
http://www.jama.com).

The replicated SNPs explained only a modest proportion in the variance of LV diastolic
dimensions (increments in R2 attributable to SNPs were 0.0 in the Rotterdam Study, 0.002
in the Cardiovascular Health Study, 0.004 in the Gutenberg Heart Study, and 0.005 in
KORA and the Framingham Heart Study) and aortic root size (increments in R2 attributable
to SNPs were 0.01 in the Cardiovascular Health Study and KORA, 0.02 in the Rotterdam
Study, and 0.03 in the Framingham Heart Study; eTable 10 available at
http://www.jama.com). Figure 2 displays the stage 1 forest plots for each of these 7 SNPs.
eFigure 2 (Panels A–B, available at http://www.jama.com) shows the regional plots for the
associations centered on these 7 SNPs.

Table 2 also displays the P values for combined meta-analysis of the 17 SNPs in stages 1
and 2.
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COMMENT
We identified novel findings for 5 genetic loci that are associated with LV structure (1
locus) and aortic root diameter (4 loci). The effect sizes for the observed associations were
generally very modest, and the proportion of variance explained was 1% to 3% for aortic
root size, and 0.2% to 0.5% for LV diastolic dimensions. However, since the causal variants
have not been identified, our investigation may underestimate the proportion of variance
explained by these loci. Four of the replicated SNPs (2 each that were associated with LV
diastolic dimensions and aortic root size) were within genes.

Novel Loci Associated With LV Structure and F unction
Left ventricular diastolic dimension was associated with 2 SNPs presumably marking the
same 6q22 locus and that included the SLC35F1 (Gen-Bank BC028615) and C6orf204
(GenBank AF308284) genes. SLC35F1 codes a membrane protein that belongs to the solute
transporter family. Its role in cardiac physiology is unknown, although the protein is
expressed in cardiac tissue. Some of the associated SNPs at the 6q22 locus are in C6orf204,
which is expressed in cardiac tissue and encodes a protein (coiled-coil domain containing
protein C6orf204) whose function is unclear. One of the top SNPs in this gene
(rs11968176), is about 100 kb from PLN (RefSeq NM_002667, which encodes
phospholamban, a protein that inhibits cardiac muscle sarcoplasmic reticulum Ca2+-ATPase
and regulates diastolic function.51 Mutations in PLN have been implicated in the
pathogenesis of dilated cardiomyopathy.52

Novel Loci Associated With Aortic Root Diameter
Aortic root size was associated with 5 SNPs presumably representing 4 genetic loci. The
SNP at 17p13, rs10852932, is in the gene SMG6 ([GenBank AB018275] Smg-6 homologue,
nonsense mediated mRNA decay factor). SMG6 is expressed in aortic tissue and encodes a
component of the telomerase ribonucleoprotein (RNP) complex that is essential for the
replication of chromosome termini.53 This protein may have a general role in telomere
regulation, including promoting the ability of telomerase reverse transcriptase to elongate
telomeres.53 Of note, telomerase activity is up-regulated in the aorta of spontaneous
hypertensive rats, and down-regulation of telomerase activity is associated with arrest of the
proliferation of vascular smooth muscle cells and induction of apoptosis.54 Thus, regulation
of telomerase activity may play a critical role in vascular remodeling in hypertension.

Aortic root diameter was also associated with SNPs at 3 genetic loci that were intergenic,
located at variable distances from CCDC100 ([GenBank AK095646] centrosomal protein
120kDa [also referred to as CEP120]; 149 kb), HMGA2 ([GenBankU28754] high mobility
group AT-hook 2; 35 kb), and PDE3A ([Ref-Seq NM_000921] phosphodiesterase 3A,
cGMP-inhibited; 291 kb), all 3 genes are expressed in aortic tissue. CCDC100 encodes a
centrosomal protein that has a role in development of the neocortex55; its function in cardiac
or vascular tissue remains unclear. HMGA2 encodes a protein with structural DNA-binding
domains that acts as a transcriptional regulating factor. It is expressed largely during
embryogenesis and has been linked to vascular tumors including angiomyxomas and
pulmonary hamartomas.56 The gene has also been related to adult stature,57 which could be
another potential basis for its association with aortic diameter. A mutation in the gene results
in the “pygmy” mouse,58 suggesting that the gene may have a vital role in growth and
development and body size; our data raise the possibility that variation in the gene may be
associated with the size of the aorta. PDE3A is expressed in aortic smooth muscle cells, and
alterations in activity levels have been associated with phenotypic alterations of the smooth
muscle cells in experimental animals.59 It is unclear, however, how such altered activity
may contribute to variation in aortic root size in humans.
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Strengths and Limitations
The large community-based studies, the common method of M-mode echocardiography; and
the implementation of quality control procedures in individual imaging laboratories in each
study cohort (see “Echocardiographic Methods” section, available at http://www.jama.com)
and the harmonization of imputation strategies and analytical methods into a prospective
meta-analysis strengthen the present investigation (eTable 3 provides the details regarding
the imputation status of these SNPs).

Several limitations of our investigation merit comment. First, phenotypic and study design
heterogeneity diminished statistical power to detect modest genetic effects in genome-wide
association. Measurement errors would bias the estimates toward the null hypothesis of no
association of SNPs. In this context, it should be noted that M-mode measurements of the
aortic root may be less accurate and can result in underestimation of aortic diameter
(compared with 2-dimensional images). Furthermore, our approach has limited statistical
power to evaluate associations of traits with rare SNPs or with poorly imputed SNPs. We
evaluated additive models using pooled sex analyses; additional investigations are required
to detect sex-specific associations and nonadditive genetic effects. Also, we acknowledge
that genome-wide association data may establish significant genomic regions without
identifying the mechanisms of association or establishing causality. The cohorts studied
were all of European descent, limiting the generalizability of our findings to individuals of
non-European ancestry.

CONCLUSIONS
Our prospective meta-analysis of echocardiographic data from more than 12 000 participants
in 5 community-based cohorts with replication in more than 4000 people from 2 other
cohorts identified 5 genetic loci that are associated with interindividual variation in cardiac
dimensions and aortic root size. These findings are novel, but the loci explained a very small
proportion of the variance of the traits. Additional investigations are required to replicate our
findings, to identify the underlying causal variants and characterize their functional
importance, to understand the biological mechanisms underlying the observed associations,
and to determine whether they are related to overt cardiovascular disease.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Genome-wide Signal Intensity Plots
The plots show the single-nucleotide polymorphism–wise log P values (based on the fixed-
effects meta-analysis) against their genomic position for left ventricular mass, internal
dimensions, wall thickness, and systolic dysfunction and for the aortic root diameter and left
atrial size. Within each chromosome, shown on the x-axis, the results are plotted from the p-
terminal end. The horizontal dotted lines indicate the significance threshold of P=5×10−7.
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Figure 2. Seven Single-Nucleotide Polymorphisms Associated With Select Echocardiographic
Traits in Stage 1 and Replicated in Stage 2
Individual studies are plotted against the individual effect sizes (β coefficients for
continuous traits). The size of the box is inversely proportional to the estimated variance of
the effect-size estimator. Horizontal lines are the confidence intervals corresponding to the P
value threshold of 5×10−7. The vertical line indicates the value is consistent with no
association. If a single-nucleotide polymorphism was not available in a study, there is no
data point for that study. The diamond represents the meta-analytic effect size.
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