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Abstract
The interactions between cancer cells and their micro- and macroenvironment create a context that
promotes tumour growth and protects it from immune attack. The functional association of cancer
cells with their surrounding tissues forms a new ‘organ’ that changes as malignancy progresses.
Investigation of this process might provide new insights into the mechanisms of tumorigenesis and
could also lead to new therapeutic targets.

Under normal conditions, ORGANS are made up of TISSUES that exchange information with
other cell types via cell–cell contact, cytokines and the EXTRACELLULAR MATRIX (ECM).
The ECM, which is produced by collaboration between STROMAL fibroblasts and
EPITHELIAL cells, provides structural scaffolding for cells, as well as contextual information.
The endothelial vasculature provides nutrients and oxygen, and cells of the immune system
combat pathogens and remove apoptotic cells. Epithelial cells associate into intact, polarized
sheets. These tissues communicate through a complex network of interactions: physically,
through direct contact or through the intervening ECM, and biochemically, through both
soluble and insoluble signalling molecules. In combination, these interactions provide the
information that is necessary to maintain cellular differentiation and to create complex tissue
structures.

Occasionally, the intercellular signals that define the normal context become disrupted.
Alterations in epithelial tissues can lead to movement of epithelial sheets and proliferation —
for example, after activation of mesenchymal fibroblasts due to wounding. Normally, these
conditions are temporary and reversible, but when inflammation is sustained, an escalating
feedback loop ensues. Under persistent inflammatory conditions, continual upregulation of
enzymes such as matrix metalloproteinases (MMPs) by stromal fibroblasts can disrupt the
ECM, and invading immune cells can overproduce factors that promote abnormal proliferation.

As this process progresses, the normal organization of the organ is replaced by a functional
disorder (FIG. 1). If there are pre-existing epithelial cells within this changing context that
possess tumorigenic potential, they can start to proliferate. Alternatively, the abnormal
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interactions might lead to genomic instability within the epithelial cells and the acquisition of
tumorigenic potential. The proliferating cancer cells can then interact with their
microenvironment and enhance the abnormal interactions. At this point, the tumour has become
its own organ, with a distinct context that now defines all its cellular responses. Here, we will
examine how the mechanisms that contribute to the normal context also act to suppress
developing tumours, how disruption of this context initiates and supports the process of
tumorigenicity, and how some cells with a tumorigenic genotype can become phenotypically
normal if the context is appropriately manipulated.

An innate anticancer mechanism
An important feature of the normal stromal context is the generation and maintenance of
epithelial-cell polarity. Epithelial cells receive a variety of orientational cues from the
environment that help them establish cellular apical and basal surfaces and to maintain the
differentiated state. Loss of polarity has been shown to lead to increased cell proliferation and
tumorigenesis (BOX 1). The basal surface of epithelial cells associates with the BASEMENT
MEMBRANE, a specialized form of ECM that provides both structural support and
polarization signals to epithelia. The basement membrane is a dynamic structure. Changes in
its composition lead to changes in cell shape and behaviour1, altered binding affinity or cellular
distribution of cell-surface receptors2, and cellular responses to soluble molecules3. Depending
on the composition and physical characteristics of the basement membrane, different soluble
factors can have completely different cellular effects, such as inducing cell proliferation,
growth arrest, differentiation or apoptosis4.

Box 1

Epithelial cell polarity and tumorigenesis in Drosophila

Loss of apicobasal polarity in carcinomas has often been viewed as a secondary consequence
of oncogenic transformation134, but recent investigations of Drosophila mutants have
shown that loss of polarity determinants can directly lead to increased proliferation and
development of tumours. In a genetic screen for mutations that cause aberrant epithelial
structures, Bilder, Li and Perrimon135 identified scribble (Scrib) as a gene that is required
for proper localization of apical proteins and the components of the adherens junctions.
Absence of Scrib is associated with the loss of epithelial polarity and neoplastic
transformation, a phenotype previously observed in two other Drosophila mutants: discs
large (Dlg) and lethal giant larvae (Lgl); subsequent investigations showed that all three
proteins act in the same pathway136. Although many details are not yet resolved, Scrib and
Dlg seem to colocalize at the septate junction, a structure similar to the mammalian tight
junction, where they direct the polarized sorting of a specific population of Lgl-containing
vesicles. It is loss of this directional-sorting mechanism that suppresses normal growth-
control mechanisms.

Two mechanisms have been proposed to account for the increased proliferation. First, it is
possible that misdirection of cell-surface signal receptors could lead to inappropriate
receptor synergy; in this regard, it is noteworthy that ERBIN, a mammalian protein with
homology to Scrib, has been shown to interact with the epidermal growth factor receptor
(EGFR) family member ERBB2 (HER2)137. Alternatively, mislocalization of the
components of the adherens junctions might release contact inhibition, leading to
hyperproliferation. At present, these mechanisms cannot be distinguished, and it is possible
that both contribute to neoplastic transformation. Further investigations of molecules that
maintain the tissue-specific functions of polarized epithelia will doubtless reveal more about
their complex relationship with tumorigenesis.
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Epithelial cells maintain physical contact with their neighbours through a combination of
ADHERENS JUNCTIONS, GAP JUNCTIONS, TIGHT JUNCTIONS and DESMOSOMES
(FIG. 2). Of these, adherens junctions have been a particular focus of studies into the signals
that generate epithelial-cell polarity, but more recent investigations have revealed mechanisms
by which gap junctions, tight junctions and desmosomes also contribute to the formation of
polarized epithelial tissues5–8.

Adherens junctions are contacts between adjacent epithelial cells and are anchored to the
cytoskeleton. Cadherins (such as E-CADHERIN) traverse the membrane, associating with
cadherins on adjacent cells in a calcium-dependent manner. On the cytoplasmic face, β-catenin
connects to the cadherin tail and associates with α-catenin, which in turn binds to actin. Loss
or alteration of these components leads to premalignant phenotypes and even
tumorigenesis9–11. Of these components, E-cadherin has been a particular target of study, as
this molecule is lost in many types of tumour9, and its restoration can suppress cellular
transformation. Decreased E-cadherin function is a component of EPITHELIAL–
MESENCHYMAL TRANSITION, invasive tumour growth and metastasis11–13. Loss of E-
cadherin can be accompanied by increased expression of alternate cadherin isoforms that
promote inappropriate survival signals and enhance the malignant phenotype14. However, as
all cellular responses are tissue- and context-dependent, there can be no universal
generalizations, as shown by the fact that E-cadherin gain of function is an early step in ovarian
carcinoma15.

Gap junctions are channel-forming complexes that allow passive diffusion of small signalling
molecules between neighbouring cells5. The particular composition of CONNEXIN subunits
within a gap junction determines the type of molecule that can be transported16. Much remains
to be learned about how the specific combination of connexins facilitates tissue interactions,
but it is clear, again, that generalizations should be avoided, as the expression patterns (and
probably the function) of connexins are tissue dependent and change during tumour
progression17,18. For example, some breast cancer cells upregulate connexin 32 (Cx32)19, but
loss of Cx32 contributes to hepatocellular carcinoma20,21; Cx43 inhibits tumorigenicity of
lung, cervical and bladder carcinoma cells22–24, but has no effect on squamous cell
carcinomas25; and other connexins can facilitate cell adhesion during metastasis26.

Changing interactions between adjacent tissues might also affect tumour development (FIG.
3). For example, in the normal human mammary gland (FIG. 1), the ductallobular system is
composed of an inner layer of luminal epithelial cells, which line the duct and produce milk
during lactation, and an outer layer of myoepithelial cells, which express a number of proteases
during tissue remodelling to pave the way for emerging ductules. This double-layered structure
is separated from the INTERSTITIAL MATRIX by an intact basement membrane27. Breast
cancer arises mainly in the luminal epithelial compartment, but myoepithelial cells also express
molecules that have been shown to suppress transformation of luminal epithelial cells in vivo
27 (TABLE 1). These proteins have been named ‘class II tumour suppressors’28 and production
of these proteins allows myoepithelial cells to act as tumour suppressors in the breast27,29.

In combination, these mechanisms create a dynamic equilibrium that helps cells to maintain a
normal, differentiated phenotype. This equilibrium might attenuate the consequences of
genetic mutations, as consideration of the frequency of spontaneous mutations indicates that
many epithelial cells should possess oncogene-activating mutations, yet cells continue to
function normally30,31. Analyses of normal epithelial tissue adjacent to tumours have shown
that similar patterns of mutations can be found in both, indicating that malignant cells can exist
within normal tissues but be restrained by normal contextual cues32–34.
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Activated stroma as a carcinogen
Whereas normal stroma can delay or prevent tumorigenesis, abnormal stromal components
can promote tumour growth (FIG 4). Acquired or inherited mutations that alter stromal-cell
function can release the suppression placed on context-inhibited malignant cells. Literature
that spans more than a century has shown that inflammation associated with tissue wounding
can produce tumours (REFS 35–38 and references therein) (BOX 2). . Barcellos-Hoff and
colleagues39 have shown that irradiation of the mammarygland stromal component promotes
the tumorigenic potential of non-irradiated epithelial cells. These investigators had previously
shown that even low levels of irradiation lead to remodelling of the ECM in breast tissue and
activation of latent transforming growth factor-β (TGF-β), which affects tissue and organ
function40. Moinfar et al.41 examined genetic alterations in tumour-associated stroma from
several independent cases of mammary carcinoma, and found chromosomal rearrangements
that were not present in the malignant carcinoma cells. These results indicate that characteristic
mutations that affect stromal cells might have contributed to the formation of the epithelial
tumours. Moreover, studies of a subset of inherited cancer-susceptibility syndromes42,43 also
indicate that alterations in stromal cells can contribute to tumorigenesis. So, aberrations in
stroma can both precede and stimulate the development of epithelial cancers44,45.

Box 2

Comparison between wound healing and tumour development

Wound healing and tumour development are dynamic, progressive processes that involve
the interaction of several tissue types138, and comparison of the two reveals many
mechanistic similarities. a | Immediate reaction to wounding. Tissue injury leads to
activation of platelets that form a haemostatic plug and also release vasoactive mediators
to increase vascular permeability and to enable the influx of serum fibrinogen to generate
the fibrin clot. Platelets produce chemotactic factors, including transforming growth factor-
β (TGF-β) and platelet-derived growth factor (PDGF). These factors initiate the formation
of granulation tissue by activating fibroblasts to produce matrix metalloproteinases (MMPs)
and a number of growth factors, such as fibroblast growth factor-2 (FGF-2). These factors
degrade dermal extracellular matrix, stimulate infiltration of macrophages and promote the
development of new blood vessels. These interactions are potentiated by reciprocal
signalling between the epidermis and dermal fibroblasts through growth factors, MMPs,
and members of the TGF-β family. b | Reformation of the epithelial sheet. The complex
reaction to wounding reduces epithelial adhesiveness and increases epithelial-cell mobility
to re-form an intact sheet of tissue over the wound. Production of MMPs and proteolytic
enzymes such as uroplasminogen activator (uPA) and tissue plasminogen activator (tPA)
facilitates this re-epithelialization. Blood vessels can then enter the fibrin clot as epidermal
cells resurface the wound. The lateral migration of the epidermal cells is followed by a
reversion to the normal, non-motile phenotype, including regeneration of a basement
membrane and resynthesis of HEMIDESMOSOMES. Following re-epithelialization, a new
basement membrane is produced and many of the fibroblasts take on a myofibroblast
phenotype to facilitate wound contraction. c | Reciprocal activation mechanisms in early
tumours. Building on a rich, but inconclusive, literature spanning nearly a century (reviewed
in REF. 35), Dvorak proposed that tumours activate some of the normal wound-healing
responses139. Although developing tumours do not disrupt the vascular tissue in the same
way as in wounding, many of the processes occur in parallel. Tumour cells (blue) produce
many of the same growth factors that activate the adjacent stromal tissues in wounding or
fibrosis37,140,141. Activated fibroblasts and infiltrating immune cells (macrophage) secrete
MMPs and cytokines such as TGF-β FGF-2, and PDGF. These factors potentiate tumour
growth, stimulate angiogenesis, and induce fibroblasts to undergo differentiation into
myofibroblasts and into smooth muscle. d | Expression of proteases at the invasive front.
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Tumour cells, myofibroblasts and activated macrophages increase production of MMPs and
uPA at the invasive front to stimulate angiogenesis and proliferation. Production of TGF-
β also promotes tumour growth. uPAR, uroplasminogen receptor.

Matrix metalloproteinases
MMPs can degrade ECM and are involved in promoting the inflammatory response, normal
tissue remodelling, wound healing and angiogenesis46. These enzymes, however, also have an
important function in malignancy (BOX 2). The sustained presence of these proteinases in the
tumour environment, produced both by the activated cells and by the cancer cells, leads to
destruction of normal ECM. Degradation of ECM stimulates both proliferative and apoptotic
mechanisms, which can lead to the selection of apoptosis-resistant carcinoma cells and
enhanced invasive potential47,48. In the tumour context, direct association of MMPs with
specific ECM receptors provides spatial control of MMP activity and directional signals to the
invading tumour cells49.

Stromelysin-1 (SL-1, also known as MMP-3), is an MMP that is involved in both mammary-
gland development and breast cancer50,51. Cellular context determines the response of
mammary epithelial cells to SL-1 treatment: when grown in basement-membrane gels,
mammary epithelial cells undergo growth arrest and become functionally differentiated;
subsequent treatment of these cells with SL-1 causes apoptosis52. However, when cultured on
two-dimensional matrices and allowed to continuously proliferate, mammary epithelial cells
react to treatment with SL-1 by undergoing an epithelial–mesenchymal transition and
becoming tumorigenic50.

In transgenic mice that express SL-1 in mammary luminal epithelial cells, the mammary glands
show morphogenesis defects and contain pre-neoplastic lesions44,53,54 that eventually lead to
full malignancies50,54. Here, the causative mechanism seems to be that SL-1 — expressed
ectopically at low levels in the epithelial cells — is subsequently produced at much higher
levels by the stromal fibroblasts44, showing that a moderate disruption contributes to a self-
sustaining tumorigenic state. Similar reciprocal feedback mechanisms have been observed in
transgenic mice with altered expression of MMP-7 (REF. 55), MMP-11 (REF. 56) and MT1-
MMP57.
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Immune function in the tumour context
Immune surveillance is the mechanism by which the immune system targets and destroys
developing malignancies. Investigations of transgenic mice with deficient responses to
interferon-γ (IFN-γ), a cytokine that has been shown to be required for migration of T cells to
tumour sites58,59, have led to increased interest in the mechanisms by which immune cells
target tumours60,61. Although T cells seem to be the main effectors of immune
surveillance62, the innate immune system (which includes natural killer cells, macrophages,
monocytes and mast cells) is also involved63–65.

Malignant cells evade immunosuppression by downregulating intrinsic immunogenicity66,67.
The tumour vasculature contributes to this process by preventing extravasation of the
antitumour T cells, while continuing to allow the passage of innate immune cells68. Studies by
Gloria Heppner and colleagues (REF. 69, and references therein) showed that natural killer
cells actually provided positive signals for progression of preneoplastic mammary lesions. This
initially controversial concept has received support from recent investigations of carcinomas
of the skin70,71, pancreas72 and mammary gland73, showing that innate immune cells promote
tumorigenesis by producing MMPs, inducing the stroma to produce MMPs and by activating
latent MMPs that are present in the ECM74–76. The resultant increase in proteolytic activity
potentiates tumour progression by further degrading ECM, activating tumour-associated
fibroblasts and enhancing angiogenesis70,72.

Macrophage migration inhibitory factor (MIF) is another immunomodulator that is associated
with tumour progression. This cytokine has been shown to be overexpressed by tumour
cells77, contributing to neoangiogenesis and to epithelial cell proliferation77, as well as
suppressing immune surveillance78. MIF might also contribute to the genomic instability
within tumours, as MIF suppresses p53 function79, potentially leading to the attenuation of
normal apoptosis and growth-arrest mechanisms and allowing for the accumulation of
additional oncogenic mutations80. This might be one of the mechanisms by which persistent
inflammation can increase the risk of cancer81.

Tumour-cell plasticity
One manifestation of the distinct tumour context is that cells from a given malignant tissue are
not limited to that tissue’s normal panoply of physiological processes. The classic work of
Beatrice Mintz (discussed below) is a prime example of this, but a more recent example can
be found in ‘vasculogenic mimicry’, a process in which aggressive tumours can augment
normal angiogenesis by forming hollow channels that connect to the existing vascular system.
These vessels are believed to transport blood into the depths of the tumour82,83. This concept
has now been well-characterized84–87 and could represent a general component of tumour
development88. To produce more selective antiangiogenic therapies, it might be necessary to
combine detailed examinations of vasculogenic mimicry with existing models of tumour
angiogenesis.

Haematological tumours
More than 80% of human cancers are derived from the epithelium, but the role of context in
the development and maintenance of cancer also seems to apply to tumours of haematological
origin. Although most immune cells spend much of their lifespan in the circulatory system,
key aspects of immune-cell development involve cell–cell and cell–ECM interactions within
the stroma of the bone marrow, the thymus and the lymph nodes89,90. In haematopoietic cells,
as in epithelial cells, these interactions control cell shape, adhesion and migration91.
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Accordingly, defects in the function of bone-marrow stromal cells can cause a predisposition
to cancer, such as in cases of Shwachman–Diamond syndrome, an inherited preleukaemic
disorder that is caused by a faulty bone-marrow microenvironment92. As with tumours that are
derived from the epithelium, haematological tumour cells interact with their stromal
microenvironment through cell-surface receptors93–95. These interactions lead to increased
production of MMPs96,97, altered expression of ECM receptors98,99 and increased
angiogenesis100,101. The interactions between haematological tumour cells and the tumour
stroma are, therefore, a significant component of tumour growth and resistance to anticancer
therapeutics102–106.

Restoring the normal context
Although an abnormal context can contribute to tumorigenesis and tumour progression, there
is no compelling evidence that this process, once initiated, is irreversible. The possibility that
reintroduction of the normal context could suppress the transformed phenotype was first
suggested by the work of Mintz and Illmensee, who showed that TERATOCARCINOMA
CELLS, even after prolonged passage, were still capable of differentiating and generating
normal mice107. This seminal observation indicated that maintenance of a normal context could
lead to inhibition or even reversion of tumours in situ. In another example, Rous sarcoma virus
— one of the most potent oncogenic viruses — is not tumorigenic in the early embryo108, but
when the embryonic cells that host the virus cells are put in culture, they become
transformed109.

In co-culture assays, normal stromal cells inhibit the progression to epithelial malignancy110.
Norbert Fusenig and colleagues have developed an assay to model the natural tissue context
of the stratified skin epithelium111. Using this system, they were able to suppress early stages
of neoplastic progression of malignant keratinocytes by introducing an excess of normal
keratinocytes112.

An assay involving a three-dimensional (3D) basement membrane113 has been used to
investigate the response of a series of human breast-tumour cell lines at different stages of
progression, cultured within a physiological context114. Although the non-malignant cells are
similar in appearance to the malignant cells when cultured on plastic substrata, the phenotypic
differences are striking when the cells are cultured in a reconstituted basement membrane
(rBM)115. Under these conditions, the non-malignant cells undergo growth arrest and form a
polarized, alveolar structure, whereas the malignant cells proliferate and form amorphous
structures. Analysis of ECM and growth-factor receptors in the non-malignant and malignant
cell types indicates that the malignant cells overexpress INTEGRINS and epidermal growth
factor receptor (EGFR). Addition of anti-β1-integrin antibodies to the malignant cells, when
cultured in 3D rBM, downregulated EGFR expression, restored cellular organization, and
decreased overall tumorigenicity115. This observation led to the discovery of a bidirectional
cross-modulation of integrin and EGFR signalling that exists only when cells are cultured in
3D116. Furthermore, the tumorigenic phenotype of the malignant cells was reversed by
treatment with EGFR-inhibitory antibodies, mitogen-activated protein kinase (MAPK)
pathway inhibitors, or phosphatidylinositol 3-kinase (PI3K) pathway inhibitors116,117.
Inhibiting several different signalling pathways restores even an aggressive breast-cancer cell
line to a normal phenotype117.

Therefore, assays in which tumour cells are cultured in physiological conditions can be used
to identify combinations of signalling inhibitors with the potential to reverse the progression
of a broad range of tumours. The success of agents that are designed to inhibit other signal
transduction pathways, such as herceptin (which blocks signalling by the EGFR ERBB2
(HER2) in breast cancer cells) and STI-571 (which inhibits BCR–ABL kinase activity in
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chronic myelogenous leukaemia cells) indicates that this might be a valid approach118,119. It
is clear, however, that relapses occur and many patients do not respond. These agents were
designed to target one particular oncoprotein, so it might be necessary — in cases of more
complex cancers — to target both the tumour and its context, using combinations of drugs.

Targeting the tumour organ
The efficacy of targeting the tumour organ can be found in recent strategies for treating
hepatocellular carcinoma. This cancer type is accompanied by a fibrotic stromal reaction in
which HEPATIC STELLATE CELLS show increased proliferation, fibrogenesis and matrix
degradation, as well as reduced retinoid production and cytokine release120 — physiological
responses often found in tumour tissues. Recent clinical studies indicate that chemotherapy for
hepatocarcinoma could be more effective if therapies to target the underlying liver fibrosis
were also employed120,121. As fibrotic breast disease is also associated with a predisposition
to breast cancer122, and environmentally induced fibrotic disorders of the lung can increase
incidence of lung cancer123, targeting the tumour environment might also increase the
treatment effectiveness for these types of cancer.

Antagonism of the developing tumour context also offers potential for cancer prevention
therapies124,125. In the best-characterized example of this approach so far, chronic suppression
of inflammation through use of non-steroidal anti-inflammatory drugs (NSAIDs) has been
shown to lower the incidence of colon and breast cancer125,126. This antitumour activity seems
to occur through inhibition of cyclooxygenase-2 (COX2)127–129, an enzyme that is involved
in the synthesis of pro-inflammatory prostaglandins (see the review by Rajnish Gupta and
Raymond DuBois on pp. 11–21 in this issue). The demonstration of the role of COX2 in
tumorigenesis serves as a remarkable example of how the several tissue types can collaborate
to promote tumour progression, as fibroblasts, immune system cells and cells involved in
neoangiogenesis are all part of this pathway130.

The requirement of tumours for a vascular supply has also produced a diverse group of
angiogenesis inhibitors that are currently undergoing evaluation in the clinic131. Similarly, the
role of MMPs in tumorigenesis, tumour invasion and metastasis has prompted clinical testing
of MMP inhibitors. Although the results with patients suffering from advanced stages of cancer
have shown no clinical efficacy, recent data indicate that MMP inhibitors could be more
successful when used in early-stage cancer or in conjunction with traditional treatment
methods132,133.

So, agents that target the tumour microenvironment represent an important new direction for
cancer therapy. Just as the normal context creates a dynamic equilibrium to maintain normal
tissue function, so the tumour context contains many overlapping mechanisms to maintain its
functional disorder and to evade anticancer therapies. Therefore, it is likely that combinations
of the next-generation therapeutic agents, targeting specific molecular targets, will be required
not only to inhibit and destroy the tumour cells, but also to normalize the tumour
microenvironment. Gaining a better understanding of the complexities of the tumour context
will improve our prospects for developing effective cancer treatments. Dormant metastases are
not the only sheep in wolves’ clothing — the altered microenvironment of the tumour is itself
a powerful and insidious carcinogen that needs to be targeted.
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Glossary

ORGAN An anatomically discrete collection of tissues, integrated to
perform specific functions

TISSUE A relatively homogenous structure, composed of an
organized collection of cells of similar morphology and
function

EXTRACELLULAR
MATRIX (ECM)

A complex, three-dimensional network of very large
macromolecules that provides contextual information and
an architectural scaffold for cellular adhesion and migration

STROMA Organ compartment serving as the connective tissue
framework includes fibroblasts; immune defence cells and
fat cells

EPITHELIUM A diverse group of tissues that covers or lines nearly all body
surfaces, cavities and tubes, functioning as interfaces
between different biological compartments. Epithelial
layers provide physical protection and containment, and
also mediate organ-specific transport properties

BASEMENT MEMBRANE A specialized form of ECM that consists of laminins,
collagen IV, nidogen (entactin), proteoglycans and a
number of other glycoproteins that separates epithelia from
underlying supporting tissues. Different organs have
different compositions of basement membrane

ADHERENS JUNCTION A physical junction that links apicolaterally localized belts
of actin in adjacent epithelial cells

GAP JUNCTION An aqueous channel that interconnects the cytoplasms of
adjacent cells and allows direct exchange of small
cytoplasmic components. It is created by the association of
two hemichannels, each a hexamer of connexin subunits

TIGHT JUNCTION A component of cell–cell adhesion in epithelial and
endothelial cell sheets. Acts as a mediator of the diffusion
of solutes through the intercellular space. Also acts as a
boundary between the apical and basal plasma-membrane
domains

DESMOSOME An adhesive junction that anchors intermediate filaments
between adjoining cells

E-CADHERIN The main adhesion receptor in adherens junctions. Mediates
Ca2+-dependent interactions between adjacent epithelial
cells and regulates cell proliferation. It also sequesters the
transcriptional co-activator β-catenin, a protein that can
stimulate cell-cycle entry. The loss of E-cadherin from the
cell surface might trigger epithelial–mesenchymal
transition

EPITHELIAL–
MESENCHYMAL
TRANSITION

Conversion from an epithelial to a mesenchymal phenotype,
which is a normal component of embryonic development.
In carcinomas, this transformation results in altered cell
morphology, the expression of mesenchymal proteins and
increased invasiveness
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CONNEXIN Functions as a subunit of the gap junction hemichannel.
Several members of the connexin family have been
identified

INTERSTITIAL MATRIX The extracellular matrix (ECM) contained within the stroma

INTERMEDIATE
FILAMENT

A component of the eukaryotic cytoskeleton. Intermediate
filaments form a dense network extending from the nucleus
to the plasma membrane

TERATOCARCINOMA A malignant germ-cell tumour arising from the ovary or
testis that is composed of embryonal carcinoma cells

INTEGRINS A family of more than 20 heterodimeric cell-surface
extracellular matrix (ECM) receptors. They connect the
structure of the ECM with the cytoskeleton and can transmit
signalling information bidirectionally

HEPATIC STELLATE
CELLS

The principal fibrogenic cell type of the liver. They are
located in a perivascular orientation and contain long
cytoplasmic processes that interact with neighbouring cells

HEMIDESMOSOME An adhesion complex located at the interface of epithelial
cells with the basement membranes. Responsible for linking
keratin intermediate filaments to components of the
extracellular matrix
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Figure 1. Normal versus malignant breast tumours
a. The normal mammary gland shows a highly structured and segregated architecture. Ducts
are formed by a double layer of cells: luminal epithelial cells surrounded by a layer of
myoepithelial cells, enclosed by the basement membrane. Stromal fibroblasts secrete a
collagenous extracellular matrix (ECM), and blood vessels are centrally located and well
defined. b. Lobular breast carcinoma is less organized. Tumour angiogenesis produces poorly
defined blood vessels, and carcinoma cells intermingle with all the stromal elements.
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Figure 2. Mechanisms of cell–cell and cell–ECM interactions
Integrin and non-integrin cell-surface receptors form attachments with the actin filaments in
the cytoskeleton, and are able to sense elements of the extracellular matrix (ECM) to promote
growth-factor activation. Tight junctions act as a barrier to the diffusion of solutes through the
intercellular space and act as a boundary between the apical and basolateral plasma-membrane
domains. Adherens junctions, which consist of extracellular E-cadherin dimers connected to
cytoplasmic α- and β-catenin molecules, are anchored to actin filaments. Gap junctions provide
a communication mechanism by allowing solutes and small signalling molecules to pass
between adjacent cells. Desmosomes serve as anchoring points for INTERMEDIATE
FILAMENTS and also provide signalling information.
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Figure 3. Differences in stroma between tumours
Interstitial stromal cells of normal and breast tumour tissues differ in levels of smooth muscle
differentiation. a. Normal interstital stroma(s) does not express smooth muscle actin (red) or
b. smooth muscle myosin (green), indicating that smooth muscle differentiation has not taken
place, although these cells do produce blood vessels (bv). c–f. Tumour tissues, by contrast,
express high levels of smooth muscle actin (c,e). These images also show, however, that not
all tumour stroma are similar. The tumour stroma shown in (c) and (d) expresses smooth muscle
actin (c) but not smooth muscle myosin (d). In the tumour shown in e and f, the stromal cells
express high levels of both actin and smooth muscle myosin. Adapted from REF. 142.
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Figure 4. The tumour microenvironment assay
a. Primary breast carcinoma cells form spherical colonies when cultured in three-dimensional
collagen type I. b. Co-cultivation with stromal cells, however, causes the tumour cells to spread
and become invasive. The degree of tumour growth increases with the density of the stromal
cells. Staining of the coculture assay (c) and of tumour (d) with anti-vimentin antibody reveals
the structural similarities of stromal cells in the presence or absence of cancer cells.
(Reproduced with permission from REF. 142 © (1995) American Society for Clinical
Investigation.)
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Table 1

Myoepithelial proteins that suppress luminal tumours

Protein Function Reference

α-smooth muscle actin Cell structure 143

Cytokeratin 5 Cell structure 144

α6-integrin ECM receptor 145

Caveolin-1 Cell-surface molecule 146

Connexin 43 Gap-junction component 147

Maspin Protease inhibitor 148

TIMP-1 Protease inhibitor 29

Relaxin Hormone 149

Activin Hormone 150

These myoepithelial-specific proteins (which are sometimes expressed in cultured epithelial cells) inhibit epithelial tumour formation, showing that
molecules made by myoepithelial cells have tumour-suppressive activities.
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