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Abstract
Results for mutation, selection, genetic drift, and migration in a one-dimensional continuous
population are reviewed and extended. The population is described by a continuous limit of the
stepping stone model, which leads to the stochastic Fisher-Kolmogorov-Petrovsky-Piscounov
equation with additional terms describing mutations. Although the stepping stone model was first
proposed for population genetics, it is closely related to “voter models” of interest in nonequilibrium
statistical mechanics. The stepping stone model can also be regarded as an approximation to the
dynamics of a thin layer of actively growing pioneers at the frontier of a colony of micro-organisms
undergoing a range expansion on a Petri dish. The population tends to segregate into monoallelic
domains. This segregation slows down genetic drift and selection because these two evolutionary
forces can only act at the boundaries between the domains; the effects of mutation, however, are not
significantly affected by the segregation. Although fixation in the neutral well-mixed (or “zero-
dimensional”) model occurs exponentially in time, it occurs only algebraically fast in the one-
dimensional model. An unusual sublinear increase is also found in the variance of the spatially
averaged allele frequency with time. If selection is weak, selective sweeps occur exponentially fast
in both well-mixed and one-dimensional populations, but the time constants are different. The
relatively unexplored problem of evolutionary dynamics at the edge of an expanding circular colony
is studied as well. Also reviewed are how the observed patterns of genetic diversity can be used for
statistical inference and the differences are highlighted between the well-mixed and one-dimensional
models. Although the focus is on two alleles or variants, q-allele Potts-like models of gene segregation
are considered as well. Most of the analytical results are checked with simulations and could be tested
against recent spatial experiments on range expansions of inoculations of Escherichia coli and
Saccharomyces cerevisiae.
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I. INTRODUCTION
The quantitative theory of evolution is an important open problem. The theory is necessary to
determine the history of species migrations, and it could shed light on the origin and
development of life. Moreover, a better understanding of the evolutionary dynamics could help
control epidemics (Murray, 2003), fight diseases with an evolutionary character such as cancer
and acquired immune deficiency syndrome (Nowak, 2006), and guide the engineering of
artificial evolution for practical applications (Bar-Yam, 2005; Poli et al., 2008).

Most of the current understanding of evolutionary dynamics comes from population genetics,
a scientific discipline that studies how evolutionary forces shape the genetic diversity of
populations. The majority of theoretical models and experiments in population genetics study
only one or a few well-mixed populations, i.e., populations without spatial structure, where
every individual is equally likely to interact with any other individual inside the same
population. Micro-organisms growing and evolving in a well-mixed liquid culture provide an
important example. While nonspatial models are often easier to analyze than spatial ones, they
do miss what can be essential features of natural populations.

In nature, organisms often occupy areas that are much larger than the square of the dispersal
distance, i.e., the distance typically traveled by an individual in one generation. This causes
two main problems for well-mixed-population models. First, well-mixed-population models
underestimate the role of genetic drift (fluctuations due to the discreteness of the number of
individuals). The difference arises because the organisms can only interact with their neighbors,
and the number of neighbors within the dispersal distance is much smaller than the total number
of organisms in the entire population. Second, well-mixed-population models neglect the
spatial structure of the population that can be created by external factors or by internal
dynamics. Such spatial structures often exist, and, as we show in this paper, they can
significantly affect evolutionary processes in the population.

Well-mixed-population models are particularly inadequate when applied to expanding
populations. Expansions are very common in biology. Species spread to new territories from
the locations where they first evolved. Expansions also occur because of environmental
changes such as the global warming and the glacial cycles or due to sudden long-distance
migrations to new habitats. Even though well-mixed-population models can account for the
growing number of individuals (population size), these models do not capture the fact that the
newly settled areas are colonized by the offspring of only a small number of individuals at the
expanding front. Since the ancestral population is small, the genetic drift is strong. As a result,
neutral genetic diversity decreases with the distance from the origin of the expansion. This
reduction in genetic diversity, which is often called “the founder effect” (Mayr, 1942), has
been observed in humans (Templeton, 2002; Ramachandran et al., 2005) and many other
species. For example, the founder effect in the population waves following the receding glaciers
is believed to be responsible for the reduced genetic diversity in high latitude regions compared
to equatorial ones (Hewitt, 1996).

The spreading of Escherichia coli (E. coli) and Saccharomyces cerevisiae (S. cerevisiae) on
Petri dishes has been investigated in recent experiments by Hallatschek et al. (2007). In these
experiments, microbes grown in the dark carried one of two selectively neutral alleles, differing
only in a gene encoding for proteins with two distinct fluorescence spectra. Figure 1 shows the
expansion of an initially well-mixed 50:50 population of E. coli into two unoccupied half planes
initiated by a razor blade inoculation with cells grown up in liquid culture. The distinctive
feature illustrated by the typical experiment in Fig. 1 is that the population does not remain
well mixed, instead, it segregates into well-defined domains. The segregation occurs because
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the strong genetic drift associated with reduced population size facilitates fixation of one of
the two alleles at the front.

Analogous phenomena should also occur in a nonexpanding one-dimensional population
because its dynamics is similar to the dynamics of the front of a growing population. The front
of a population wave and a literally one-dimensional habitat are not exactly equivalent because
the contour of the front undergoes undulations while a one-dimensional habitat has a fixed
linear shape. Nevertheless, both are effectively one-dimensional and should deviate from the
predictions of well-mixed-population models in similar ways. The advantage of a flat one-
dimensional habitat is that it is easier to analyze. In addition, although most species live in
effectively two-dimensional habitats, a quasi-one-dimensional habitat could describe a bank
of a river, a seacoast, and a slope of a linear mountain range.

To study the dynamics of a population analytically, we adopt the stepping stone model proposed
by Kimura and Weiss (1964). This model considers many well-mixed populations, demes,
located on a spatial lattice. Each deme is subject to mutation, selection, genetic drift, and short-
range migration between neighboring demes. In the limit of weak evolutionary forces and large
number of demes, the stepping stone model is equivalent to the continuous models proposed
by Wright (1943) and Malécot (1955) and is described by the stochastic Fisher-Kolmogorov-
Petrovsky-Piscounov equation (Fisher, 1937; Kolmogorov et al., 1937) with additional terms
representing mutation. On the other hand, when each deme contains only one organism, the
model is analogous to the Eden model (Saito and Müller-Krumbhaar, 1995) used to describe
the growth of interfaces and the voter model (Cox and Griffeath, 1986) discussed in Appendix
F.

We also performed numerical simulations to better understand the relationship between the
experiments in Hallatschek et al. (2007) and our analytical results. An illustrative simulation
(with periodic boundary conditions) is shown in Fig. 2, which also shows the difference
between a growing population front with undulations and a literally one-dimensional habitat
advancing uniformly in time. Figure 3 shows qualitative agreement between the experiments
and the simplified row-by-row growth model that we studied analytically.

In this paper, we first focus on the spatial segregation due to genetic drift and its effect on the
dynamics of a linear one-dimensional population. We find that segregation of two neutral
alleles has two stages. During the first stage, distinguishable domains emerge from the well-
mixed population. During the second stage, domain boundaries diffuse and annihilate upon
collision. As a result, some of the domains vanish whereas others grow. We show how our
calculations might be used to extract the diffusion constant and the effective population size
from experiments like those in Hallatschek et al. (2007) and discuss how well the model
describes the behavior of microbes. A detailed comparison (beyond the qualitative agreement
we find with the main features) would require more extensive and precise experiments; we
hope such experiments will be carried out in the future. The spatial segregation dramatically
changes the effects of genetic drift and selection on the population compared to the predictions
of well-mixed-population models. For the neutral model without mutation, we find that local
diversity or “heterozygosity” decays as t−1/2, and the standard deviation of the global fraction
of an allele grows subdiffusively as t1/4. The evolutionary dynamics during a radial expansion
(see Fig. 14) is studied as well. In this case, migration and genetic drift slowly weaken as the
circumference grows. As a result, the domain boundaries eventually stop coalescing leading
to a finite number of domains in the long-time limit. We find that this final number of domains
grows as a square root of the initial radius of the colony. We also study the dynamics in the
presence of weak selection and find that it differs markedly from that of a well-mixed
population. Because of the spatial segregation into domains, selection acts only near domain
boundaries, which constitute only a small fraction of the population. Hence, extinction of a
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deleterious allele proceeds much more slowly in one-dimensional populations than in well-
mixed populations. Unlike genetic drift and selection, the effects of mutation in the spatial
model are essentially the same as in the well-mixed-population model, but the spatial model
gives a more accurate description of the population and accounts for the spatial correlations.
Finally, we discuss how one can estimate important model parameters by sampling and
sequencing DNA from organisms in a natural population. The differences between spatial and
nonspatial models used for genetic inference are highlighted.

A substantial fraction of our results for the neutral dynamics in a one-dimensional habitat has
been derived previously in population genetics (Kimura and Weiss, 1964; Malécot, 1975;
Barton et al., 2002), ecology (Houchmandzadeh and Vallade, 2003), and nonequilibrium
statistical mechanics (Cox and Griffeath, 1986; Bramson and Lebowitz, 1991). Here we present
a single self-contained derivation of these earlier results in a novel context of expanding
populations in two dimensions and in a language familiar to physicists, with future microbial
tests of the theory in mind. Our new results are primarily confined to the analysis of radial
expansions and natural selection.

This paper is organized as follows. First, we review classical results for well-mixed populations
in Sec. II. We then introduce the one-dimensional stepping stone model in Sec. III and derive
the equations of motion for spatial correlation functions. In Secs. IV and V we solve these
equations for zero and nonzero mutation rates, respectively. While the neutral stepping stone
model has been treated before, we derive some new results and use a different technique that
can be easily extended to radially expanding populations. The effects of selection are
considered in Sec. VI, and in Sec. VII we test our analytical results with simulations. In Sec.
VIII, evolutionary dynamics during a radial range expansion is analyzed, and Sec. IX deals
with genetic inference. Various details are relegated to Appendixes A–F. In Appendix E, we
indicate how some of the two-state (i.e., “two-allele”) results can be generalized for the Potts-
model-like nonequilibrium dynamics of q-alleles with q ≥ 3.

II. POPULATION GENETICS IN WELL-MIXED POPULATIONS
Well-mixed-population models are relevant to microorganisms vigorously shaken in a test
tube, but they do not describe spatial phenomena. Indeed, if cells visit all parts of the test tube
during a cell division time, they live in an effectively zero-dimensional habitat. Nevertheless,
well-mixed-population models can serve as a useful reference point to which spatial models
can be compared. Nonspatial populations also provide a simple context to introduce genetic
drift, mutation, and selection, and the stepping stone model presented in Sec. III uses a well-
mixed-population model to describe the dynamics of allele frequencies within the demes. This
section summarizes the classical results of nonspatial population genetics, which are primarily
due to Wright, Fisher, Haldane, and Kimura; Crow and Kimura (1970) and Hartl and Clark
(1989) provided a good introduction to the subject and referred to the original literature, which
is too extensive to be discussed here [see also Blythe and McKane (2007) for a recent review
written for physicists].

To simplify the discussion and to make a direct connection with the experiments in Hallatschek
et al. (2007), we consider two alleles in a population of N haploid organisms, i.e., organisms
with a single set of chromosomes.1 The two-allele approximation may seem very restrictive,
but many of our results can be generalized to an arbitrary integer number of q ≥ 3 alleles. In
addition, a two-allele model can be used to describe the dynamics of an allele of interest (with

1The theory of haploid organisms also describes the dynamics of genes in cellular organelles such as mitochondria and chloroplast and
on certain sex chromosomes such as Y chromosome in Homo sapiens. For N diploid organisms, the theory is essentially the same under
certain assumptions, provided one focuses on the dynamics of 2N gene copies in each generation [see Hartl and Clark (1989)].
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or without a selective advantage) when all other alleles have the same fitness. We assume that
each of the individuals in the population can die, give birth (divide), and mutate. The details
of this birth and death process are species dependent, but the dynamics on time scales larger
than the generation time τg is believed to be universal provided N is large. This universal
dynamics is often referred to as the diffusion or continuous approximation. Two simple models
are commonly used to illustrate the continuous approximation: the Wright-Fisher model and
the Moran model. Here we use the latter because it more closely resembles microbes with
overlapping generations.

First, we consider the Moran model without selection and mutation. During a time step, two
individuals are randomly selected with replacement from the population. The first individual
is chosen to reproduce and the second one to die; thus, the total number of the organisms is
conserved. If the “frequency” of allele one (i.e., the fractional number of individuals with
genotype one) at time step t̃ is f(t̃), then at the next time step it is f+1/N with probability f(1
−f), f−1/N with probability f(1−f), and f with probability f2+(1−f)2. The expectation value and
variance of f(t̃+1) are then given by

(1)

(2)

where angular brackets represent average with respect to the random choice of individuals for
reproduction and death. Because only one of N organisms gives birth in a Moran time step, t̃
measures time in fractional generation time, τg/N.

Equations (1) and (2) imply that f(t̃) performs an unbiased random walk in the space of allele
frequencies. In the continuum limit, this random walk can be described by the following
Fokker-Planck equation with a frequency-dependent diffusion coefficient (Crow and Kimura,
1970; Hartl and Clark, 1989):

(3)

where P(t,f) is the probability density function for f at time t measured in generations and g
is the genetic diffusion constant. Here t is the time measured in generations; as discussed above,
N Moran time steps constitute a generation time τg. Thus, in the Moran model, we have

(4)

Alternative reproduction schemes, such as the Wright-Fisher sampling (Crow and Kimura,
1970; Hartl and Clark, 1989), lead to an equation identical to Eq. (3) but with a different
numerical coefficient in Eq. (4).
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Equation (3) is subject to absorbing boundary conditions2 at f=0 and 1 because if one of the
alleles is lost, it cannot appear again in the absence of mutation. Therefore the population
eventually becomes fixed at one of the absorbing states. We calculate the rate of the fixation
by considering the average heterozygosity of the population,

(5)

which is the (averaged over realizations) probability that two randomly selected individuals
have different alleles. When the population is close to the fixation (f≈0 or ≈1), the
heterozygosity is close to zero. The equations of motion for F(t) ≡ 〈f(t)〉 and H(t) follow from
Eq. (3) by multiplying both sides with f or h, integrating over f, and eliminating the derivatives
with respect to f via integration by parts. The results are

(6)

(7)

Equations (6) and (7) imply that, while the average frequencies of these neutral alleles do not
change F=〈f〉=f(t=0) ≡ F0, the population reaches fixation exponentially fast, H(t)=H(0)
e− gt=F0(1−F0)e− gt.

The average heterozygosity is closely related to the variance of f(t), the fraction of the first
allele,

(8)

Thus, even if a population starts with zero variance, the fluctuations grow until the variance
reaches its maximum value of F0(1−F0), which corresponds to a population fixed to allele one
with probability F0 and to allele two with probability 1−F0. Note that, for small t, V(t) grows
linearly with time, but, at large times, the variance approaches its limiting value exponentially
fast. The linear growth of variance at small times also follows from the Fokker-Planck equation
because, at small times, Eq. (3) can be approximated by a diffusion equation with a constant
diffusivity.

Next, we generalize Eq. (3) to account for mutations. In the Moran model, mutation is included
at the end of a time step by allowing the offspring to mutate with probability μ̃12 from allele
one to allele two and with probability μ̃21 from allele two to allele one. If the frequency of
allele one at time step t̃ is f(t̃), then, at the next time step, the expectation value of f(t̃+1) is given
by

(9)

2Since Eq. (3) is singular at the boundaries, we require limf→0,1 f(1−f)P(t,f)=0. See Kimura (1955) and Risken (1989) for a more detailed
discussion.
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and the variance of f(t̃+1) is given by Eq. (2) to the leading order in the mutation rates and the
inverse population size.

Since the expectation value of f(t̃) changes with time, mutation leads to an f-dependent drift
term in the Fokker-Planck equation. Upon recalling that N Moran time steps equal one
generation time, we have

(10)

where  and  are the mutation rates per generation.

Because the alleles can mutate into each other, the probability flux through the boundaries must
be zero, so Eq. (10) has reflecting boundary conditions, and a nontrivial stationary solution for
P(t,f) exists. While the stationary distribution can be obtained easily [see Eq. (20), Fig. 4, and
Crow and Kimura (1970)], it is sufficient to analyze the moments F(t) and H(t) introduced
above. This will also allow us to make a direct comparison with the corresponding solutions
of the one-dimensional stepping stone model in Sec. V. The equations of motion for F(t) and
H(t) are obtained from Eq. (10) in the same way as for the absence of mutation. The results are

(11)

(12)

Since these equations are linear differential equations with constant coefficients, the
equilibrium is approached exponentially fast. The stationary solutions, which are obtained in
the limit t→∞, are given by

(13)

(14)

From Eqs. (14) and (8), we see that, when the population size is large enough, i.e., g≪
(μ12+μ21), H(∞)≈2F(∞)[1−F(∞)], the stationary value of the heterozygosity is consistent with
f(t)≈F(∞). Thus V(∞)≈0, and the fluctuations of f(t) are negligible. In the opposite limit, H(∞)
∝(μ12+μ21)/ g is significantly smaller, which suggests that most of the time the population is
fixed to one of the alleles, and mutations lead to rare transitions between states with f=0 and
1. Consequently, the stationary distribution is dominated by the regions around f=0 and 1, as
one can see in Fig. 4. Our interpretation of Eq. (14) is consistent with a more rigorous analytical
and numerical analysis by Duty (2000).

Finally, we introduce the Darwinian natural selection, which is usually related to the difference
in the reproduction or survival probability of the organisms. In the continuous time limit
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considered here, both mechanisms of selection lead to the same dynamics; therefore, we only
consider selection due to different growth rates. In the Moran model, a growth rate difference
is embodied in modified probabilities of reproduction: the individual with allele one is chosen
to reproduce not with probability f but with probability w1f/[w1f+w2(1−f)], where w1 and w2
are the fitnesses (i.e., growth rates) of alleles one and two, respectively. In the absence of
mutations, this modification results in

(15)

When selection is weak, that is |w1−w2|≪w1+w2, Eq. (15) reduces to

(16)

where s̃=2(w1−w2)/(w1+w2) is the selective advantage of allele one, which has to be much
smaller than 1 for the approximation to hold. When s̃>0, allele one is advantageous; for s̃<0,
it is deleterious. In the following, we assume that allele one is advantageous because one can
always relabel the alleles to satisfy this condition.

Similar to the case of mutations without selection, the variance of f(t̃+1) is given by Eq. (2) to
the leading order in s̃ and N−1, and the corresponding Fokker-Planck equation acquires an f-
dependent drift term due to selection,

(17)

where . The equations for F and H are not as useful as before because the hierarchy of
the moment equations does not close. Nevertheless, Eq. (17) can be easily analyzed in two
limits. When the population size is large ( g≪s), fluctuations are not important, and [dF(t)]/
dt≈sF(t)[1−F(t)]. Upon setting F0≡F(0), we have

(18)

so the selective sweep is exponentially fast. When the fluctuations dominate the dynamics, the
selection slightly increases the odds of fixation of the advantageous allele but does not
significantly affect the rate of fixation. For a detailed analysis of Eq. (17), see Crow and Kimura
(1970).

In the continuous limit, the population genetics of a well-mixed effectively zero-dimensional
population with genetic drift, selection, and mutation is summarized by the following Fokker-
Planck (or forward Kolmogorov) equation:

(19)
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The stationary distribution for Eq. (19) is reached exponentially fast and takes the following
form (Crow and Kimura, 1970;Duty, 2000):

(20)

where C is the normalization constant chosen to set . This stationary distribution
is plotted in Fig. 4 for both strong and weak genetic drift.

Although the formulation in terms of a Fokker-Plank equation is appropriate for nonspatial
models, an alternative formulation via a stochastic differential equation can be generalized to
spatial models more easily. Equation (19) is equivalent to

(21)

(22)

where Γ(t) is a white zero mean Gaussian noise and δ(t) is Dirac’s delta function; to get the
correct Fokker-Planck equation (19), one must use Itô’s prescription to define how Eq. (21)
steps the dynamics forward in time. This interpretation of the noise term ensures that f(t)
depends only on Γ(t′) with t′<t as it is appropriate for population genetics. Itô’s prescription is
adopted throughout the paper and an introduction to the Itô calculus is given in Appendix A
[see also Gardiner (1985), Risken (1989), and Duty (2000)]. In Sec. III, we use Eq. (21) to
formulate the stepping stone model in one dimension.

Well-mixed-population models do not describe migration and subdivision of natural
populations (Hartl and Clark, 1989). To remedy this deficiency, two common approaches exist:
to assume a uniformly populated spatial habitat with free diffusion or to assume a patchy habitat
with a prescribed pattern of limited migration between the patches. The former is the subject
of this paper and can be regarded as the continuum limit of the stepping stone model (Kimura
and Weiss, 1964); see Sec. III. The simplest variant of the latter approach is known as the island
model (Wright, 1931). The island model assumes that all patches or islands have the same
number of organisms and populations in every patch obey well-mixed-population dynamics.
The migration occurs between any two patches with equal probability, so, in some sense, this
is a mean-field or infinite-dimensional model. The island model successfully predicts that the
organisms are more likely to be related locally than globally, but most of its predictions are
similar to those of well-mixed-population models because the migration does not account for
spatial structure. In the limit of an infinitely large number of islands, the effect of migration in
and out of any patch is equivalent to an effective mutation rate; however, this is not the case
in a one-dimensional model considered below.

III. ONE-DIMENSIONAL STEPPING STONE MODEL
In Sec. II, we formulated a model to describe genetic drift, mutation, and selection in an
effectively zero-dimensional habitat. For a one-dimensional population considered in this
section, we extend the model to account for short-range migrations during every generation.
Migration is usually modeled either as exchange of individuals between neighboring island
populations (demes) (Wright, 1931; Kimura and Weiss, 1964) or as dispersal of offspring or
adults within a continuous population (Wright, 1943; Nagylaki, 1974; Malécot, 1975).
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Although the first approach was developed to model patchy populations, it can be used to
describe continuous populations if the deme sizes are much smaller than the whole population,
and spatial variations are gradual. In this limit, both migration models should give essentially
the same results. Here we adopt the first approach because it is conceptually simpler.

To specify the one-dimensional stepping stone model, we consider an infinite set of demes
arranged on a line. Neighboring demes are separated by distance a and indexed by an integer
l=−∞,…,−1,0,1,…,∞. Each deme has N organisms (but the total population size is infinite),
and the frequency of allele one in deme l is fl(t). Migration occurs only between nearest
neighbors, and, every generation, a deme exchanges m̃N/2 individuals with its right neighbor
and m̃N/2 individuals with its left neighbor. We assume that the exchange fraction m̃ is much
smaller than 1 and that the individuals of both allelic types are equally likely to be exchanged.
Thus, in one generation, 〈fl〉 changes by m̃(fl−1+fl+1−2fl)/2 due to migration. The variance of
fl grows due to randomness in the exchange process, but this increase is negligible compared
to the genetic drift within an island. In the continuous time limit, fl(t) obeys the following
generalization of Eq. (21):

(23)

(24)

where  and δl1l2 is Kronecker’s delta. We can also write Eq. (23) in the continuous
space limit by introducing a spatial coordinate x=la,

(25)

(26)

where the spatial and genetic diffusion constants are Ds=ma2/2 and Dg=a g=2a/τgN,
respectively. Thus the continuous time and space limit of the stepping stone model is described
by the stochastic Fisher-Kolmogorov-Petrovsky-Piscounov equation (Fisher,
1937;Kolmogorov et al., 1937) with additional terms describing mutation.

Similar to the analysis of the well-mixed-population model discussed in Sec. II, we use equal-
time-correlation functions of f(t,x) to characterize the dynamics of the stepping stone model.
The spatial versions of the average frequency and heterozygosity are defined as follows:

(27)

(28)

The equation of motion for F(t,x) depends on H(t,x,x) and is readily derived by averaging Eq.
(25), which gives
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(29)

The dynamics of H(t,x1,x2) is obtained by differentiating Eq. (28) with respect to t and then
eliminating ∂f/∂t with the help of Eq. (25). Note that Itô’s formula (see Appendix A) must be
used to differentiate Eq. (28) correctly. The result is

(30)

Equations (29) and (30) agree with the ones derived by Nagylaki (1978) in the limit of no
mutations considered there.

From Eq. (30), one can see that the hierarchy of the moment equations does not close unless
selection is absent. Similar to the well-mixed case, the correlation functions for neutral models
with and without mutations can be found analytically (see Secs. V and IV) but different methods
are required to analyze the dynamics in the presence of selection (see Sec. VI). To simplify the
analysis, we consider well-mixed spatially homogeneous initial conditions. Then F is only a
function of t and H is a function of t and x=x1−x2. With these simplifying assumptions, the
equations of motion for F(t) and H(t,x) take the following form:

(31)

(32)
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IV. NEUTRAL MODEL WITHOUT MUTATIONS
We start the analysis of the one-dimensional stepping stone model by considering neutral
alleles that do not mutate. In practice, this means N2μ̃12, N2μ̃21≪1 and N2s̃≪1 (as we show
below). Although these assumptions are not always realistic, they help to clarify the role of
genetic drift in a spatial context. In addition, neglecting mutations is a good approximation on
time scales shorter than the waiting times for the mutations  and . Under these
assumptions, F does not change, F(t)=F0, and Eq. (32) reads

(33)

Equation (33) can also be derived by tracing the ancestral lineages of organisms backward in
time. The average spatial heterozygosity H(t,x) is the average probability of sampling two
different individuals chosen at time t from demes separated by distance x. As we trace the
lineages of the two sampled organisms backward in time, the lineages diffuse in space due to
migration and, when they are at the same point, they have a chance to coalesce in which case
the sampled organisms must be identical because they have a common ancestor. Such a
coalescence event changes the probability of being different from H(t,0) to 0 and acts like a
sink at x=0. The first term on the right-hand side of Eq. (33) describes the diffusion and the
second term describes the coalescence. Since this argument is valid for an arbitrary number of
alleles, Eq. (33) is valid for an arbitrary number of spatially diffusing neutral alleles. See
Appendix E for a more detailed discussion of the q-allele problem, with q≥3.

To better understand the microbiology experiments on neutral alleles by Hallatschek et al.
(2007), we consider uncorrelated initial conditions F(0)=F0 and H(0,x)=H0, where F0 is the
fraction of allele one and H0=2F0(1−F0), which is the heterozygosity of a well-mixed
population with the frequency of allele one equal to F0. For these initial conditions, Eq. (33)
is solved in Appendix B. The results are

(34)

(35)

where erfc(y) is the complementary error function.

The spatial heterozygosity at vanishing separation H(t,0) is particularly interesting because it
indicates the degree of spatial segregation: if H(t,0)≪1, then, locally, the demes are fixed to
one of the two alleles. From Eq. (35), one can see that, for ,

(36)
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which means that at long times one of the alleles reaches fixation locally. Therefore we see
that the spatial model we are considering is consistent with the experiments by Hallatschek et
al. (2007) (see Fig. 1) because it predicts the formation of domains (regions of local fixation).
Thus, similar to the well-mixed model considered in Sec. II, one of the alleles reaches fixation
locally with fixation time . But not only is this fixation time proportional to
N2, instead of N, the functional form of heterozygosity decay is different: instead of a rapid
exponential decay, the spatial model shows a slow algebraic decay of local heterozygosity.
These results agree with the previous works on population genetics of Nagylaki (1974) and
Malécot (1975). Local fixation and t−1/2 decay of local heterozygosity have also been found
in the voter model (Cox and Griffeath, 1986), which corresponds to the stepping stone model
with N=1 (see Appendix F).

The characteristic demixing time can also be estimated by the following scaling argument: the
characteristic population size at time t in the coarsening process is , where the
population density n0~N/a. Upon recalling that the fixation time in zero dimensions is
τf~Nch(τf)τg and solving self-consistently for τf, we have .

Another important characteristic of H(t,x) is the length scale over which H(t,x) changes from
its minimum to its maximum values. Figure 5 plots Eq. (34) and shows the spatial variation of
H(t,x) at different times. One can see that the spatial heterozygosity is reduced near the origin
due to the local fixation, but H(t,x) rises to its initial value H0 at large x, where the alleles
remain uncorrelated. After the domains form, i.e., for , this change from H(t,0) to
H(0,x) happens on a length scale that is set by the average size of the domains ℓ, which is
proportional to the diffusion length , as follows from Eq. (34). Since this characteristic
length scale changes with time, it is convenient to rescale distances: . Upon using
Eq. (36) to simplify Eq. (34), we see that H(t,x) approaches a nontrivial limit in terms of x̄ as
time goes to infinity,

(37)

which agrees with the known results for the voter model (Cox and Griffeath, 1986).

A more precise evaluation of the domain density and hence an average domain size ℓ(t) can
be obtained from H(t,x), as shown in Appendix C. From Eq. (C4), we know that ℓ(t)=4Ds/
[DgH(t,0)], so using Eq. (36) we see that

(38)

which is consistent with the analysis of Hallatschek and Nelson (2010). Note that the genetic
diffusion constant Dg~1/N drops out because, at large times, the only dynamics left is the
diffusive motion of the domain walls. With neutral alleles, these boundaries behave as
annihilating random walks, and the average domain size can be easily calculated (Hallatschek
and Nelson, 2010).

Equations (35) and (38) suggest that the processes driven by the genetic drift slow down with
time because the logarithmic time derivatives of H(t,0) and ℓ tend to zero as time goes to
infinity. In the annihilating random-walk picture of Hallatschek and Nelson (2010),
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annihilations become rarer and rarer as the coarsening progresses. A more direct measure of
genetic drift, which is also interesting from the biological point of view, is the fluctuations of
the total fraction of, say, the first allele (t) in a finite population of length L. We define (t) as

(39)

and compute its variance ν(t) to characterize its fluctuations.

Upon integrating Eq. (25) over x with s=μ12=μ21=0, we obtain the equation of motion for ,

(40)

where the spatial diffusion term vanishes after integration by parts provided periodic or
Newman boundary conditions are imposed. Upon noting that 〈 〉=F=const [the Itô
interpretation of the noise Γ(t,x) is crucial here] and defining

(41)

one finds immediately that dν/dt=d〈 2〉/dt. To evaluate the time derivative, we use the rules of
the Itô calculus, sketched in Appendix A, and find

(42)

where the delta function comes from averaging over the noise and using Eq. (26). From Eq.
(42), it follows that

(43)

where we assume ν(0)=0. Hence, we know ν(t) exactly because H(t,0) is given by Eq. (35).

For small times , the variance grows linearly with time. For large times, we can
use the asymptotic expansion of H(t,0) given by Eq. (36) to calculate ν(t). The result is

(44)

Equation (44) is consistent with Bramson and Lebowitz (1991), and we immediately conclude
that the standard deviation  grows as t1/4 for large times. This important result is
generalized for the flat-front and undulating-front models with q-alleles in Appendix E by
approximating the dynamics of the domain boundaries by annihilating random walks. Thus,
 performs a subdiffusive random walk, and genetic drift of the global frequency (t) becomes

weaker with time. Equation (44) is valid only for t≪L2/Ds because it relies on Eq. (36), which
is valid for an infinite population, and should break down at times that are long enough for a
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domain boundary to diffuse from one end of the population to the other. Using Eqs. (8) and

(43), one can also calculate the behavior of the global heterozygosity ,
i.e., the probability to sample two different alleles from the population regardless of their spatial
locations,

(45)

where the second equality requires  for the reasons mentioned above. In
the opposite limit t≥L2/Ds, the global heterozygosity ℋ(t,x) obeys zero-dimensional dynamics
of a well-mixed population with an effective g=Dg/L as shown by Nagylaki (1974).

The local heterozygosity and average domain size can be obtained from experiments on
microbial spreading like the one shown in Fig. 1. If the data are sufficiently precise, Eqs. (36)
and (38) could be used to extract Ds and Dg from the experiments. Since Dg~1/N, extracting
Dg from experimental data determines the effective deme size for the equivalent stepping stone
model. Ds can be obtained from the diffusion of individual domain boundaries or ν(t). These
two parameters completely determine the neutral dynamics without mutation and play an
important role when selection or mutation is present.

V. NEUTRAL MODEL WITH MUTATIONS
While on short time scales mutation can be neglected, it is the long time scales and the patterns
of genetic diversity created by mutations that are of particular interest in population genetics.
Noticeable mutations also arise in microbiology experiments like those in Fig. 1, especially if
mutation rates are enhanced by DNA damaging chemicals or radiation. In this section, we
extend the results of Sec. IV by allowing for nonzero mutation rates between the two alleles.
We assume, as before, statistically homogeneous initial conditions and note that the dynamics
of the one- and two-point correlation functions is then given by

(46)

(47)

where F(t)≡〈f(t,x)〉 is independent of x. The equation of motion for F in the spatial model is
exactly the same as Eq. (11), which describes the well-mixed-population model. Therefore F
relaxes to its equilibrium value F(∞)=μ21/(μ12+μ21) [see Eq. (13)], exponentially fast with time
constant (μ12+μ21)−1≥τg. The similarity to the nonspatial model is not surprising because
neutral mutations occur equally likely at any point within the population regardless of its spatial
structure. The dynamics of H(t,x) is, however, more complicated because both mutation and
genetic drift determine the behavior of the spatial heterozygosity.

The stationary solution of Eq. (47) reads
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(48)

Equation (48) agrees with the solution of Kimura and Weiss (1964), which was obtained in the
discrete space and time limit. One can see that, for , the spatial
heterozygosity approaches 2F(∞)[1−F(∞)]. Thus mutations cause the frequencies of allele one
to eventually become uncorrelated at large separations. At shorter distances, however, there
are correlations, and H(∞,x)<H(∞,∞) for all x<∞. Note, in particular, that

(49)

Note also that, for small mutation rates, the heterozygosity is proportional to μ12+μ21 [see Eq.
(14)] in a well-mixed population, but the local heterozygosity in a one-dimensional population
is proportional to  whenever τg(μ12+μ21)≪a2/N2Dsτg, which is a consequence of
weaker genetic drift in one dimension.3

When H(∞,0)≪H(∞,∞), the population is segregated into domains of different allelic types.
Upon invoking Eq. (C4), we obtain the following average domain size:

(50)

This result, together with Eq. (13), can be used to extract the mutation rates from experimental
data.

We can also determine how fast H(t,x) reaches its stationary value. Since the heterozygosity
cannot be in equilibrium unless the frequency of the alleles has equilibrated, we assume, for
simplicity, that F(0) equals its stationary value. Then the deviation of the spatial heterozygosity
from its long-time equilibrium value H ̃(t,x)=H(t,x)−H(∞,x) obeys the following equation:

(51)

Equation (51) can be further simplified by the change of variables H ̃=e−2(μ12+μ21)tĤ, which
leads to

(52)

3In population genetics, population structure and spatial correlations are often reported via Fst=H(∞,0)/H(∞,∞), which can readily be
obtained from Eq. (49).
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Since Eq. (52) is identical to Eq. (33), we conclude that, at long times, the difference between

H(t,x) and the stationary solution decays as , where Ĉ is a constant.
Thus, apart from an algebraic prefactor (and a nontrivial spatial dependence), the dynamics of
H(t,x) is essentially the same as in the well-mixed case.

In this section, we considered a model with only two alleles; however, in many circumstances,
an infinite allele model is more appropriate. The infinite allele model is discussed in Appendix
D. Some results for q alleles, 2<q<∞, are discussed in Appendix E.

VI. SELECTION
Unlike the neutral models with spatial diffusion and mutation discussed above, the one-
dimensional stepping stone model with selection is difficult to treat analytically because the
hierarchy of moment equations does not close. We examined three closure schemes,

(53)

(54)

and

(55)

The first scheme is a simple factorization approximation; the second scheme, which assumes
small fluctuations, is due to Nagylaki (1978); and the third scheme, which provides a good
approximation for some diffusion-limited reactions, was proposed by Lin (1991).
Unfortunately, none of the schemes describe the behavior of the system correctly. The progress
can be made, however, for some initial conditions in two limiting cases of strong selection

 and weak selection . Note that we now use the term weak selection in
a different sense than in Sec. II. For the rest of this section, we include spatial diffusion and
genetic drift but neglect mutations, which are justified on short time scales.

First, consider the initial condition f(0,x)=1−θ(x), where θ(x) is the Heaviside step function.
This initial condition specifies just one domain boundary, which, for any positive s, undergoes
Brownian motion with a drift to the right. This is a good description of an expansion of a new
advantageous mutant spreading through the population. In the strong selection limit

, Fisher (1937) found that the sharp boundary above broadens to a width of order
, and the velocity of the genetic wave is given by

(56)

When, in contrast, selection is weak compared to genetic drift, it was recently found that the
velocity is given by Doering et al. (2003) and Hallatschek and Korolev (2009),
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(57)

When the population contains multiple domains, the domain walls bordering a favorable
genetic variant (“allele one”) expand to engulf the regions occupied by the more deleterious
allele.

Another interesting initial condition is f(0,x)=F0=const; i.e., the population is initially well
mixed. This scenario, for example, describes the quasi-one-dimensional strip of pioneers
advancing at the front of a two-dimensional population wave that originated from a well-mixed
ancestral population and is propagating in the region where one of the alleles has higher fitness
[see Hallatschek and Nelson (2010)].

If selection is strong enough, then allele one (“the preferred variant”) takes over the population
before spatial correlations have time to appear. To see this, note from Eq. (18) that allele one
wins locally on the time scales of s−1, but, from Eq. (35), the time for spatial correlations to
appear is on the order of , which is much larger than s−1 in the strong selection limit.
Thus the behaviors of one-dimensional and well-mixed populations are similar when

.

In the limit of weak selection, however, spatial correlations appear before allele two is
eliminated. Qualitatively, we can divide the selective sweep into two stages. During the first
stage, the effects of selection are negligible and spatial segregation occurs as described in Sec.
IV. During the second stage, the domains of allele two shrink at each end with wall velocity
υw given by Eq. (57), and the stochastic motion of the domain boundaries can be neglected.
The crossover time between the stages occurs when the diffusive displacement of the walls is
of the same order as their deterministic displacement, i.e., when . Thus the
crossover time τ* is on the order of , which can be expressed as  with the help
of Eq. (57). Then, from Eq. (38), the average domain size at the crossover ℓ* is on the order
of Dg/sH0.

The dynamics during the second stage depends on the probability distribution of domains of
size η, Pd(η) at time τ*. For annihilating random walkers, which are a good approximation to
domain boundaries during the first stage, Bramson and Griffeath (1980) proved that Pd(η) has
exponential tail for large η of the form e−γ′ η/ℓ*, where γ′ is a number of the order 1. Since each
domain shrinks with velocity 2υw, the fraction of allele two can be expressed as

(58)

where λ is a number of order 1. From Eq. (58) it follows that, as in the well-mixed case, the
selective sweep is exponentially fast, but the time constant of this process is proportional to
s−2 rather than s−1.

The analysis leading to Eq. (58) can be generalized to an arbitrary initial probability distribution
Pd(η) provided the dynamics is dominated by selection and genetic drift. For example, if a
population initially in equilibrium with respect to mutations and genetic drift (see Sec. V) is
affected by an abrupt environmental change that makes allele one advantageous, then the shift
to the new equilibrium occurs exponentially fast with a time constant proportional to
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, assuming Pd(η) has exponential tail of the form e−γ″ η/ℓ, where
γ″ is a constant of order unity and ℓ is given by Eq. (50).

Finally, we address a slightly different but equally important question: What is the probability
psurv that a few copies of the advantageous allele survive and establish a growing domain?
Doering et al. (2003) solved this problem exactly,

(59)

Surprisingly, the survival probability does not depend on the diffusion constant. For a small
initial number of advantageous alleles, we can qualitatively explain this result in the limit of
weak selection by the following argument. Initially, the dynamics is almost neutral, and the
probability of survival within a small interval of length Δx is proportional to the relative fraction
of the advantageous allele in this interval, ∫f(0,x)dx/Δx, because every organism has
approximately the same probability to reach fixation. Once a domain of size Δx is formed, its
survival probability equals the probability that the two biased random walks performed by the
domain boundaries never meet, which is 1−exp(−υΔx/Ds)≈υΔx/Ds for small Δx and s [see
Redner (2001) and Hallatschek and Nelson (2010)]. Then, using Eq. (57), the survival
probability is

Note that, even though psurv does not depend on Ds, the expression for the survival in one
dimension does not reduce to its analog in well-mixed populations (Crow and Kimura, 1970;
Doering et al., 2003),

(60)

unless one assumes s/ g≥1.

We make two important observations based on the results of this section. First, the temporal
dynamics of the one-dimensional stepping stone model with selection can depend strongly on
the initial conditions. Second, the results in the weak selection limit are sometimes related to
the results in the strong selection limit or in well-mixed-population models by a parameter
substitution, e.g., , at least up to a numerical factor. The second observation
suggests that, while data can be naively fitted to a well-mixed-population model, the fit in fact
gives the “renormalized” value of s instead of the “bare” one.

Although the one-dimensional stepping stone model provides a reasonable approximation to
neutral genetic demixing at a linear front of an expanding two-dimensional microbial colony
(see Fig. 3), there are additional subtleties associated with the dimensional reduction from two
to one dimensions when one of the alleles is more fit. Apart form the undulations of the front
mentioned in the caption of Fig. 2, the front develops additional structure because favorable
sectors bulge out ahead of their less fit neighbors. In the limit of very small genetic drift, there
are kink singularities where favorable and unfavorable domains meet. Nevertheless, the basic
picture of domain boundaries engulfing unfavorable sectors at a constant velocity is still valid;
see Hallatschek and Nelson (2010) for further details.
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VII. SIMULATIONS
In Secs. III–VI, we reviewed and extended the theoretical analysis of the one-dimensional
stepping stone model. This model, while of great theoretical interest, relies on a restrictive set
of assumptions including large deme sizes and slow diffusive migration. The recent
experiments by Hallatschek et al. (2007), on the other hand, were carried out with bacterial
fronts that were only a monolayer thick; therefore, demes consisted of only a few microbes.
Moreover, depending on the micro-organism, nearby demes can exchange a significant fraction
of cells in each generation. In this section, we discuss numerical simulations not subject to
these restrictions and compare them with the theoretical predictions.

We simulate L organisms arranged on a line and labeled by an integer l, l=1,2,…,L. Each
organism can be of either allelic type 1 or allelic type 2. During even generations, the offspring
at site l comes from an organism at either site l−1 or site l, whereas during odd generations it
comes from either site l or l+1. The simulations embody the process illustrated in Fig. 2, laid
out on a triangular lattice in space and time. Periodic boundary conditions are imposed at the
left and right ends of the population. Let 12→2 refer to the event that the offspring has allelic
type 2, while one of its possible parents has allelic type 1, the other has allelic type 2, etc. The
transition probabilities, which depend on the states of the possible ancestors, are then given by

(61)

The event 12→2 can happen either if allele one was selected for reproduction (probability 1/2
+s̃/4) and mutated (probability µ̃12) or if allele two was selected for reproduction (probability
1/2−s̃/4) and did not mutate (probability 1−μ̃21). Other transition probabilities are obtained
analogously. Thus, the system we simulate is similar to the voter model (Cox and Griffeath,
1986), which equivalent to population genetics models with N=1 (see Appendix F). However,
to make the calculation faster, we use discrete generations rather than exponentially distributed
waiting times until reproduction. We found no significant differences in dynamics between the
voter model and the model used here.

First, we simulate the neutral model without mutations. To illustrate the similarities and
differences between the stepping stone model and the undulating-front model, we also simulate
a linear population wave in a two-dimensional habitat; both models are displayed in Fig. 2.
Our model with an undulating front is the same as in Saito and Müller-Krumbhaar (1995), but
we use a triangular grid instead of a square one. Figures 6 and 7 show how the average number
of domain boundaries decreases with time; the insets show the mean-square displacements of
the boundaries as a function of time. The simulations confirm that the domains move diffusively
for the one-dimensional model with a flat front and superdiffusively for the undulating-front
(Eden) model, in agreement with Saito and Müller-Krumbhaar (1995). Therefore, the number
of domain boundaries decays faster for the undulating-front model compared to the flat-front
model, which, as we show below, most closely tracks the prediction of the one-dimensional
stepping stone model.
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A single run of a simulation is shown in Fig. 8, and the spatial heterozygosity averaged over
many realizations is shown in Fig. 9. Figure 10 shows that H(t,x) for large t is described well
by the limiting shape of spatial heterozygosity given by Eq. (37).

To properly represent H(t,0), we artificially define demes of a larger size by grouping M
neighboring individuals into one deme. From a theoretical point of view, this procedure is
similar to the formation of the Kadanoff block spins as in renormalization-group methods
(Wilson and Kogut, 1974; Goldenfeld, 1992) whereas, from the point of view of population
genetics, this procedure is similar to the methods of collecting data from a dispersed natural
population. In field studies, scientists do not typically sample every single individual, instead,
they often divide the habitat into patches and sample a representative number of individuals
from those patches. To summarize, we keep the dynamics of the simulation exactly the same
but define the spatial heterozygosity on the demes of size M rather than on single individuals
(see Fig. 9). We found that the local heterozygosity has the form H(t,0)=β(M)t−1/2, as predicted
by our analysis of the stepping stone model, for all M studied (1≤M≤64). From Eq. (36), we
expect that β∝M−2; this expectation is also confirmed by our simulations.

As discussed in Sec. IV, the total fraction of allele one (t) fluctuates in an unusual way with
time. Figure 11(a) shows examples of these remarkable variable-step-length random walks.
The fluctuations of (t) obey Eq. (44) and grow subdiffusively, as shown in Fig. 11(b). We also
find good agreement between the theory and the simulations in the presence of mutation for
all values of M studied. The stationary average heterozygosity for M=1 is shown in Fig. 12.
Finally, we studied selective sweeps in an initially well-mixed population. Figure 13(a)
confirms the prediction from Eq. (58) that F∝1−e−αt and Fig. 13(b) confirms the result of Sec.
VI that, for strong genetic drift, the effective extinction rate α is proportional to s2. Numerical
results for three neutral alleles are presented in Appendix E.

VIII. INFLATION
Throughout this review we have focused on the evolutionary forces acting at a linear (flat or
undulating) front, whose total length (averaged over the undulations) does not change in time.
In this section, we explore the changes in the evolutionary dynamics caused by a constant
increase of the total front length, for example, at the edge of an expanding circular colony (see
Fig. 14). We now show that this increase, which we term “inflation” in an analogy with
cosmology (Guth, 1981), slows down genetic drift and natural selection at the front.

Models of both linear and circular fronts are relevant to biology. Linear fronts describe the
essential features of the dynamics when the effects of curvature and changes in the front length
are negligible or when the spreading is limited by some geographical barriers, say, a receding
glacier between two parallel rivers. If one focuses on genetic markers in Homo sapiens (e.g.,
in mitochondria DNA), dynamics of a linear front also resembles the abrupt settlement by
pioneers via a “land run” in 1889 across the border of Oklahoma (Gibson, 1965). Circular
fronts are more appropriate for modeling an initial colonization by a small number of pioneers
arriving in the interior of a large spatially homogeneous habitat. Semicircular fronts are relevant
to colonization after landing on a coast line. The circular scenario is often realized in
microbiological experiments when a Petri dish is inoculated with micro-organisms. A radial
range expansion of E. coli is shown in Fig. 14, which highlights the effects of genetic drift at
the front.

The growth of a circular colony lengthens the front, thereby increasing characteristic local
length scales. This inflation is specified by the dependence of the radius of the colony R on
time t. Here we assume R(t)=R0+vt, which corresponds to a colony expanding with a constant
velocity v from an initial radius R0. The velocity of the expansion has been found constant in
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the experiments by Hallatschek et al. (2007) and in the theoretical studies of the two-
dimensional Fisher equation (Murray, 2003), provided the width of the front is much smaller
than its length, a condition necessary for a one-dimensional model to hold.

To highlight the effects of inflation, we consider the simplest version of the one-dimensional
stepping stone model without mutations and natural selection. In a circular geometry, it is
convenient to use the angle φ=x/R(t) instead of x to reference positions along the front. Then,
the equation of motion for H(t,x) takes a form analogous to Eq. (33),

(62)

where the factors of R0+vt have been introduced to account for the inflation. Like Eq. (33),
Eq. (62) is valid for an arbitrary number of neutral alleles and can be understood by tracing
two lineages backward in time. The time dependence of the coefficients in front of the diffusion
and coalescence terms accounts for the fact that, as the colony grows, the same sizes in the φ
space correspond to different sizes in the x space, where the diffusion and coalescence terms
have their familiar time-independent form as in Eq. (33). When re-expressed in terms of t and
x=(R0+vt)φ, Eq. (62) contains an advection term describing the deterministic decrease of the
separation between the lineages as they go back to the initial radius R0.

Equation (62) is defined on a bounded domain φ∈[−π, π] with periodic boundary conditions.
Nevertheless, we can approximate the problem well by considering an unbounded domain φ∈
(−∞,∞), provided two diametrically opposite lineages are sufficiently unlikely to coalesce.
From Eq. (62), we see that diffusion effectively stops after a characteristic time R0/v, so our
approximation of an unbounded domain should be valid if the distance traveled by the lineages
during this time is small compared to the radius of the colony:  or Ds/v≪R0;
this corresponds to a regime with many sectors as we show later. One can also test the goodness
of the approximation by evaluating H(0,π)−H(t,π), which is expected to be small if the
approximation is valid.

To simplify the analysis, we make Eq. (62) dimensionless in terms of the new variables t and
ϕ such that  and φ=ϕDs/DgR0. The equation of motion for H(t,ϕ) then reads

(63)

where the dimensionless parameter  is proportional to the ratio of two
characteristic time scales in the problem: the local fixation time  in the model of a
linear front and the time in which the colony doubles its initial radius.

Upon assuming ϕ∈(−∞,∞), we obtain the exact solution of Eq. (63) for the initial condition H
(0,φ)=H0 by a generalization of the method presented in Appendix B,

(64)

where
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(65)

The behavior of H(t,ϕ) is shown in Fig. 15. Similar to a linear front, the local heterozygosity
H(t,0) vanishes for large times, and the characteristic angular length scale over which H(t,φ)
changes from 0 to H0 increases. Thus, Eq. (62) predicts the formation and growth of the
domains shown in Fig. 14. However, there are two important differences that distinguish radial
expansions from linear ones. First, H(t,0) tends to zero as t−1 rather than as t−1/2. Second, the
curve H(t,φ) approaches a nontrivial limit shape, unlike the case with a linear front, where the
analogous curve widens indefinitely.

Following Hallatschek et al. (2007), we can qualitatively understand this behavior by noticing
that the diffusion and lineage coalescence effectively stop after the characteristic time R0/v.
After this point, the number of domain boundaries and the angular width of the domains remain
approximately constant. Therefore, H(t,0), which is proportional to the fraction of the
circumference occupied by the boundaries between the domains, should decay as t−1, and the
shape of H(t,φ) should approach a nontrivial limit.

From the exact solution [Eqs. (64) and (65)], we compute the average angular size of the
domains ℓφ(t) and the average number of the domains (t)=2π/ℓφ(t). Similar quantities were
calculated by Hallatschek and Nelson (2010) in the approximation of random walking domain
boundaries, which appropriate when t>τf. Although we cannot use Eq. (C4) because of the
inflation, Eq. (C2) remains valid and takes the following form:

(66)

By integrating Eq. (62) over φ in the neighborhood of 0, we express ∂H(t,+0)/∂φ in terms of
H(t,0) and obtain

(67)

which approaches a constant at long times. This limit can be computed analytically, with the
results
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(68)

(69)

Equation (69) implies two things. First, by measuring (∞) as a function of the initial
homeland radius R0, one can estimate both Ds and Dg for a microbial population, which could
potentially be easier than the experiments with linear fronts that we proposed in Sec. IV.
Second, if all individuals in the founding population are distinguishable (H0=1), then each of
the final sectors must originate from a single ancestor. Hence, (∞) for H0=1 gives the average
number of ancestors of the genetically segregated population at the periphery, which contains
most of the organisms. This number is remarkably small. Figure 14, where H0=1/2, has about
20 domains, so, since (∞)∝H0, the segregated part of the population descended from only
about 40 ancestors, a tiny fraction of about 20 000 founding cells. Although some of these cells
are trapped in the interior of the homeland, a large number of them are piled in a ring at the
edge of the homeland within minutes of inoculation as the carrier fluid dries out (Hallatschek
et al., 2007).

We can further quantify the amount of genetic drift in the population by the variance ν(t) of
the total fraction of allele one (t). For simplicity, we assume a population with only two alleles.
For several alleles, the global heterozygosity ℋ(t) is more appropriate and can be easily
obtained from our expressions for ν(t) because ℋ(t)=H0−2ν(t). We compute ℋ(t) and thus ν
(t) by integrating Eq. (62) over φ; the result is

(70)

We are mostly interested in the long-time limit ν(∞), which is approached asymptotically as
t−1. This limit can be expressed as

(71)

where ; H*(t,ϕ) is the solution of Eq. (63) for H0=1. The
dependence of K on σ is shown in Fig. 16. In the limit of large Dg (approximated by the voter
model; see Appendix F), an analytical expression for ν(∞) is given by Eq. (F7).

Even though inflation slows down lineage diffusion and coalescence, genetic drift can still
cause large fluctuations in the relative frequency of the alleles. These fluctuations are
particularly important for any organism that undergoes spatial colonizations followed by
almost complete extinctions (such life cycles are common both in nature and in the laboratory).
For such organisms, ν(∞) or ℋ(∞) characterizes the effective genetic drift, which is much
larger than the one predicted by well-mixed-population models. We also note that the effects
of genetic drift could be more pronounced at a circular front because natural selection is less
efficient in the presence of inflation: domains of deleterious alleles persist longer because the
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contraction of the domain due to the Darwinian selection must also be able to overcome its
natural expansion due to inflation.

IX. GENETIC INFERENCE
So far, we have focused on forward-in-time dynamics while trying to calculate the patterns of
genetic diversity from simple models of evolutionary dynamics. However, it is often necessary
to reverse the question: Given the observed genetic diversity, how do we infer the recent history
of the population and estimate important parameters such as the mutation rates and the effective
population size? This question is particularly important because the current state of genetic
diversity is often the only clue to the past. Fortunately, genetic inference can be very powerful
because the differences among the genomes of individuals contain valuable information about
the evolution of the population, and these differences can now be easily measured via DNA
sequencing. For example, genetic inference has been used to determine the time and origin of
the recent expansion of Homo sapiens (Ramachandran et al., 2005) and to test whether Homo
sapiens and Homo neanderthalensis used to interbreed (Nordborg, 1998).

Genetic inference is a well-developed subject, which becomes rather technical when one wants
to incorporate biological details and use advanced statistical tools. In this section, we address
some of the basic questions in genetic inference and highlight the differences between the
spatial and nonspatial models. The results for well-mixed-population models presented here
are usually attributed to Kingman (1982); we refer the interested reader to the book of Wakeley
(2008) for an introduction.

In a typical study, n organisms are sampled from the population and parts of their genomes are
sequenced (see Fig. 17). A genetic sequence, say …ACTGAA…, is an ordered string of letters
taken from a four-letter alphabet: A, T, C, and G, where the letter stand for the nucleotides
adenine, thymine, cytosine, and guanine, respectively. For haploid organisms considered here,
an offspring inherits its sequences from the parent with possibly a few mutations (but no
recombination). While a wide range of mutations is possible, we consider only point mutations,
i.e., substitutions of one letter for another. Moreover, we assume that every new point mutation
occurs at a new site (position) in the genome (Kimura, 1969). Because the mutation rate per
site μ is very small and the total number of sites ℒg (i.e., the length of the sequenced section
of the genome) is large, most of the mutations occur at different positions along the sequence,
so this infinite site approximation is reasonable on time scales shorter than μ−1. For simplicity,
we neglect the dependence of the mutation rates on the position within the genome as well as
on the type of substitution, i.e., all 12 possible substitutions are assumed to occur at the same
rate μ. We further assume that all genetic variation is neutral (Kimura, 1983).

In principle, the complete data set of n sequences of length ℒg can be and often is used to
estimate parameters in the model. However, we can understand the basic principles of genetic
inference by considering two simple summary statistics: the average number of pairwise
differences Π and the number of segregating sites S, i.e., the number of sites that do not have
identical nucleotides in at least two sequences in the sample. The former is intimately related
to the average heterozygosity H and the latter illustrates the use of genealogical trees in genetic
inference (see Fig. 17).

We first consider Π, which is defined as the expected number of different sites in two randomly
selected sequences. In a finite population, any two sequences have a common ancestor, so, as
we trace them backward in time, their lineages must coalesce. We denote the average time it
takes two lineages to coalesce by T2. Then the expected number of pairwise differences is given
by
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(72)

where the factor of 2 accounts for the fact that mutations occur in both lineages.

Since genetic inference deals with backward-in-time dynamics, it is convenient to use reverse
time τ=−t. To calculate T2, we introduce the persistence probability U2(τ), the probability that
two lineages sampled at t=0 have not coalesced between t=0 and −τ. Because U2(τ) is the
cumulative probability distribution function for the coalescence times, the desired probability
density function is −dU2(τ)/dτ and T2 can be calculated from

(73)

For a one-dimensional population, we have to take into account the positions where the
organisms are sampled. Therefore, we introduce U2(τ,x1,x2) as the probability that two lineages
have not coalesced and are at positions x1 and x2 at reverse time τ. Then, U2(τ) is given by

(74)

where L is the length of the habitat.

The time evolution of the persistence probability and the average heterozygosity are intimately
related in both well-mixed and spatial populations because both quantities describe the fate of
two lineages traced backward in time. In fact, the equation of motion for H(t) is identical to
that of U2(τ), and the same is true for H(t,x1,x2) and U2(τ,x1,x2). For example, in the well-
mixed-population model considered in Sec. II, H(t) and U2(τ) change only due to coalescence
events, and each coalescent event changes both quantities from their current values to 0. Thus,
analogously to Eq. (7) the equation of motion for U2(τ) reads

(75)

with the initial conditions U2(0)=1. For the one-dimensional stepping stone model, we obtain
that

(76)

in analogy with Eq. (30) for μ12=μ21=s=0. The initial condition is
, where  and  are the positions of the first and second

lineages at the time of sampling.

For the well-mixed case, we integrate both sides of Eq. (75) with respect to τ from zero
[U2(0)=1] to infinity [U2(∞)=0] and use Eq. (73) to find that . Then, from Eq. (72), we
obtain the average number of pairwise differences,
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(77)

The mutation rate μ can often be measured experimentally (Drake, 1991;Araten et al., 2005),
so Eq. (77) and the knowledge of Πwell mixed can be used to estimate the effective population
size encoded in g [see Eq. (4)].

For the one-dimensional stepping stone model, one has to specify the spatial boundary
conditions for Eq. (76). Since a lineage can neither go outside the habitat nor disappear at its
edge, reflecting boundary conditions should be used. With these boundary conditions, Eq. (76)
has been analyzed by Wilkins and Wakeley (2002). Here we assume periodic boundary
conditions, which are appropriate for a population living on a coast line of an island. These
boundary conditions are simpler because they ensure translational invariance: the average
coalescence time for two lineages sampled at  and  can only depend on  but not on

 and  separately.

Following Wilkinson-Herbots (1998), we solve Eq. (76) with periodic boundary conditions by
the Fourier transform in the positions and the Laplace transform in reverse time. The result is

(78)

where the first term on the right-hand side is the average coalescence time for two lineages
sampled at the same point and the second term is the average time for two lineages to meet for
the first time.4 Note that T2(x1,x1) is identical to T2 in a well-mixed population, provided we
take the effective population size to be the total size of the spatially extended population:

, where L/a is the number of demes (a is the distance between
neighboring demes). Note that the distribution of the coalescence times is highly skewed, and
the average coalescence time does not characterize the distribution well: most of the time
coalescence occurs very fast compared to T2(x1,x1), but in rare cases lineages persist for times
much longer than T2(x1,x1) (Charlesworth et al., 2003).

The average number of pairwise differences for the whole data set is obtained by averaging
over the spatial positions of the samples xj, j=1,2,…,n,

(79)

where the factor n(n−1)/2 accounts for the total number of different ways to pair up the
sequences. Given the mutation rate μ and a sufficiently large sample size n, one can use Eqs.
(79) and (78) to estimate Dg and Ds. Both parameters can be estimated because Π1d, unlike
Πwell mixed, depends on the spatial positions of the samples as well as on the properties of the
population. Thus, one can generate independent equations to estimate Dg and Ds using different

4The average time to the first encounter of two random walks on an interval with periodic boundary conditions is equal to the average
survival time of a single random walk with twice the diffusion constant on the same interval but with absorbing boundary conditions.
This equivalent problem can be solved by a standard method [see, e.g., Redner (2001)].
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subsets of the samples; for example, Dg can be estimated from the samples taken from the same
point and Ds can be estimated from the remaining samples. Note, however, that Π1d depends
only on μ/Dg and μ/Ds, so at most two parameters can be estimated from the data; similar
considerations hold for the well-mixed case as well.

The average number of pairwise differences is relatively easy to compute in both spatial and
nonspatial models because it depends on the history of only two lineages. For the same reason,
Π does not illuminate the underlying treelike genealogy of the sample (see Fig. 17), and a
different statistic is needed for that purpose. Under the infinite site assumption, a given site is
either monomorphic, i.e., all samples have the same nucleotide at this site, or polymorphic,
i.e., two different nucleotides are found: one is ancestral and the other is due to a mutation.
Only the polymorphic sites contain information about the underlying genealogy, and the
frequencies of mutations at each site are often used for genetic inference. Here we consider a
simpler summary statistic, the number of segregating sites S, i.e., the expected number of
polymorphic sites in the sample.

As we go backward in time, the number of lineages decreases due to coalescence events from
n to n−1, to n−2, etc., until it eventually reaches 1; we consider only pairwise coalescence
events assuming the population size is sufficiently large so that the coalescence of more than
two lineages at one time is unlikely. Let Tj be the average time when j lineages are present.
Then the expected number of polymorphic sites is given by

(80)

where the factors of j account for the fact that mutations can occur in any of the j lineages
during the time interval Tj.

For a well-mixed population, we compute Tj by noticing that any of j(j−1)/2 distinct pairs of
lineages can coalesce next and, from Eq. (75), each pair has a constant coalescence rate of

g. Hence,

(81)

and from Eq. (80)

(82)

where the approximation is valid for large sample sizes n (Gradshteyn and Ryzhik, 1980) and
γ is the Euler constant.

For a one-dimensional population, one could try to generalize the approach used to calculate
T2 for multiple lineages, but this method seems prohibitively difficult for large n. However,
we can qualitatively understand the effects of spatial structure by considering n lineages
sampled uniformly in x from the habitat. While analyzing a related problem of annihilating
random walks (see Appendix F), Doering and ben-Avraham (1988) and Zhong and ben-
Avraham (1995) showed that for a generic uniform spatial distribution of the samples the
number of surviving lineages j at reverse time τ decays as
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(83)

for intermediate times, when, on the one hand, the time is sufficiently small for any lineage to
diffuse across the whole habitat (τ≪L2/Ds), but, on the other hand, the time is sufficiently large
for neighboring lineages to coalesce .

Since Tj is the time during which the number of lineages changes from j to j−1, it follows from
Eq. (83) that

(84)

where τ(j) is the inverse function of j(τ) used in Eq. (83). Equation (84) is only valid for
intermediate j values: 1≪j≪n because of the similar restrictions on Eq. (83). Upon comparing
this one-dimensional result for Tj to Eq. (81), we see that the well-mixed model overestimates
the contribution to the number of segregating sites from the recent part of genealogy with a
large number of lineages. This should also be true for the initial stage j≈n, where Eq. (83) is
not valid, because faster coalescence results from the fact that a lineage has to travel only about
L/n to meet its neighbor. Other statistics that rely on the relative duration of periods with j
lineages should be affected in a similar way. This is particularly important when the deviations
of the observed genealogical data from the predictions based on Eq. (81) are used to infer past
evolutionary events, such as a selective pressure or geographic isolation (Wakeley, 2008),
because some of these deviations could be due to the spatial structure of the population rather
than external or internal perturbations.

In summary, the classic theory of genetic inference can be extended to spatial populations.
These extensions are not only more accurate and realistic than assuming the well-mixed-
population dynamics but also can be used to obtain information about the migration within the
habitat (Wilkins and Wakeley, 2002). As spatially resolved genetic data sets become more
readily available, better statistical tools based on spatial population genetic models will be
needed.

X. CONCLUSIONS
Fluctuations due to sampling error during reproduction significantly affect the evolutionary
dynamics of quasi-one-dimensional populations, e.g., two-dimensional populations
undergoing range expansions. These fluctuations lead to the genetic demixing illustrated in
Fig. 18, where an initially well-mixed population of alleles “phase separates” into monoallelic
domains. The transition is somewhat analogous to spinodal decomposition in physics and
materials science (Scheucher and Spohn, 1988) but is also markedly different. In particular,
unlike conventional demixing phase transitions in finite-temperature statistical mechanics,
genetic demixing occurs only in a low number of spatial dimensions d (d≤2) (Scheucher and
Spohn, 1988;Duty, 2000). The dependence of genetic demixing on the number of spatial
dimensions d is illustrated by the decay of local heterozygosity in the absence of selection and
mutation. For long times, the functional form of the decay is given by Duty (2000),
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(85)

Note that d=2 is the critical dimension.

Here we have shown that the one-dimensional stepping stone model has very different
dynamics compared to the standard well-mixed-population models used in population genetics.
Most of the differences arise because, in the spatial model, populations segregate into
monoallelic domains. As a result, genetic drift and selection can only act at the boundaries of
the domains, which slows down the dynamics of the model. In particular, we found that, in the
neutral model without mutation, fixation occurs exponentially fast in a well-mixed population,
but the decay of heterozygosity is algebraic in the spatial model. Genetic drift in the population
as a whole becomes weaker with time as spatial diffusion causes the effective population size
to increase. For a linear one-dimensional model, we also found that the standard deviation of
the total fraction of one of the alleles (in the absence of selection and mutation) increases
subdiffusively as t1/4. Selective sweeps also occur more slowly in the spatial model: for weak
selection, , we found that the time constant of the selective sweep is quadratic in s
in the linear spatial model, but it is only linear in s in the well-mixed-population model. The
effects of mutation do not differ as dramatically in spatial and nonspatial models, but the
stepping stone model reveals nontrivial spatial correlations and predicts a different value for
the local steady-state heterozygosity, proportional to  for small mutation rates,
compared to μ12+μ21 in the well-mixed-population model. The evolutionary dynamics of
spatial models also depends on the geometry of the expansion. For radial expansions, we found
that the number of domains approaches a finite limit, which is, up to an additive constant,
proportional to the square root of the initial radius of the colony R0.

Our main conclusion is that the data from natural populations may not always conform to the
predictions of the well-mixed-population model and, even when they do, the estimated
parameters from the model may not be biologically meaningful. The spatial model contains an
important additional parameter, the spatial diffusion constant parameter Ds, which enters into
many of the predictions. For example, the time scale for local fixation is given by  rather
than Nτg [see Eq. (36)] and, for small selective advantage, s is sometimes replaced by

 (see Sec. VI). Moreover, as we saw in Sec. VII, the time scale of fixation depends on
the partitioning of the population by the experimenter into measurement sites. Thus care must
be taken when interpreting the data from the natural populations. Finally, well-mixed-
population models and experiments without spatial resolution do not account for spatial
correlations, which contain important information about the population (see Secs. V and IX).
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APPENDIX A: THE ITÔ CALCULUS
In this appendix, we discuss the Itô calculus. Our presentation relies on Gardiner (1985) and
Risken (1989), which can be consulted for a more extensive presentation. For simplicity, we
only consider nonspatial stochastic differential equations, but the results can be extended to
spatial problems straightforwardly.

We analyze the following stochastic differential equation, which includes Eq. (21) as a special
case:

(A1)

where Γ(t) satisfies Eq. (22) and ω(ψ) and g(ψ) are arbitrary continuously differentiable
functions. From the point of view of ordinary calculus, Eq. (A1) is not well defined because
Γ(t) is discontinuous at every point. One way to circumvent this problem is to use discrete time
steps of infinitesimal length δt rather than continuous time. Then, Eq. (A1) takes the following
form:

(A2)

However, this is not the only way to interpret Eq. (A1). For example, an alternative way to go
from the continuous to a discrete description is to write Eq. (A1) as

(A3)

In fact, there is an infinite number of ways to interpret Eq. (A1), depending on the relative
weight of ψ(t) and ψ(t+δt) inside the arguments of the functions on the right-hand side of the
equation. The two most commonly used interpretations are Itô’s and Stratonovich’s
prescriptions. The former corresponds to Eq. (A2) and the latter to Eq. (A3).

In physics, Stratonovich’s prescription is commonly used because Γ(t) is usually an
approximation to a thermal noise with small but finite correlation time; therefore, the argument
of g(·) should be an average value of ψ over the time that the correlations persist. In population
genetics, on the other hand, Ito’s prescription is appropriate because a random change of the
allele frequencies depends only on the genetic composition of the population prior to the
change.

Without the stochastic term, Eqs. (A2) and (A3) would yield the same results provided δt is
sufficiently small, but the stochastic terms remain different even in the limit δt→0. An easy
way to see this difference is to average Eqs. (A2) and (A3) with respect to the nondifferentiable
noise function Γ(t). Itô’s prescription gives 〈ψ(t+δt)〉−〈ψ(t)〉=〈ω(ψ(t))〉δt because 〈g(ψ(t))Γ
(t)〉=〈g(ψ(t))〉〈Γ(t)〉=0 due to the independence of ψ(t) and Γ(t). A similar simplification,
however, cannot be applied to Stratonovich’s prescription because, generically, the stochastic
term depends on ψ(t+δt), which is not independent of Γ(t).

Because of the aforementioned ambiguity in interpreting stochastic differential equations with
multiplicative noise, care must be taken while differentiating stochastic variables. While the
rules of ordinary calculus apply to Stratonovich’s prescription, special rules of the Itô calculus
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are required for Itô’s prescription when tracking the evolution of a composite function u(ψ(t))
of the stochastic variable obeying Eq. (A1). In this paper, we use Itô’s formula, namely
(Gardiner, 1985;Risken, 1989),

(A4)

where u(ψ) is a twice continuously differentiable function and the primes now indicate
differentiation with respect to ψ. The last term is the crucial addition due to the Itô calculus.

We conclude this discussion with an illustration of how Eq. (A4) can be used by deriving Eqs.
(6) and (7) from Eq. (21) assuming s=0 and μ12=μ21=0. Thus, we start from the following
equation of motion for f(t):

(A5)

Thus, ψ(t)=f(t), ω(ψ(t))=0, and . Since F(t)=〈f(t)〉, we obtain Eq.
(6) by averaging Eq. (A5). For H(t)=〈h(t)〉=〈2f(t)[1−f(t)]〉, we use Eq. (A4) with u(ψ(t))=2ψ
(t)[1−ψ(t)] to obtain the equation of motion for h(t),

(A6)

Upon averaging Eq. (A6) with the rules described above, we obtain Eq. (7).

APPENDIX B: SOLUTION OF THE NEUTRAL MODEL WITHOUT MUTATIONS
In this appendix, we solve Eq. (33) subject to the initial condition H(0,x)=H0. It is advantageous
to first solve a simpler equation,

(B1)

where b(t) is an arbitrary function of time. Equation (B1) is a standard diffusion equation with
a sink term, and it can be readily solved in the Fourier domain. The result is

(B2)

Note the convolution of b(t′) with the diffusion propagator. Now, we impose a self-consistency
condition b(t)=DgH(t,0), which leads to

(B3)

This is Abel’s integral equation of the second kind, canonically written as
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(B4)

where g(x) is a known function. The general solution of Eq. (B4) given by Polyanin and
Manzhirov (1998) reads as

where

(B5)

Equations (34) and (35) follow from Eqs. (B2)–(B5).

For radial expansions considered in Sec. VIII, one can solve the equation of motion for H(t,
ϕ) by following the same set of steps.

APPENDIX C: AVERAGE DOMAIN DENSITY FROM THE SPATIAL
HETEROZYGOSITY H(t,x)

In this appendix, we derive the relationship between the spatial heterozygosity H(t,x) and the
average domain density nd(t). From nd, we can get a domain size by defining . The result
for the domain density is valid for an arbitrary number of alleles, so in this appendix we use a
broader definition of H(x,t) as the average probability of sampling at time t two different alleles
from two demes distance x apart. We assume that the domains have formed, and they are on
average much larger than the boundary regions.

Let h(t,x1,x2) equal to 1 if both x1 and x2 are occupied by organisms in different allelic state
and 0 otherwise. To compute ℓ, we use an alternative definition of H(t,x) with ensemble average
replaced by space average,

(C1)

where we assume periodic boundary conditions. We compute

for δx small compared to typical domain size but large compared to the deme spacing a. To do
so, we expand both sides in δx. At the lowest order in δx, each domain boundary contributes
δx to the right-hand side; therefore, ∂H(t,+0)/∂x equals the density of the domain boundaries.
Upon defining the average domain size ℓ(t) as the inverse of the domain boundary density, we
obtain the following relationship:
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(C2)

This relation is analogous to the one derived by ben-Avraham (1998).

We can further simplify Eq. (C2) by observing that

(C3)

which follows from integrating Eq. (32) or (D1) with respect to x from −ε to ε, 0<ε≪1, and
noticing that H(t,x) is an even function of x. The final result then reads

(C4)

It should be emphasized that this result is only valid in the limit of very large domain sizes
compared to the boundary regions, which means H(t,0)≪1. Therefore the leading term in H
(t,0) is sufficient at this level of approximation. Note that Eqs. (C2) and (C4) are valid in the
presence of genetic drift, migration, selection, and mutation. For radially expanding
populations subject to inflation, Eq. (C2) remains valid, but Eq. (C4) is replaced by Eq. (66).

APPENDIX D: INFINITE ALLELE MODEL
In this appendix, we extend the analysis of the stepping stone model with mutations presented
in Sec. V to the infinite allele model. The infinite allele model assumes that every new mutation
creates a new allele, which is a good approximation for genes encoded by a large number of
nucleotides because the number of all possible mutations is much larger than the number of
all possible back mutations (Hartl and Clark, 1989). The equation of motion for H(t,x), which
we interpret as the average probability of sampling two different alleles from demes x apart,
can be derived by following two lineages backward in time, as done in Sec. IV. In the presence
of mutation, the right-hand side of Eq. (33) should contain an additional term describing the
rate of increase of H(t,x) due to mutations in both of the lineages. Because, in the infinite allele
model, a mutation changes the probability that the organisms have different alleles from H to
1, that is, by 1−H, the new term is 2μ(1−H), where μ is the mutation rate that is assumed to be
the same for all types of mutations. Thus, Eq. (33) becomes

(D1)

for the infinite allele model [compare Eq. (47)]. The stationary solution of Eq. (D1) is given
by

(D2)
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At large separations, H(∞,x) approaches 1, which is consistent with the infinite number of

alleles. Locally, , and if H(∞,0)≪1 the population is segregated
into domains containing only one allelic type. The average size of such domains follows from
Eq. (C4),

(D3)

where the last equality follows from the assumption that H(∞,0)≪1. The approach to the
stationary state can be obtained either by methods of Appendix B or by the change of variables
H(t,x)=H(∞,t)+e−2μtĤ(t,x), which reduces Eq. (D1) to Eq. (33). The result is that the slowest
decaying mode vanishes as C̃t−1/2e−2μt, where C̃ is a constant.

The infinite allele model and Eq. (D1) have been analyzed before by Nagylaki (1974) and
Malécot (1975), who calculated the stationary solution and the long-time approach to the
equilibrium. Our results are consistent with their findings.

APPENDIX E: A MODEL WITH SEVERAL NEUTRAL ALLELES
A model with q neutral alleles is an intermediate case between the two-allele model that we
focus on in this paper and the infinite allele model discussed in Appendix D. The q-allele model
is also analogous to nonequilibrium q-state Potts models. In this appendix, we outline how the
q-allele model can be formulated and solved in the language of one- and two-point correlation
functions, compare our analytical predictions to simulations, and extend Eq. (44) to the
undulating-front model.

To specify the q-allele model, we let fi(t,x) be the frequency of allele i at time t and position
x; these quantities satisfy . The spatial diffusion and coalescence probability of
two lineages are still characterized by Ds and Dg, respectively. Intra-allelic mutations are
described by the mutation matrix μij, which is the probability of allele i mutating into allele j

if i≠j. When i=j, we let  to describe the outflow of alleles from allelic state i
due to mutations.

The dynamics of the q-allele model can be analyzed by considering one-point correlation
functions Fi(t,x)=〈fi(t,x)〉 and two-point correlation functions Fij(t,x1,x2)=〈fi(t,x1)fj(t,x2)〉.
Fi(t,x) is the probability to find allele i at position x at time t and Fij(t,x1,x2) is the probability
to simultaneously find at time t allele i at position x1 and allele j at position x2. The evolution
equations for these correlation functions are obtained by tracing one and two lineages backward
in time; the results are

(E1)
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(E2)

where δij is Kronecker’s delta, which is 0 if i≠j and 1 otherwise. Thus, for a generic mutation
matrix μij one has to solve a system of coupled linear partial differential equations.

For simplicity and the ease of comparison with the other results in this paper, assume spatial
homogeneity and identical mutation rates between any two alleles, μi≠j=μ/q. Under these
assumptions, Eq. (E2) can be simplified by introducing averaged spatial heterozygosity,

(E3)

which is the probability to sample two different alleles at time t distance x apart. The equation
of motion for H(t,x) can be derived both from Eq. (E2) and, more simply, by tracing two
lineages backward in time,

(E4)

Note that Eq. (E4) agrees with Eq. (D1) in the limit q→∞ and with Eq. (47) for μ12=μ21=μ/2.
Since Eq. (E4) has the same functional form as Eq. (D1), the methods of Appendix D can be
used to solve for H(t,x).

In the absence of mutations, Eq. (E4) is identical to Eq. (33), as mentioned in Sec. IV. However,
q-allele models with different q may have slightly different dynamics due to q-dependent initial
conditions: for example, an initially well-mixed population is represented by H(0,x)=H0=1−1/
q. Thus the results of Sec. IV apply to the q-allele model, provided appropriate initial conditions
are used. In particular, we expect the standard deviation of i(t), the total frequency of allele
i, in a finite population to grow as t1/4. This is indeed confirmed by our simulations shown in
Fig. 19. Spatial correlations in the nonequilibrium q-state Potts model have recently been
analyzed by Masser and ben-Avraham (2000), who also found that two-point correlation
functions obey the same q-independent equation of motion.

Finally, one can obtain the behavior of the standard deviation of the total frequency of allele
one Δ(t) in the undulating-front model by the following scaling argument. We consider Δ(t) at
large times after monoallelic domains have formed. Let Nd(t) be the number of domains
consisting of allele one and dk(t), k=1,2,…,Nd(t), be lengths of these domains. Then, Δ(t) is
given by
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(E5)

We simplify Eq. (E5) by making an approximation that Nd(t) and dk(t) for k=1,2,…,Nd(t) are
independent random variables, which gives

(E6)

where we used the fact that di(t) are identically distributed.

By using first passage time analysis discussed by Redner (2001), one can show that

Thus

(E7)

Upon recalling that, in the undulating-front model, 〈d1(t)〉∝tζ and 〈d1(t)〉2∝t2ζ, we conclude
that

(E8)

where, in the last proportionality, we used ζ=2/3 from Saito and Müller-Krumbhaar (1995).
Equation (E8) is in good agreement with the simulations of the undulating-front model shown
in Fig. 20.

APPENDIX F: CONNECTION WITH THE VOTER MODEL AND ONE-
DIMENSIONAL REACTION KINETICS

The stepping stone model with only one organism per island or “deme,” N=1, has been
extensively studied in probability theory (Durrett, 1988; Liggett, 2004) and nonequilibrium
statistical mechanics (Ódor, 2004), where it is known as the voter model. The model typically
considers a set of voters on a hypercubic lattice in d dimensions. Each voter holds one of the
q possible opinions about an issue (corresponding to q alleles in population genetics), and, at
a certain rate, each voter reconsiders the issue and adopts the opinion of a randomly chosen
nearest neighbor. The voter model can be mapped onto the dynamics of the q-state Potts model
at zero temperature. In one and two dimensions, opinions in the voter model coarsen spatially
with time, and the model approaches one of the q absorbing states, in which all the voters have
the same opinion (Cox and Griffeath, 1986; Duty, 2000). In higher dimensions, the voters still
form cluster of opinions, but these clusters stop growing after reaching a certain limiting size.
Selection and mutation are typically not considered in voter models.
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The voter model can be solved exactly by tracing the history of opinion adoptions backward
in time (Cox and Griffeath, 1986; Scheucher and Spohn, 1988; Duty, 2000). The opinion of a
given individual performs a random walk as we follow the opinion from its current holder to
its ultimate ancestor. With this observation, we can easily understand how the behavior of the
voter model depends on the number of spatial dimensions. In one and two dimensions, a pair
of random walks always meet (Redner, 2001), so the histories of opinion adoptions starting
from two different voters will eventually converge to a single voter as we trace them backward
in time. Therefore, any two voters should have the same opinion after a sufficiently long time
has elapsed. In higher dimensions, however, there is a finite probability that two random
walkers never meet (Redner, 2001); therefore, the voters never agree, and an absorbing state
is never reached.

Another important property of the voter model is that the dynamics occurs only at the
boundaries between the opinion clusters; inside a cluster the opinions cannot change because
every voter has the same opinion as its nearest neighbors. This property is particularly useful
in one spatial dimension, where it allows us to map the dynamics of the voter model to the one-
dimensional diffusion-limited chemical kinetics of point particles. We identify each domain
wall with a particle performing a random walk due to opinion changes at the boundary. When
two particles meet, they react with two possible outcomes. They annihilate (A+A→0) if the
flanking domains have the same opinion or coalesce (A+A→A) otherwise. If the initial state is
uncorrelated, the annihilation occurs with probability 1/(q−1), and the coalescence with
probability (q−2)/(q−1). In one dimension, this reaction-diffusion system has been analyzed
by Masser and ben-Avraham (2000), who found that the density of the domain walls decays
as t−1/2 in agreement with Eq. (38). A related model of annihilating random walks for radial
and linear range expansions was solved by Hallatschek and Nelson (2010).

It is not surprising that the voter model and the stepping stone model have the same long-time
behavior in one dimension. At long times, most of the voters belong to large domains; therefore,
we do not affect the system by combining neighboring sites into larger coarse-grained demes,
as in Sec. VII. For these large demes, the equations of motion of the stepping stone model are
valid, so the two models are equivalent in the long-time limit. The voter and stepping stone
models are also equivalent in the small-Ds limit of very slow migration. In this case, each deme
reaches fixation much faster than it sends out or accepts new migrants; hence, the stepping
stone model reduces to the voter model with one voter representing an entire deme.

We can further illustrate the connection between the stepping stone model and the voter model
by calculating the probability that two voters l sites apart have different opinions. This
probability is analogous to the average spatial heterozygosity, so we call it H(t,l). The equation
of motion for H(t,l) is obtained by following the histories of opinion adoptions backward in
time. Since H(t,l) changes only due to the diffusion of the history traces, the equation of motion
reads

(F1)

where we measure time in such units that the rate of opinion adoption is set to unity. While
Eq. (F1) can be solved exactly (Houchmandzadeh and Vallade, 2003), it is more instructive to
go to the continuum limit, in which the equation of motion for H(t,x) takes the following form:

(F2)
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where Ds denotes the spatial diffusion constant as in Eq. (33).

Upon comparing Eqs. (33) and (F2), one might naively conclude that the voter model
corresponds to Dg=0 limit of the stepping stone model; in fact, the opposite is true: the voter
model corresponds to the limit Dg=∞. Qualitatively, one can see this from the fact that
Dg∝N−1, so, as the deme size N approaches its lowest value of 1, we expect Dg to increase. On
more rigorous grounds, we should note that the role of the delta function in Eq. (33) is to enforce
a boundary condition at x=0, provided one considers H(t,x) only for x>0. This boundary
condition is derived in Appendix C and is given by Eq. (C3). The corresponding boundary
condition for Eq. (F2) is H(t,0)=0 because the probability of one voter having two different
opinions is 0. We indeed recover H(t,0)=0 by letting Dg→∞ in Eq. (C3).

One can solve Eq. (F2) for the initial condition H(0,x)=H0 by the Laplace transform in time or
a self-similar ansatz; the solution reads

(F3)

We can now compute the average size of the domains with the help of Eq. (C2). As we expect,
the result is given by Eq. (38) because the long-time limits of the stepping stone model and the
voter model agree.

The Dg=∞ approximation is particularly valuable for circular fronts undergoing inflation
because the exact solution of the stepping stone model in this case [Eqs. (64) and (65)] is rather
unwieldy. The equation of motion for H(t,φ) in the voter model with inflation is given by

(F4)

One can solve Eq. (F4) in the Fourier domain and compute the nontrivial limit-shape as t→∞.
The result reads

(F5)

With the help of the angular version of Eq. (C2) [see Eq. (66)], we calculate the final number
of sectors,

(F6)

which agrees with Eq. (69) in the limit Dg=∞. In the same limit, we can also obtain an analytical
expression for the long-time variance ν(∞),

(F7)
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where we used the relationship between the variance ν(t) and the global heterozygosity ℋ
(t,φ) given by the spatial generalization of Eq. (8).

Finally, we note that the mapping to a one-dimensional reaction-diffusion system of particles
could be generalized to account for superdiffusive boundaries in the undulating-front model,
for example, by considering continuous time Lévy flights instead of random walks [see
Hinrichsen and Howard (1999)]. In the chemical kinetics picture, one can also account for
mutations by introducing a birth process 0→2A and for natural selection by imposing an
attraction between the particles flanking domains of the deleterious allele.
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FIG. 1.
(Color online) Spatial segregation in an expanding microbial population. Different colors label
different alleles. The Petri dish was inoculated with a well-mixed population occupying a
narrow horizontal linear region between the arrows, which show the direction of the growth.
As this population expands, it segregates into well-defined monoallelic domains. The colony
is of the order 1 cm in height. Details of the experiment are presented in Hallatschek et al.
(2007).
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FIG. 2.
(Color online) An illustration of the two models of a growing front. (a) and (c) Illustration of
the model with a rough undulating front, which is a natural result of an unconstrained two-
dimensional growth. (b) and (d) Illustration of the model with a flat front, which is constrained
to have no lateral undulations to simplify the analytical analysis. The blank hexagons represent
empty sites, and different colors of the occupied hexagons represent different alleles. (a) The
model of an undulating population front. The highlighted hexagon is a randomly chosen cell
that can reproduce and deposit an identical offspring in any of its four empty nearest-neighbor
sites (shown with arrows) with equal probability. (b) The model of a one-dimensional habitat,
where each row represents a generation. Thus, each row is completed before moving on to the
next one, so an empty site can be filled only by an offspring of one of its nearest neighbors in
the previous generation (shown with arrows). Both (a) and (b) show the effects of genetic drift
(sampling error) when, e.g., the second from the left cell in the bottom row leaves no offspring.
Such events lead to coarsening seen in (c) and (d). (c) and (d) Single simulation runs for models
in (a) and (b), respectively. A population of 100 cells was wrapped around a cylinder to illustrate
periodic boundary conditions used in this paper. Note that in (d) the front is flat, whereas in
(c) it is rough. This roughness affects some aspects of the shapes of the monoallelic domains
shown in (c): a domain boundary followed from its lowest point to its highest point always
goes up in (d) but, in (c), it sometimes goes down. As discussed by Hallatschek et al. (2007),
domain walls are expected to wander more vigorously in (c) than in (d). Despite the apparent
differences, both models exhibit the same qualitative behavior.
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FIG. 3.
(Color online) Qualitative comparison of a gene segregation experiment from a linear
inoculation (inset) and the simulation of a one-dimensional habitat. The experiment is
analogous to the one depicted in Fig. 1.
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FIG. 4.
(Color online) The stationary distribution P(∞,f) in the presence of selection, mutation, and
genetic drift [see Eqs. (19) and (20)]. The dotted line shows P(∞,f) for s= g and μ12=μ21=10

g, which corresponds to weak genetic drift, μ12/Dg≫1. The solid line shows P(∞,f) for s=
g and μ12=μ21=0.1 g, which corresponds to strong genetic drift, μ12/Dg≪1. Note the

difference in curvature between the two cases and the fact that the distribution is dominated
by the central region in the weak genetic drift limit but by the tails in the opposite limit. The
transition between these two regimes occurs when the mutation rates equal to g/2 and P
(∞,f) diverges at f=0 and 1. Also note that the effect of natural selection is to bias the distribution
toward f=1. As s increases, the maximum of the distribution shifts to the right for weak genetic
drift, and the right tail of the distribution becomes more prominent for strong genetic drift.

Korolev et al. Page 45

Rev Mod Phys. Author manuscript; available in PMC 2010 November 8.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



FIG. 5.

(Color online) Solutions of Eq. (33) at various times given . Time and distance are
measured in units such that Ds=1 and Dg=1. Time increases from the top curves to the bottom
curves. Note the statistical reflection symmetry, H(t,x)=H(t,−x).
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FIG. 6.
(Color online) The number of monoallelic domain boundaries as a function of time in the
undulating-front model. The simulation of 100 demes averaged over 100 runs is plotted (dots),
and the theoretically expected decay of the number of boundaries as t−2/3 [see Saito and Müller-
Krumbhaar (1995)] is plotted (solid line). Note that the agreement between the theory and the
simulations is not expected during the transitory regime at early times. At t=0, each site is
assigned either allele one or allele two with equal probability. Inset: Log-log plot of the mean-
square displacement of the domain boundaries as a function of time in the same set of
simulations as the main plot. The dots are the simulation data and the solid line is the expected
slope according to Saito and Müller-Krumbhaar (1995).
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FIG. 7.
(Color online) The number of monoallelic domain boundaries as a function of time in the flat-
front model. The simulation of 100 demes averaged over 100 runs is plotted (dots), and the
theoretically expected decay of the number of boundaries as t−1/2 (see Hallatschek and Nelson,
2010) is plotted (solid line). Note that the agreement between the theory and the simulations
is not expected during the transitory regime at early times. At t=0, each site is assigned either
allele one or allele two with equal probability. Inset: Log-log plot of the mean-square
displacement of the domain boundaries as a function of time in the same set of simulations as
the main plot. The dots are the simulation data and the solid line is the expected slope according
to Bramson and Lebowitz (1991) and Hallatschek and Nelson (2010) and Eq. (38).
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FIG. 8.
(Color online) A single run of the flat-front model with 1000 organisms. At t=0, each site is
assigned either allele one or allele two with equal probability. The spatially averaged
heterozygosity [defined in the sense of Eq. (C1) but without taking the limit L→∞] for three
times measured in generations: t=0, 1024, and 4096. The separation l is the shortest distance
between two points around the cylinder, and we take the clockwise direction to be positive. At
inoculation, the heterozygosity fluctuates around 1/2 since the two alleles have equal
probabilities of occupying any site. The only exception is the site l=0, where the heterozygosity
is zero automatically because we only allow a single microorganism per site. After 1024
generations, short-range correlations are clearly visible and after 4096 generations, one can
relate the abrupt changes in the slope of H(t,l) to the sizes of the sectors in the population (not
shown). The wiggles are eliminated when averaged over many realizations, as shown in Fig.
9. Note that the curve for t=4096τg lies completely below 1/2 because, at this time, the relative
fraction of the alleles deviates significantly from the initial 50:50 ratio due to genetic drift.

Korolev et al. Page 49

Rev Mod Phys. Author manuscript; available in PMC 2010 November 8.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



FIG. 9.
(Color online) The effects of coarse graining on the time evolution of the spatial heterozygosity
H(t,l) averaged over 100 realizations of the flat-front model with a 1000 organisms. At t=0,
each site is assigned either allele one or allele two with equal probability. (a) Each deme hosts
only one organism. Consequently, the heterozygosity at l=0 is zero at all times. (b) The same
set of simulations, but the organisms have now been grouped into demes of size 5 for the
purpose of calculating H(t,l). (b) Qualitative agreement with the solution of stepping stone
model displayed in Fig. 5, and (a) outside the region around l=0. Note that, unlike the
calculation presented in Fig. 5, this simulation was run sufficiently long to show the effects of
the boundary conditions.
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FIG. 10.
(Color online) Comparison between the analytical prediction for the limiting shape of H(∞,x̄)
and the simulations of the flat-front model. The continuous curve (black) is formed by the data
points representing H(t,x) for several times between t=2×104 and 4×105 plotted in the rescaled
coordinates x̄ and the circles represent the theoretical prediction of the limiting shape of the
average spatial heterozygosity [see Eq. (37)]. The data are obtained in a simulation of 3200
individuals for 4×105 generations with averaging over 500 realizations. At t=0, each site is
assigned either allele one or allele two with equal probability.
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FIG. 11.
(Color online) Genetic drift in a finite population. At t=0, each site is assigned either allele one
or allele two with equal probability. (a) The total fraction of allele one (t) vs time in four single
runs of the neutral model with a flat front. Here L=1000, and there are no mutations. (b) The
average standard deviation of the frequency of allele one Δ(t) is obtained from 200 realizations
of the simulations described in (a). The solid line shows the best power-law fit, and the slope
is close to the exponent expected from Eq. (44). The gray area encloses the points within one
standard deviation from the mean.
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FIG. 12.
(Color online) Equilibrium between mutation and genetic drift in the absence of selection.
Comparison between the analytical prediction for the steady-state heterozygosity H(∞,x) and
the simulations with μ̃12=μ̃21=10−4. The black dots represent the results of the simulation and
the circles represent the best fit of theoretical result given by Eq. (48) to the data. Here only
Dg is a fitting parameter; the values of Ds, μ12, and μ21 follow from the correspondence between
the discrete and continuum models. The data are obtained in a simulation of 3200 individuals
for 2×105 generations with averaging over 100 realizations. At t=0, each site is assigned either
allele one or allele two with equal probability.
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FIG. 13.
(Color online) The effective extinction rate α vs s̃ in the limit of weak selection. The dots are
the data from the simulation and the black line has the slope equal to 2, which is the expected
slope from Eq. (58). The data support α∝s̃2. The values of α are obtained from graphs like the
one shown in the inset. Inset: ln(1−f) vs t for s̃=0.12. The circles are the actual data points and
the line is the best least-squares linear fit. The simulation confirms exponentially fast fixation.
The data are obtained in a simulation of 1600 individuals for 6000 generations with averaging
over 100 realizations. At t=0, each site is assigned either allele one or allele two with equal
probability.
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FIG. 14.
(Color online) Spatial segregation in an expanding circular bacterial colony of E. coli. Different
colors label different alleles. The Petri dish was inoculated with a well-mixed population
occupying the circled region of the colony, leading to many small domains in the central
“homeland.” As this population expands (shown with arrows), it segregates into well-defined
monoallelic domains, which coalesce at early times but seem to stop coalescing in the final
stages of the experiment. Note that the boundaries between the domains are biased to move
away from each other due to inflation, in addition to their diffusive random-walk-like motion.
Details of the experiment are presented by Hallatschek et al. (2007).
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FIG. 15.
(Color online) Solutions of Eq. (63) with σ=1 at various rescaled times t given random initial

conditions on the circle bounding the homeland, . Time increases from the top curves
to the bottom curves. Note that there is no observable difference between H(500,ϕ) and H
(1000,ϕ) because H(t,φ) reaches a nontrivial limit shape as t→∞.
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FIG. 16.
A plot of K(σ) for Eq. (71) from a numerical solution of Eq. (63).
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FIG. 17.
(Color online) An illustration of the backward-in-time dynamics of the ancestral lineages in a
one-dimensional habitat with periodic boundary conditions. Five organisms (i.e., n=5) are
sampled from the much larger population at t=0 and their DNA is sequenced. We do not display
the sites that are identical for all organisms, which are usually the majority of the sequenced
sites, i.e., only the segregating sites are shown. For illustration purposes, we also assumed that
all samples differ in at least one nucleotide, but in experiments one often finds organisms that
have identical sequences. We trace the spatial diffusion and coalescence of the lineages
backward in time until they merge into a single lineage of the common ancestor of the whole
sample. The coalescence events are denoted by circles and the mutations are denoted by arrows
and the resulting mutated sequences. Note that lineages may cross without coalescing as shown
in the top left corner. The ancestral process shown here satisfies the infinite site model and
illustrates the fact that the more genetically similar the lineages are the more likely they are to
have a common ancestor in the recent past. Most genetic inference methods rely on this
relationship as shown in the text.
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FIG. 18.
(Color online) Illustration of spinodal-decomposition-like genetic demixing in a one-
dimensional population. (a) Initially well-mixed population with colors labeling different
genotypes. (b) The same population, several generations later. The frequency of one of the
alleles is now oscillating between 0 and 1 because the population segregates into monoallelic
domains.
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FIG. 19.
(Color online) Genetic drift during a linear range expansion in the flat-front model with three
alleles. (a) The genetic composition of the population [ 1(t), 2(t), 3(t)] projected on the plane

 in a single run of the neutral three-allele model with a flat front. The population is
finite, L=1000, and there are no mutations. (b) The average standard deviation of the frequency
of allele one Δ(t) is obtained from 200 realizations of the simulations described in (a). The
solid line shows the best power-law fit, and the slope is close to the exponent expected from
Eq. (44). The gray area encloses the points within one standard deviation from the mean. At
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t=0, each site is assigned either allele one or allele two with equal probability, which
corresponds to the center of the triangle in (a).
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FIG. 20.
(Color online) Genetic drift during a linear range expansion in the undulating-front model with
three alleles. (a) The genetic composition of the population [ 1(t), 2(t), 3(t)] projected on the
plane  in a single run of the neutral three-allele model with an undulating front. The
population is finite, L=1000, and there are no mutations. (b) The average standard deviation
of the frequency of allele one Δ(t) is obtained from 200 realizations of the simulations described
in (a). The solid line shows the best power-law fit and the slope is close to the exponent expected
from Eq. (E8). The gray area encloses the points within one standard deviation from the mean.
At t=0, each site is assigned either allele one or allele two with equal probability, which
corresponds to the center of the triangle in (a).
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