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Abstract
Fibrous encapsulation of surgically implant devices is associated with elevated proliferation and
activation of fibroblasts in tissues surrounding these implants, frequently causing foreign body
complications. Here we test the hypothesis that inhibition of the expression of mammalian target of
rapamycin (mTOR) in fibroblasts can mitigate the soft tissue implant foreign body response by
suppressing fibrotic responses around implants. In this study, mTOR was knocked down using small
interfering RNA conjugated with branched cationic polyethylenimine (bPEI) in fibroblastic lineage
cells in serum-based cell culture as shown by both gene and protein analysis. This mTOR knockdown
led to an inhibition in fibroblast proliferation by 70% and simultaneous down-regulation in the
expression of type I collagen in fibroblasts in vitro. These siRNA/bPEI complexes were released
from poly(ethylene glycol) (PEG)-based hydrogel coatings surrounding model polymer implants in
a subcutaneous rodent model in vivo. No significant reduction in fibrous capsule thickness and mTOR
expression in the foreign body capsules was observed. Observed siRNA inefficacy in this in vivo
implant model was attributed to siRNA dosing limitations in the gel delivery system, and lack of
targeting ability of the siRNA complex specifically to fibroblasts. While in vitro data supported
mTOR knock-down in fibroblast cultures, in vivo siRNA delivery must be further improved to
produce clinically relevant effects on fibrotic encapsulation around implants.
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Introduction
The foreign body reaction (FBR) at the tissue/material interface commonly contributes to
abnormal inflammation, wound healing responses and tissue fibrosis without effective
mitigation.(1,2) In general, monocytes/macrophages are activated at implant surfaces and
modulate local host fibroblast function, contributing to often-excessive deposition of collagen
matrix around implanted materials (fibrotic capsule), a component of the FBR.(1,3) Recent
work (4) demonstrated that macrophage fusion observed around implants alone does not
necessarily produce implant fibrotic encapsulation. Instead, an alternative hypothesis is that
fibro-proliferation is regulated by growth factors secreted by activated macrophages.(3,5,6)
Fibrogenesis induced by implants is characterized by macrophage activation and associated
elevated proliferation and activation of fibroblasts that up-regulate collagen production.
Therefore, control of inflammation around implants by locally released drugs to reduce cell
activation and limit collagen encapsulation of implanted biomaterials has been reported.(7–
9)

Mammalian target of rapamycin (mTOR) plays a critical role in cell cycle regulation.
Rapamycin, a known inhibitor for mTOR (10), can inactivate mTOR specifically. Because
mTOR regulates cell proliferation, it has been extensively investigated as a potent target for
both anti-cancer (11) and anti-restenotic (12) therapies. Inhibition of mTOR in fibroblasts
influences not only proliferation but also collagen production.(13,14) Rapamycin and its
analogues are reported to effectively prevent cardiac and pulmonary fibrosis in vivo. (15,16)
These previous reports describing modulation of mTOR in fibroblasts indicate that mTOR
could also be a potent target to prevent implant-induced fibrosis in the context of the FBR.

RNA interference (RNAi) is a powerful tool to knock down specific mRNA expression levels
by exploiting a natural intracellular regulatory phenomenon in mammalian species.(17–19)
Gene silencing using short interfering RNAs (siRNAs) has many potential therapeutic
applications.(20) However, RNAi technology has not yet been used clinically useful largely
due to challenges in dosing and effective targeted siRNA delivery systems. Local or topical
siRNA therapeutics have been most actively investigated and successful delivery approaches
include ocular delivery, respiratory delivery, CNS delivery, skin delivery and vaginal delivery
where local delivery accesses cell target populations directly.(21–25) One unexplored and
promising delivery route is via combination implantable devices for local drug delivery.(26)
We therefore demonstrate device-based local delivery of siRNA, testing the hypothesis that
delivery of mTOR siRNA from poly(ethylene glycol) (PEG)-based hydrogel-coated
biomaterials can suppress collagen encapsulation elicited from a soft tissue implant FBR.

Materials and methods
Chemicals

Branched polyethylenimine (bPEI) (mol. wt.: 25,000) and dithiothreitol (DTT) were obtained
from Sigma-Aldrich (USA). Poly(ethylene glycol) dimethacrylate (PEGDM; mol. wt.: 7500)
was synthesized as reported previously.(27) RNase-free water was prepared using diethyl
pyrocarbonate (DEPC) (Sigma-Aldrich). All siRNA molecules were purchased from
Dharmacon (CO, USA).

Preparation of siRNA/bPEI complexes
To prepare siRNA/bPEI complexes at various anion/cation charge (NP) ratios, 2 μl of 10 μM
mTOR siRNA aqueous solution (sense: GCG GAU GGC UCC UGA CUA UUU, antisense:
AUA GUC AGG AGC CAU CCG CUU) was mixed with 2μl of bPEI solutions of different
concentrations (0.016–0.64μg). The complex mixed solutions were kept at room temperature
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for 20 minutes. Then 4μl of each mixture was electrophoresed using ethidium bromide-stained
TBE-based 2% agarose gels run at 80V for 20min, followed by visualization with UV light to
assess the siRNA-bPEI complex formation.

Cell culture and siRNA transfection in vitro
Murine NIH 3T3 fibroblasts (American Type Culture Collection, ATCC) were plated at
3×104 cells/well in a 12-well plate in Dulbecco’s modified Eagle’s medium (DMEM, GIBCO)
supplemented with 10% heat-inactivated fetal bovine serum (FBS, Hyclone®, USA) and 1%
penicillin-streptomycin (GIBCO), defined for all cell cultures as “complete media”, at 37°C
with 5% CO2 overnight. Cell transfections with siRNA/bPEI complexes at fixed NP ratios in
complete media were performed subsequently. siRNA/bPEI complexes for each well are
prepared by mixing 7ul of 20 μM siRNA aqueous solution with 4.48μl, 2.24μl, 1.12μl and
0μl (NP 20, 10, 5 and 0) of 1mg/ml bPEI, respectively, in a total volume of 18μl with RNase-
free water. After incubation at room temperature for 20 minutes, complete media was added
to achieve the final volume of 1ml, yielding a final concentration of siRNA in each well of
140nM. Cell siRNA transfections were always performed in complete media. After 24-hour
incubation at 37°C under 5% CO2, culture media was refreshed with 1ml complete media and
the transfected cells were further incubated.

Cell cytotoxicity and proliferation
3T3 murine fibroblasts were seeded at 3×103 cells/well in 96-well plates in complete media.
After overnight incubation, cells were transfected with mTOR siRNA/bPEI complexes at
different NP ratios (1, 2, 5, 10, 20, and 40 prepared as described above) in complete media,
maintaining siRNA concentration at 140nM. Cytotoxicity of the siRNA/bPEI complexes was
determined at 24 hours after initial transfection using the CellTiter 96 Aqueous One Solution
Cell Proliferation Assay (Promega, USA). Media for each well was replaced with 100μl fresh
complete media containing 20μl of Cell Titer 96 Aqueous One Solution including three wells
without cells for background subtraction. Cells were then incubated at 37°C for 2 hours and
optical absorbance at 490nm was then determined using a plate reader (TECAN GENIOS Plus).

To evaluate mTOR siRNA effects on cell proliferation, cells were plated at 3×104 cells/well
in 6-well plates and transfected with mTOR siRNA/bPEI complexes at an NP ratio of 20 in
complete media. Non-targeting siRNA/bPEI complexes with the same NP ratio were used as
control. Cultures were refreshed with complete media 24 hours later. After incubation at 37°
C for 5 days, relative numbers of cells in each well were determined using the Cell Proliferation
Assay (Promega, USA). CellTiter 96 solution-containing media was transferred to 96-well
plates for optical reading at 490 nm. In addition, cultured cells were imaged at Day 5 with
phase contrast microscopy prior to this assay.

Western immunoblotting
Cells were lysed by using M-PER Mammalian Protein Extraction reagent (Pierce, USA) with
1X Halt™ protease inhibitor cocktail (Pierce). Insoluble material was removed by centrifuging
at 15,000 rpm at 4°C for 5 min after 20 minutes on ice. Protein concentrations were measured
with the Bio-Rad protein assay system (Bio-Rad, USA). Heat-denatured protein samples
(8μg) were separated on 4–12% SDS-polyacrylamide gels (Invitrogen) and blotted on to
cellulose membranes (Bio-Rad). After blocking with bovine serum albumin (BSA) in
phosphate buffered saline containing 0.5% Tween 20 (PBST) for 1 hour at RT, the filter was
incubated overnight with antibody against murine mTOR (2983, Cell Signaling) in 5% BSA/
PBST with constant shaking. After three washes with PBST, the membrane was incubated with
horseradish peroxidase (HRP)-conjugated anti-rabbit IgG (SA1-200, Affinity BioReagents).
Housekeeping controls were detected with an antibody against mouse cyclophilin B (PA1-027,
Affinity BioReagents) and HRP-conjugated anti-rabbit IgG. Chemiluminescence was
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produced with western blotting luminol reagent (Santa Cruz Biotechnology) and gel images
captured using a Molecular Imager Gel Doc XR System (Bio-Rad).

Reverse transcript polymerase chain reaction (RT-PCR)
Total RNA harvests from transfected cells were isolated 48 hours after siRNA transfection
using an RNeasy Mini Kit (Qiagen). Up to 0.5 μg of RNA was converted to cDNA with the
SuperScript III 1st strand RT kit for PCR (Invitrogen). PCR primers were designed for mTOR
(forward: 5′-AGC GTA TTG TTG AGG ACT GGC AGA-3′, reverse: 5′-ATC CTG GAG GTT
GTT GCC TCT TGA-3′), cyclophilin B (housekeeping control, forward: 5′-GCA ATG GCA
AAG GGT TTC TCC ACT-3′, reverse: 5′-AGC GCT TCC CAG ATG AGA ACT TCA-3′),
and collagen type 1 alpha 1 (COL1A1) (forward: 5′-AAG AAT GGC GAT CGT GGT GAG
ACT-3′, reverse: 5′-TTG AGT CCG TCT TTG CCA GGA GAA-3′) using Primerquest
software from Integrated DNA Technologies (IDT, USA). PCR was performed with iTaq DNA
polymerase (Bio-Rad), 1.5mM magnesium chloride, 200 μM each of dNTPs, 500nM of each
primer, and 2μl of the cDNA. PCR reaction for mTOR was 95°C for 3 min, followed by 25
cycles with 95°C for 30 s, 63.9°C for 30 s, and finally at 72°C for 1 min. PCR reactions for
cyclophilin B and COL1A1 were 95°C for 3 min, followed by 30 cycles with 95°C for 30 s,
60°C for 30 s, and finally at 72°C for 1 min. PCR products were collected for all three genes
and electrophoresed using ethidium bromide-stained TBE-based 2% agarose gels run at 100V
for 30min.

Preparation of PEG-based hydrogel release matrix and in vitro controlled release of siRNA/
bPEI complexes to cultured cells

Crosslinked hydrogels releasing siRNA were prepared using PEGDM and DTT at a 1:1
stoichiometric ratio of thiols to acrylates by Michael-type addition reactions.(28,29) FITC-
labeled siRNA (FITC-siRNA, siGLO® Green, Dharmacon) was used for determining siRNA
release kinetics from the PEG-based hydrogels. To encapsulate siRNA in the hydrogels, 2μg
of siRNA and 4.77μl of 1mg/ml bPEI (NP = 20) were mixed first and incubated at room
temperature for 15 minutes. Volumes of stock solutions equal to either 4.25 or 8.5mg of
PEGDM and 0.09 or 0.18mg of DTT in RNase-free water were added respectively to the
siRNA/bPEI complex mixtures successively in a circular plastic mold with a parafilm bottom
(6mm) diameter. Final polymerization volume was adjusted to 20μl with RNase-free water.
After 5-hour incubations at 37°C, the resulting hydrogels were used for releasing study after
washes with PBS at least three times to remove free siRNA and unreacted reagents.

The siRNA-containing hydrogels were immersed in 1ml of PBS buffer for 14 days, and the
supernatant was collected and refreshed at different time points for fluorescence intensity
measurements using a plate reader (TECAN GENIOS Plus, excitation 485nm/emission
528nm). The standard curve was prepared by using FITC-labeled siRNA PBS solutions (0,
0.0125, 0.25, 0.5, 1, and 2μg/ml).

To further confirm that siRNA can be released as intact polyplexes, delivery of siRNA/bPEI
complexes to cells was evaluated by incubating fibroblast cultures with hydrogel-released
siRNA/bPEI complexes. Hydrogels were incubated in 1ml complete media at 37°C. The
complex suspension was collected at several time intervals over 15 days. At each sampling
time except the last one, supernatant (1ml) was removed and an equivolume of fresh media
was replaced for continued collection. Cells were plated at 3×104 cells/well in a 12-well plate
and then treated with the collected media. Protein harvested 3 days later was followed by
Western blotting.

Takahashi et al. Page 4

J Control Release. Author manuscript; available in PMC 2011 November 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



In vivo subcutaneous siRNA-releasing device implantation
All procedures were conducted as approved by the Institutional Animal Care and Use
Committee of the University of Utah. C57/BL-6 female mice (12-week-old, 20–25g, Jackson
Laboratories) were maintained in a pathogen-free facility at the University of Utah. Circular
Millipore filters (mixed cellulose ester, pore size: 0.45μm, diameter: 4 mm) were coated with
siRNA-containing PEG-based hydrogel under sterile conditions in a cell culture hood.
PEGDM, DTT and siRNA/bPEI were mixed in a circular plastic mold with a parafilm bottom
(6 mm) diameter and then one filter was placed into the middle of the viscous solution. After
incubation at 37°C for 5 hours, the resulting hydrogel (6mm diameter, 0.7mm thickness)
containing the embedded filter was used for implantation. Mice were anesthetized by
intraperitoneal injection of ketamine/xylazine mixture (ketamine: 75mg/kg, xylazine: 25mg/
kg). Their backs were shaved and cleaned. Dorsal incisions about 1cm long were made
perpendicularly to the longitudinal axis at the same level as the diaphragm with sterilized
surgical scissors. Subcutaneous pockets on both sides of incision were created by blunt curved
forceps and the hydrogel-coated filters were implanted subcutaneously into the dorsal region
of mice essentially as described previously.(4,30) Identical filter pieces covered with PEG-
hydrogel without siRNA were used as negative controls. Hydrogels with siRNAs targeting
TGF-β1 (sense: GCA ACA ACG CCA UCU AUG AdTdT, antisense: UCA UAG AUG GCG
UUG UUG CdTdT) were used as positive controls (sequence sourced from Dr. M. Gonzalez-
Juarrero, Colorado State University, showing significant TGF-β1 knock-down efficacy in a
chronic pulmonary tuberculosis murine model, unpublished data). Cellulosic (filter paper)
circular discs coated with polymer hydrogels containing mTOR-specific siRNAs were
compared to both controls. For mTOR siRNA delivery, two doses, 2μg and 10μg per implant,
were tested, while a single control TGF-β1 siRNA dose (10μg) was used. After implantation,
each surgical incision was closed with standard 4-0 silk sutures. Each mouse received two
bilateral implants dorsally of different siRNA doses, providing 4 implants per siRNA per dose.
All subjects were euthanized after 2 weeks and surrounding tissues with implants were
harvested by necropsy and fixed in 10% neutralized formalin for histological analysis as
described below.

Histological analyses and immunohistochemistry
Tissue samples were embedded in paraffin and cut into 5-μm sections after 24 hours’ fixation
in 10% formalin. Three longitudinal ground sections were generated per sample and were
stained with Hematoxylin and eosin (H&E) for cell nuclei and Masson’s trichrome (MTS) for
collagen encapsulation assessments (conducted at ARUP, University of Utah).(8,31) Capsule
thickness for each section was estimated microscopically as the average thickness at six
different random locations, and was determined per filter implant as the average thickness of
3 sections per filter explant.

Immunohistochemical staining was performed by ARUP Laboratories (Salt Lake City, UT).
Briefly, slides were cut at 4μm, then melted at 55°C to 60°C for 30 minutes, deparaffinized,
and rehydrated in graded alcohols (100% × 2, 95% × 2, 70% × 1) for 1 minute each. The
following steps were performed on the Ventana XT (Ventana Medical Systems, Tucson, AZ)
at 37°C. Slides were deparaffinized with EZ Prep solution on the XT, and pretreated with CC1
solution for 30 minutes (TGF beta) or 60 minutes (m-TOR) on the XT. Primary mTOR antibody
were applied for 2 hours (m-TOR 1:300), followed by the secondary antibody for 32 minutes
(anti-rabbit IgG, Sigma 1:100). Detection was done by staining with Alkaline Phosphatase
Red, and the counterstain was hematoxylin (Ventana) for 4 minutes. Slides were then
dehydrated through graded alcohols (70% × 1, 95% × 2, 100% × 2) for 30 seconds each, dipped
in 4 changes of xylene, and covered with a coverslip. Negative controls included sections
treated with hydrogel without siRNA loading. Microscopic analysis of the FBR was performed
independently by two investigators who were not aware of the identity of the samples.
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Cell imaging
Live adherent cells and histological images were captured using a Nikon Eclipse TE 2000-U
microscope with Photometrics Coolsnap ES camera (Roper Scientific).

Statistical Analysis
ANOVA followed by two-tailed student’s t-test was used to evaluate significant differences
among groups. All in vitro experiments were repeated three times. Error bars represent standard
error of the mean. Results were considered statistically significant if p < 0.05.

Results
Optimization of mTOR siRNA/bPEI complexes and their cytotoxicity

To determine the NP threshold for stable siRNA complex formation, different amounts of bPEI
were mixed with 0.14nmol mTOR siRNA at NP ratios of 0, 0.5, 1, 2, 5, 10, and 20. Figure 1a
shows migration of siRNA/bPEI complexes by gel electrophoresis. With NP ratios of 0, 0.5
and 1, siRNA bands migrate separately on the gel, indicating uncomplexed excess siRNA.
When the NP ratio is equal to 2, the density of the siRNA band is substantially weaker. When
the NP ratios are = 5, no siRNA migrates freely in the gel, indicating that all siRNA molecules
are initially entrapped in bPEI complexes through electrostatic interactions. Therefore, the
complex at NP > 5 should be appropriate for siRNA transfection.

Cytotoxicity from the siRNA complexes in serum-cultured fibroblasts in vitro was compared
among the different NP ratios (NP = 0–40). As shown in Figure 1b, compared with cells without
any treatment, cytotoxicity of the siRNA complexes is negligible when NP ratios are at or less
than 20 (p = 0.18). In addition, there is no significant difference among the groups for NP ratios
≤ 20.

In vitro mTOR knock-down by siRNA/bPEI complexes on fibroblast cultures
3T3 Fibroblasts transfected with siRNA/bPEI complexes of different NP ratios (0, 5, 10, and
20) were assayed for mTOR expression. Total protein was harvested three days after siRNA
treatment. Western blot results showed significant reductions of mTOR expression by siRNA
when the NP ratio was 20 (Figure 2a). Furthermore, an NP ratio of 20 is sufficient to knock
down mTOR expression in fibroblasts in vitro using serum-based transfections. Therefore, the
effect of mTOR siRNA/bPEI complexes on cellular mTOR gene expression was only evaluated
by RT-PCR for NP = 20. Non-targeting siRNA/bPEI complexes with the same NP ratio were
used as controls. Compared to controls, mTOR siRNA complexed with bPEI reduces mTOR
mRNA expression dramatically (Figure 2b) in 3T3 fibroblast cultures in vitro.

Since mTOR positively regulates collagen type I production,(13) COL1A1 mRNA levels were
also assayed after mTOR siRNA transfection. Compared with non-targeting siRNA
transfection, COL1A1 mRNA levels were significantly suppressed by mTOR siRNA treatment
in vitro (Figure 2c).

mTOR siRNA effects on cell proliferation in vitro
Cell proliferation assays were performed 5 days after siRNA transfections in serum-based
cultures. As shown in Figure 3c, cell numbers in mTOR siRNA groups under NP ratio 20 are
much less than that for control siRNA transfection groups (<30%, *p = 0.028). Its
representative microscopic images of fibroblasts for control (Figure 3a) and treated (Figure
3b) groups also demonstrate significant differences in cell density.
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Release of siRNA encapsulated in PEG-based hydrogels
PEG-based hydrogels were made with published methods (29) by reacting aqueous solutions
of PEGDM and DTT. Within a 20μl total reaction volume and an NP ratio of siRNA/bPEI
equal to 20, 10μg of siRNA is found to be the maximum loading for successful in situ gelation
with Michael addition network chemistry. Release profiles for siRNA within the PEG-based
hydrogels for two different siRNA/PEG gel formulations were analyzed (Figure 4a). In
Formulation 1 (PEGDM: 4.25 mg, DTT: 0.09 mg), approximately 50% of the siRNA was
released from the gel within the first 24 hours incubation, and 80% of the siRNA was released
within 3 days. In Formulation 2 (PEGDM: 8.5 mg, DTT: 0.18 mg), approximately 80% of the
siRNA was released by day 7. A prolonged protein knock-down effect (up to one week) was
also obtained by siRNA Formulation 2 compared with Formulation 1 (three days), which was
also supported by Western blot results (Figure 4b). Formulation 2 provides longer sustained
release kinetics and protein expression suppression, and therefore was used for gel preparations
for in vivo studies in subdermal implant-based siRNA release in mice.

In vivo implantation of siRNA-releasing hydrogel-coated devices
Tissue harvests surrounding hydrogel-coated filter implants were stained with MTC to identify
collagen capsules (blue color). Collagen capsule thicknesses were calculated and compared
among negative controls (hydrogels without siRNA: 71.95 ± 7.39 μm), positive controls
(hydrogels loaded with TGF β1-specific siRNA: 66.82 ± 10.46 μm) and treated groups
(hydrogels loaded with mTOR-specific siRNA: 2 μg dose, 96.60 ± 19.80μm; 10μg dose, 63.22
± 5.95μm). Collagen capsule structure and thickness were evaluated from microscopic images
(see Figure 5, foreign body capsules are demarcated with arrows). However, no significant
difference in capsule thickness or structure between these three groups was evident. In addition,
H&E staining images indicate that mTOR siRNA does not significantly influence fibroblast
density around these implants. To further investigate whether mTOR inhibition modulates the
fibrotic response, tissue mTOR expression was evaluated by immunohistochemistry.
Immunostaining of mTOR in tissues adjacent to the capsule (2μg and 10μg siRNA dosing
cohorts) indicated no significant differences in mTOR expression in foreign body capsules
between siRNA-treated mice and the mice treated with blank gel. As shown in Figure 6, foreign
body capsules contain fibroblasts, inflammatory cells and ECM. After two-week implantations,
no significant foreign body giant cells (FBGC) are observed around the implants. Numbers of
macrophages were recruited to the interface, but there were no significant differences in
numbers of macrophages around the implants among the groups. Therefore, despite in vitro
knock-down success, it was concluded that mTOR siRNA treatments produced no significant
reductions in FBR capsule thickness and protein knock-down in vivo.

Discussion
siRNA is of substantial current interest as a sequence-specific post-transcriptional gene
silencing tool for the genetic analysis and, significantly, for translational, therapeutic
applications in various mammalian cells.(32,33) In order to overcome several delivery
challenges for siRNA in therapeutics, several approaches have been used, including
conjugating siRNA with cholesterol (34), and delivery using cationic liposomes (35) and
polymer carriers.(36) Some have also been successfully utilized for systemic siRNA delivery
in mice.(35,37) Viral vectors have been described for siRNA delivery as well.(38–40)
Nevertheless, overcoming viral vector oncogenicity and immunogenicity remains a significant
barrier for viral-based siRNA delivery. In general, efficiently targeting siRNA to systemic
disease sites remains a significant problem. To overcome this, lipid or polymer-based siRNA
delivery systems have been successfully used for local siRNA (e.g., topical) delivery,
particularly to ophthalmic, vaginal, dermal, liver, neural, pulmonary and tumor targets.(21,
23–25,41–45) Therefore, locally delivered siRNA from the surface of implantable
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subcutaneous devices was assessed for efficacy in targeting a major clinical complication of
the foreign body response – implant-associated fibrosis.

To facilitate released siRNA internalization by mammalian cells in serum, mTOR siRNA was
complexed with bPEI at different NP ratios (0–20) because of its known utility as a non-viral
nucleic acid delivery vector.(46–48) The siRNA/bPEI migration assay (Figure 1a)
demonstrates that siRNA forms stable complexes with bPEI when the NP ratio ≥ 5. Cytotoxicity
from siRNA complexes was analyzed by culturing fibroblasts with siRNA complexes with
different NP ratios up to 40 in serum complete media. Significant cytotoxicity was observed
only when the NP ratio approached 40. Taken together, these results indicate that siRNA/bPEI
complexes can be used for specific suppression of mTOR expression in fibroblast serum-based
cultures for NP ratios from 5 to 20.

Transfection of mTOR siRNA in 3T3 fibroblasts in serum-based cultures produced mTOR
gene silencing monitored by Western blotting three days post-transfection. Knock-down of
mTOR occurs only when the NP ratio was 20, indicating that siRNA specifically knocked
down mTOR message RNA in fibroblasts. To further exclude the possibility of non-specific
knockdown of mTOR by the transfection reagent (bPEI), target gene expression was compared
between non-targeting siRNA and mTOR siRNA in cells. Compared to non-targeting siRNA
complexes, mTOR siRNA complexes reduced mTOR mRNA expression in fibroblasts
dramatically as shown in Figure 2b. Thus, these data confirm that mTOR siRNA suppressed
the targeted gene specifically through the RNAi mechanism.

In previous studies, mTOR was demonstrated to be essential for activating expression of the
collagen type I gene (COL1A1) in dermal fibroblasts.(13,30) A dramatic decrease (75%) in
COL1A1 mRNA expression was induced by down-regulating mTOR expression level to 56%.
(13) Hence, it is not surprising that mTOR siRNA also down-regulates COL1A1 mRNA
expression by decreasing mTOR expression (Figure 2c). This supports the hypothesis that
collagen production by fibroblasts would be blocked by mTOR siRNA transfection.

A significant role for mTOR is also promoting cell growth and proliferation by regulating
protein synthesis. (49,50) It is therefore conceivable that mTOR knockdown may also control
or alter cell proliferation to some extent. Suppression of cell proliferation is shown after
fibroblast transfection with mTOR siRNA in cultures (Figure 3). Nearly 70% decrease in cell
number after mTOR siRNA treatment is observed compared to non-targeting siRNA
transfections, supporting that mTOR function specifically, not cytotoxicity, was successfully
suppressed by the specific siRNA delivery to fibroblast cultures in serum.

These in vitro findings support siRNA targeting of mTOR to modulate collagen production
and implant encapsulation, analogous to rapamycin’s use against mTOR as an anti-fibrotic
agent.(51–54) To move this in vivo, a local delivery strategy using release from an implant
surface as a combination device model was used. PEG-based hydrogels were exploited for this
in vivo delivery system since the Michael addition chemistry in water allows mild in situ
polymerization at physiological temperatures and pH in the presence of siRNA/bPEI
complexes, control of both loading and release rates, and in situ polymerization on or around
an implant.(28,29) To facilitate siRNA entry into cells, bPEI is used as a known complexing
agent for nucleic acid delivery.(47,55) SiRNA/bPEI complexes were loaded into and released
from the swollen and degrading PEG-based hydrogel networks. Two different siRNA diffusion
profiles were obtained from PEG hydrogels of two formulations, showing that encapsulated
siRNA dosing release depends on hydrogel cross-linking. The higher cross-linked PEG
hydrogels showed sustained release of siRNA to 14 days in vitro (Figure 4a). In addition, the
sustained siRNA release resulted in prolonged protein knock-down to 7 days. Furthermore,
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this successful knock-down confirms that the released siRNA is active and complexed with
PEI. Therefore, siRNA formulation 2 was selected for our in vivo studies.

Since encapsulated siRNA molecules exhibit both sustained release from PEG-based hydrogels
and effective mTOR and collagen knock-down in the presence of serum in vitro, the siRNA
hydrogels were applied to a model soft tissue implant to reduce collagen expression and
fibroblast proliferation in the context of the FBR. Based on in vitro release data showing
complete siRNA release after two weeks, implants were harvested two weeks post-surgery.
The thickness of the collagen fibrous capsule was evaluated for model circular membrane
devices coated with PEG hydrogels in mice. As shown in Figure 5, no significant differences
in collagen capsule formation were found among the three groups. Compared to negative
controls, both mTOR and control TGF-β siRNA-releasing material groups exhibited no
detectable anti-fibrotic activity in vivo. The capsule thickness for negative control groups is
comparable to the published data for the same cellulose implants harvested four weeks post-
surgery in the same animal model, (i.e., 63 ± 25μm in Ref.(4), and 79 ± 40μm in Ref (56)).
Previous studies have demonstrated that TGF-β is a potent target for anti-fibrotic therapy.
(55,57–59) These studies show anti-fibrotic efficacy of TGF-β siRNA to prevent fibrosis in
vivo using different delivery systems. However, TGF-β siRNA showed no detectable anti-
fibrotic activity as collagen capsule thickness was unaffected by the TGF-β siRNA in the
murine implant model. Possible explanations for these non-distinguishing results include
insufficient siRNA dosing, inefficient cellular uptake by the target fibroblasts around the
implant, and siRNA scavenging by cells other than fibroblasts at the implant site. A limitation
of this design is that PEG hydrogel gelation is inhibited when siRNA complex loading exceeds
10μg per polymerization. siRNA device-based dose loading cannot be increased in this
formulation to address the dosing issue in vivo. Effective gene silencing dose of siRNA in many
applications in vivo is 1–2.5mg/kg.(21) Here, our study administered 0.4~0.5mg/kg. Thus,
inefficient silencing produced by the siRNA was due partially to low dosing. As bPEI also has
mild nucleophilicity and some Michael addition capability with PEG acrylate,(60) increasing
bPEI concentrations in the gelation step could alter polymerization and also affect bPEI
participation as a cell transfection agent.

In situ tissue slice histology immunostaining for mTOR protein was performed to monitor in
vivo knock-down effects. In both 10μg and 2μg mTOR siRNA dose-treated groups, siRNA
treatment is unable to inhibit mTOR protein expression in the capsule. Therefore, similar
capsule thickness results from unchanged mTOR expression level in fibroblasts. For
subcutaneous filter paper implantation in our case, FBGCs were difficult to find at the implant
interface with tissue two-week post-implantation. Plenty of macrophages were recruited to the
interface, however, there is no significant difference of the number of macrophages at the
implant and capsule interface between siRNA treated groups and controls. Immunoreactivity
appears comparable in all groups and the addition of siRNA does not elicit significant changes
in the FBR. In the early stage of the FBR, macrophages recruited to the implant site fuse to
form FBGCs. They adhere to the surface of the hydrogel-coated implant and release several
chemicals that affect the implant surface. In this microenvironment, the hydrogel was also
susceptible to degradation. Some fraction of siRNA/PEI complexes are likely taken up by
active capsule-associated cell endo- and phagocytosis mechanisms, followed by their
degradation in phagolysosomes where pH remains as low as 4.(61) Hydrogel-released siRNA/
PEI complexes escaping active cell phagocytosis must penetrate the dense tissue extracellular
matrix in the capsule to approach and enter target cells and then successfully escape endosomes
to produce siRNA bioactivity. Hence, despite local siRNA dosing and direct release into the
fibrous implant-associated capsule, siRNA polyplex dosing has low percentage success in
producing efficacy for mTOR knock-down in vivo. The apparent absence of protein knock-
down in vivo is a testimony to the difficulty in getting sufficient siRNA from the implant to
nearby fibroblast cells in the capsule. For device-based local siRNA delivery, the drug release
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system must overcome non-specific macrophage/FBGC capture and degradation, unless these
cells are specific targets for therapies. Therefore, device-based local siRNA delivery seeking
to target collagen-producing local fibroblasts, but lacking specific cell-targeting features for
fibroblasts, exhibits poor in vivo subcutaneous performance despite promising in vitro knock-
down and anti-proliferative efficacy in serum-based fibroblast monocultures.

Conclusions
In vitro cell culture results support siRNA targeting of mTOR to effectively suppress fibroblast
proliferation and down-regulate type I collagen mRNA expression in serum-based fibroblast
cultures. Thus, like commonly studied rapamycin, mTOR-targeted siRNA was expected to
inhibit fibrotic responses around implants in vivo. Nonetheless, subcutaneous in vivo results
demonstrated little translation of in vitro siRNA activity to alter implant-associated fibrous
encapsulation using a PEG-based hydrogel-coated implant releasing mTOR siRNA in a murine
subcutaneous implant model. Though mTOR remains a potent and attractive target for this
therapeutic purpose, and local device-based delivery is attractive for combination device local
siRNA delivery, further studies are warranted to improve in vivo efficacy in this application.
These include new in vivo siRNA delivery systems, improvements in siRNA cell transfection
efficacy, degradation-resistant siRNA chemistries, and specific siRNA targeting to fibroblasts
under physiological conditions and foreign body responses.
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Figure 1.
Gel migration and cytotoxicity assays of mTOR siRNA/bPEI complexes. (a) Gel migration of
mTOR siRNA/bPEI complexes at different NP ratios (1–40). (b) Cell cytotoxicity of mTOR
siRNA/bPEI complexes in 3T3 fibroblast in serum-based media. Assay was performed 24
hours-post transfection. (*p=0.0004, compared with cultures without treatment).
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Figure 2.
RNA message knock-down in 3T3 fibroblast cultures in serum-based media. (a) Western blot
analysis for mTOR expression after mTOR siRNA/bPEI exposure. Cellular mRNA levels of
(b) mTOR and (c) COL1A1 in cells treated with non-targeting siRNA (control) and mTOR
siRNA/bPEI complexes were analyzed by RT-PCR. Cyclophilin B (housekeeping gene)
mRNA was used as a control.
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Figure 3.
Microscopic images of fibroblast serum-based cultures (a) treated with non-targeting siRNA,
(b) mTOR siRNA at NP ratio 20, and (c) cell proliferation in the siRNA-treated cells (NP 20,
*p = 0.028), scale bar = 250μm. Images were taken 5 days after siRNA transfection. Numbers
of cells treated with non-targeting siRNA was normalized to 100%.
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Figure 4.
Release of siRNA/bPEI complex from PEG-based hydrogels in vitro. (a) Cumulative siRNA
release profiles in PBS media sink conditions. NP ratio of the siRNA/bPEI complex was 20.
Release profiles in Formulation 1 (PEGDM: 4.25mg, DTT: 0.09mg) and Formulation 2
(PEGDM: 8.5mg, DTT: 0.18mg) are indicated by the solid line and dash-dotted line,
respectively. (b) Western blot analysis for mTOR expression in fibroblasts after incubating
cells with hydrogel-released siRNA/bPEI complexes. Cell lysis was harvested after three-day
culture in this media. Numbers of days shown reflect the hydrogel release time prior to media
collection and cell culture.
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Figure 5.
Comparison of in vivo collagen capsule thickness for murine sub-dermal hydrogel-coated
implants explanted after two weeks for (a) negative control, no siRNA loaded, (b) 2μg mTOR
siRNA loaded, (c) 10μg mTOR siRNA loaded and (d) positive control, 10 μg TGF-β siRNA
loaded. Localization of fibrous capsule is marked by white arrows (scale bar = 100μm). (e)
Summary of collagen capsule thickness data. P values for each individual group vs. negative
control without siRNA treatment are: 0.3112 (2μg mTOR siRNA), 0.3954 (10μg mTOR
siRNA), and 0.7045 (10μg TGF-β siRNA).
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Figure 6.
Immunostains of mTOR protein expression in foreign body capsules from murine histological
sections. Tissue samples surrounding implants (I) were harvested from mice two-week post-
implantation. Immunohistochemical staining for mTOR in foreign body capsules around filter
paper from (a) negative control group (no siRNA loaded), (b) 2μg mTOR siRNA-treated group,
and (c) 10μg mTOR siRNA-treated group. Sections were stained with mTOR antibody, and
counterstaining was done with hematoxylin. These treatments stain target proteins red and cell
nuclei dark (blue). Arrows denote fibroblasts (scale bar = 125μm).
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