

Clin Proteomics. Author manuscript; available in PMC 2010 November 9.

Published in final edited form as:

Clin Proteomics. 2008 December 1; 4(3-4): 117-136. doi:10.1007/s12014-008-9014-z.

Identification of glycoproteins from mouse skin tumors and plasma

Yuan Tian¹, Karen S. Kelly-Spratt², Christopher J. Kemp², and Hui Zhang¹

- ¹ Department of Pathology, Johns Hopkins University, Baltimore, Maryland 21287
- ² Fred Hutchinson Cancer Research Center, Seattle, WA 98109

Abstract

Plasma has been the focus of testing different proteomic technologies for the identification of biomarkers due to its ready accessibility. However, it is not clear if direct proteomic analysis of plasma can be used to discover new marker proteins from tumor that are associated with tumor progression. Here, we reported that such proteins can be detected in plasma in a chemical induced skin cancer mouse model. We analyzed glycoproteins from both benign papillomas and malignant carcinomas from mice using our recently developed platform, solid-phase extraction of glycopeptides (SPEG) and mass spectrometry, and identified 463 unique N-linked glycosites from 318 unique glycoproteins. These include most known extracellular proteins that have been reported to play roles in skin cancer development such as thrombospondin, cathepsins, epidermal growth factor receptor, cell adhesion molecules, cadherins, integrins, tuberin, fibulin, TGF\u03c3 receptor, etc. We further investigated whether these tumor proteins could be detected in plasma from tumor bearing mice using isotope labeling and 2D-LC-MALDI-MS/MS. Two tumor glycoproteins, Tenascin-C and Arylsulfatase B, were identified and quantified successfully in plasma from tumor bearing mice. This result indicates that analysis of tumor associated proteins in tumors and plasma by method using glycopeptide capture, isotopic labeling, and mass spectrometry can be used as a discovery tool to identify candidate tumor proteins that may be detected in plasma.

INTRODUCTION

Despite great increase in understanding of cancer at molecular level, cancer remains as the second most common cause of death in the U.S. Survival rates for many common cancer types have changed little over the past two decades ¹. If cancer is detected early, prior to metastatic spread, survival rates are vastly improved ¹. For this reason, improvements in ability to detect cancer early may significantly reduce mortality from cancer. Plasma has been the focus of technology developments for different proteomic technologies for the identification of biomarkers due to its ready accessibility. These include depletion of the most abundant plasma proteins ² and extensive fractionation of proteins or peptides prior to mass spectrometric analysis ^{3–5}. However, proteins discovered by serum profiling are often well-known, high-abundance, classical serum proteins ⁶, not likely to be specifically derived from cancer tissue. Useful biomarkers for cancer detection in blood are those proteins released specifically from cancer tissues (overexpression of cancer proteins), indicators of a specific response of the system to cancer cells, or leaking of organ restricted proteins to blood due to structural changes in the microenvironment surrounding cancer cells (leaking of normal proteins such as PSA) ⁷. The tumor proteins that are detectable in both benign and malignant tumors as well as plasma

can serve as candidate proteins for early detection of cancer. Detection of these proteins in plasma is critical to evaluate proteomic technologies for the biomarker discovery in plasma.

In an attempt to identify the proteins derived from cancerous tissue that are most likely to be present in blood, we employed our recently developed glycoproteomic analysis method using solid-phase extraction of N-linked glycopeptides (SPEG) ^{8–10}. The method has several advantages. First, most cell-surface and secreted proteins are glycosylated, and diseaseassociated glycoproteins (secreted by cells, shed from their surface, or otherwise released) are likely to enter the bloodstream and thus represent a rich source of potential disease markers 11. Second, the reduction in complexity achieved by focusing on the glycoprotein subproteome in both tissues and plasma translates into favorable limits of detection, thus increasing the likelihood that the same polypeptide will be detectable in both tissue and serum ^{8, 12, 13}. Third, aberrant glycosylation is a fundamental characteristic of oncogenesis and tumor progression ¹⁴, and this method allows us to identify proteins changed in glycosylation but not necessarily changed in total protein abundance. Finally, specific mass-spectrometry-based methods and affinity reagents can be developed for the specific and sensitive detection of identified tissue proteins in plasma ¹⁵, selective isolation of a specific proteins or peptides using affinity reagents ¹⁶, or the recently developed targeted approach using multiple reaction monitoring $(MRM)^{17-19}$.

The chemically induced two-stage mouse skin carcinogenesis model has been used for decades to study the genetic, molecular, and biologic basis of tumor development ²⁰. For example, the concepts of tumor initiation and promotion were derived from this model. In this model, the backs of 8-week-old mice treated with the carcinogen 7, 12-dimethylben[a] anthracene (DMBA) followed by multiple treatments with the tumor promoter 12-otetradecanoylphorbol-13-acetate (TPA). Benign tumors (papillomas) develop after 8 weeks and a small percentage of these progresses to malignant invasive carcinomas after a long latency ²⁰. The ability to quantify both benign and malignant tumor growth permits analysis of genes and environmental factors that affect tumor progression. More recently the two stage skin tumor model has been used to improve proteomic technologies for biomarker discovery using serum protein profiling ¹². We have identified several serum proteins for which the abundance is increased in correlation with the chemical induction of skin cancer in mice. However, these proteins are likely not markers for the specific diagnosis of skin cancer. A major advantage of this mouse skin carcinogenesis model is that plasma samples can be taken from mice before and after tumor development. As both benign and malignant tumors and plasma samples can be obtained from the same mice, this facilitates analysis of protein changes in plasma associated with tumor development.

Here we reported a two-step strategy for detection of tumor-associated proteins in plasma: the first step was to analyze extracellular proteins from normal skin, papillomas, and carcinomas and identify tumor-associated proteins; the second step was to detect the tumor-associated proteins in plasma using tissue-targeted approach and isotope labeling ⁷. Using our recently developed method of solid-phase extraction of glycopeptides (SPEG) and mass spectrometry ^{8–10}, we analyzed matched benign and cancerous tumors from four tumor-bearing mice as well as normal skin tissues from four control mice, and identified 463 unique *N*-linked glycosites from 318 glycoproteins. Over forty identified glycoproteins were elevated in carcinomas. Two of the tumor-associated proteins, Tenascin-C and Arylsulfatase B, were further detected and quantified in plasma from the same cancer-bearing mice using isotope labeling and 2D-LC-MALDI-MS/MS. This result indicates that direct proteomic analysis of tumors and plasma using glycopeptide capture, isotopic labeling, and mass spectrometry can be used to discover new cancer derived proteins in plasma for early cancer detection.

METHOD & MATERIALS

Materials

Hydrazide resin and Sodium periodate were from Bio-Rad (Hercules, CA); PNGase F was from New England Biolabs (Ipswich, MA); Sequencing grade trypsin was purchased from Promega (Madison, WI); C18 columns were from Waters (Milford, MA); α-cyano-4-hydroxycinnamic Acid (CHCA) was from Agilent (Palo Alto, CA); iTRAQ reagent and mass calibration standards were purchased from Applied Biosystems (Foster City, CA). All other chemicals were purchased from Sigma-Aldrich (St. Louis, MO).

Tissues and plasma from chemical induced mouse skin tumors

Skin tumors were induced in four NIH01a mice using the DMBA/TPA two step protocol. A single dose of DMBA (Sigma; 25mg in 200ml of acetone) was applied to the shaved backs of four 8-week old mice. Initiated treated skin cells were promoted with TPA twice a week for 15 weeks. This gave rise to papillomas that were hyperplastic, well differentiated, benign lesions consisting of keratinocytes together with stroma tissue. Papillomas appeared as early as 8 weeks after the first treatment of DMBA and continued to grow for the next several months. A small percentage of these benign papillomas (~20%) progressed to squamous cell carcinomas. All the mice were sacrificed when carcinomas appeared in all four treated mice. Four littermate mice were left untreated for normal skin tissues. Papillomas and carcinomas as well as normal skin from untreated mice were snapping frozen in liquid nitrogen. Retroorbital bleeds are collected from each treated mouse before chemical treatment and after development of chemical induced carcinomas. The only difference between the normal and cancer tissues is the chemical induced cancer. Retroorbital bleeds were performed on anesthetized mice using avertin (0.1ml per 3g weight). 0.25 ml of whole blood was collected from the retroorbital sinus into a long (9 inches) sterile glass Pasteur pipet. The whole blood was placed in a K3EDTA coated 1.5ml microcentrifuge tube and centrifuged at 4°C for 5 minutes at 3000rpm. Plasma will be collected, carefully avoiding cellular contamination. All tumor tissues and plasma were placed in cryovials and frozen in liquid nitrogen.

Peptides extraction from skin tumor tissues

Frozen tumor tissues (100 mg each) were sliced into 1~3mm³ thick and incubated in 200µl of 5mM phosphate buffer and vortexed for 2–3 min. Then the samples were sonicated for 5 min in an ice-water bath. 200µl of trifluoroethanol (TFE) was added to the sample and incubated at 60°C for 2 hours followed by sonication for 2 min. Protein disulfide bonds were reduced by 5mM tributylphosphine (TBP) with 30 min incubation at 60°C. 10mM Iodoacetamide was applied to the mixture and incubated in the dark at room temperature for another 30 min. The samples were diluted 5-fold with 50mM NH₄HCO₃ (pH7.8) to reduce the TFE concentration to 10% prior to the addition of Trypsin at a ratio of 1:50 (w/w, enzyme: protein). Samples were digested at 37°C overnight with gentle shaking. The precipitate was discarded by centrifuge. Silver staining was used to test the effect of tryptic digestion. 4mg of total peptides from each sample were extracted from each tumor tissue. 2mg of total peptide was used to extract *N*-linked glycopeptides according to the following steps.

Peptide extraction from plasma

Plasma (20µl) was added to 90ul 8M urea in 0.4M NH_4HCO_3 , 0.1% (w/v) SDS solution (pH8.3) and 10µl 120mM TCEP in dH_2O freshly prepared and incubated at 60°C for 1 hour. Proteins were alkylated by adding 10µl 160mM iodoacetamide and incubated at room temperature in the dark with shaking for another 30 min. Samples were diluted by trypsin digestion buffer (100mM NH_4HCO_3 , pH8.3) to make the concentration of urea less than 2M. 40µl trypsin

 $(0.5\mu g/\mu l)$ was adding to digest protein at 37°C overnight. SDS-PAGE and silver staining was employed to check whether trypsin digestion was complete.

Glycopeptide capture from tissue or plasma

N-glycopeptides were isolated from peptides using SPEG 5 . The enriched N-linked glycopeptides were concentrated by C18 columns and dried down and resuspended in 40μ l 0.4% acetic acid prior to MS analysis.

Isotope labeling of peptides

The amount of glycopeptides was determined by BCA assay (bicinchoninic acid, Bio-Rad, Hercules, CA) prior to isotope labeling. 1µg glycopeptides from plasma of the retroorbital bleeds before and after chemical-induced cancer, and tumor tissues were dried and resuspended in 20µl of 50% DMF, 40% H2O, 10% pyridine. 5µl 10mg/ml d0 13 CO, d4 13 CO, and d4 13 C4 succinic anhydride solution was added to glycopeptide samples and reacted at room temperature for 1~2hrs, then following C18 clean up to remove access succinic anhydride 8 .

Mass spectrometry analysis

The peptides and proteins were identified using MS/MS analysis using an LTQ ion trap mass spectrometer (Thermo Finnigan, San Jose, CA). Glycopeptides (1µg) were injected into a peptide cartridge packed with C18 resin, and then passed through a 10 cm \times 75 µm i.d. microcapillary HPLC (µLC) column packed with C18 resin. The effluent from the µLC column entered an electrospray ionization source in which peptides were ionized and passed directly into the mass spectrometer. A linear gradient of acetonitrile from 5%–32% over 100 min at flow rate of ~300 nL/min was applied. During the LC-MS mode, data was acquired between m/z of 400 and 2000. The MS/MS spectra were collected using data dependent mode. Each sample was analyzed three times to increase the number of spectra used for spectral count.

Succinic anhydride labeled peptide ($5\mu g$) was analyzed by 2-D Nano LC (Eksigent, Dublin, CA) and MALDI-TOF/TOF (Applied Biosystems, Foster City, CA). Briefly, on-line integration of 15-cm-long 300 μm of C18-reverse phase liquid chromatograph (RPLC) was employed. 4 SCX fractions of 0, 5, 50 and 500mM KCl and 3–45% linear acetonitrile gradient (containing 0.1% TFA and acetonitrile) of RPLC for each fraction were applied before analysis by MALDI-TOF/TOF. Peptides eluted from columns were directly mixed with CHCA and spotted on a MALDI target plate with 768 spots followed by the analyzed by MS and MS/MS using ABI4800 MALDI-TOF/TOF.

Data analyses

Peptide identifications-MS/MS spectra from LTQ were searched with SEQUEST 21 against a mouse protein database (the International Protein Index mouse protein database, version 3.13). The precursor mass tolerance is set as 3.0 Da. Other parameters of database searching are modified as following: oxidized methionines (add Met with 16 Da), a (PNGase F-catalyzed) conversion of Asn to Asp (add Asn with 1 Da) and Cys modification (add cysteine with 57 Da). The output files were evaluated by INTERACT and PeptideProphet 22 , 23 . The criterion of PeptideProphet analysis is the probability score ≥ 0.9 so that low probability protein identifications can be filtered out.

Identifying tissue-derived peptides in plasma from MALDI-TOF/TOF (ABI 4800) was performed using GPS Explorer software (version 3.6). MS/MS spectra were searched against NCBInr database. GPS searches were carried out at a 0.2 Da precursor mass tolerance, a 0.6 Da fragment mass tolerance; trypsin as enzyme digested. In addition to the modifications for

Met, Asp, and Cys that were used in LTQ MS/MS spectra analyses as described above, N-termini of peptides and Lys are modified by succinic anhydride (100 Da for $d0^{13}C0$, 104 Da for $d4^{13}C0$, and 108 Da for $d4^{13}C4$).

RESULTS and DISCUSSION

Strategy of the method

The objective of this study was to use *N*-linked glycopeptide isolation, isotopic labeling, and LC- MS to identify skin cancer related extracellular proteins and determine if these proteins could be detected in plasma from tumor bearing mice. This strategy is based on the fact that most of extracellular proteins are glycoproteins and extracellular proteins from cancer are most likely to be detected in plasma due to the fact that they are likely to be secreted by cells or shed from cell surface to enter into the blood stream.

The strategy is schematically illustrated in Figure 1 and consists of four steps: 1) peptide extraction from tissue or plasma; 2) glycopeptide extraction: peptides that contain *N*-linked carbohydrates in extracellular proteins were isolated in their de-glycosylated form using a recently described solid-phase capture-and-release method ^{9, 10}; 3) identification and quantification analysis of glycopeptides isolated from normal skin, papillomas, and carcinomas: isolated peptides were analyzed by LC-MS/MS and the peptides were identified and quantified using database search ²¹ and spectral count; 4) Detection of tissue-derived proteins in plasma. Glycopeptides from plasma samples taken from mice before and after development of skin tumors and tumor tissues were labeled with d0¹³C0, d4¹³C0, and d4¹³C4 succinic anhydride respectively. The peptides containing d4¹³C0 and d4¹³C4 pairs indicated the tumor-derived peptides detected in plasma from tumor-bearing mice, and they were selected for MS/MS analysis for peptide identifications.

Identification of proteins from mouse model of skin cancer

To detect tumor-specific proteins in plasma, we first identified tumor-associated proteins from cancer (carcinomas) and benign (pipallomas) tissues. These tumor-associated proteins are likely to be secreted or shed to blood stream and fall into the detection range of current proteomic methodology.

To identify extracellular proteins from mouse skin tumors, four tissue samples each from normal skin, benign papillomas, and malignant carcinomas were collected to generate pooled normal, benign, and cancer tissues. Proteins were extracted from homogenized frozen tissues and digested to peptides. Glycopeptides were then captured using SPEG from each tissue. The N-linked glycopeptides were analyzed by LC- MS/MS by three repeated analyses for each sample. The MS/MS spectra were used to search protein database using SEQUEST ²¹. There were a total of 4764 peptide identifications with PeptideProphet of at least 0.9 (with error rate of 0.007) from all the tissues. 90% of these identifications (4284 identifications) contained a consensus N-linked glycosylation motif (N-X-S/T, X is any amino acid except proline). These identifications were from 463 unique glycosylation sites, representing 318 unique glycoproteins (Table 1). This indicated that the procedure was specific to N-linked glycoproteins. Therefore, we limited our subsequent analysis solely to the identified peptide sequences that contained at least one such consensus motif in order to reduce false positive rates. Since tissues are vascularized and some proteins identified from tissues are from contamination by common circulating blood proteins ^{13, 24}. We next examined the glycoproteins identified from tissues to determine glycoproteins identified from tissues that were also identified from the normal mouse plasma ^{10, 25} and 59 glycoproteins were previously identified from normal mouse plasma and were not included for further study of skin cancer tissues.

To identify skin tumor-specific proteins, we compared the glycoproteins identified from normal skin, benign, and malignant tumors. Despite the same amount of glycopeptides from each tissue type were analyzed with the same procedures, the number of unique glycosites identified from different tissue types was different. A total of 405 glycosites were identified in cancer tissue, while 252 in benign tissue and 112 in normal skin when using PeptideProphet score of \geq 0.9. The number of glycoproteins identified from papillomas and carcinoma was higher than that of normal tissue. This could be caused by the increased expression of glycoproteins in tumor tissues. A similar observation was also reported from the proteomic analysis of tryptic peptides in mouse breast cancer model 24 .

To determine the glycoprotein changes associated with cancer development, we calculated the relative protein abundance using the number of redundant MS/MS spectra from the same glycoprotein in different tissues. ²⁶ To eliminate the spectral count due to random events, only proteins identified with at least three spectra were included for quantitation. A number of proteins identified in this study were only detected in tumor tissues (benign or cancer) but not in normal tissues (the ratio of such proteins was arbitrary assigned to 100, Table 2). Among the 111 proteins identified with spectral count ratio at least 3-fold in cancer or benign tumor tissues comparing to normal tissues, 47 proteins (Table 2) were increased at least 3 folds in cancer tissues comparing to benign tissues. Some of these have been reported to play roles in skin cancer development. These include most of known extracellular proteins such as thrombospondin, cathepsins, epidermal growth factor receptor, cell adhesion molecules, cadherins, integrins, tuberin, fibulin, TGFβ receptor, etc. Tenascin-C is an extracellular matrix glycoprotein, and plays multiple functions in cell adhesion, migration, growth and angiogenesis ²⁷, ²⁸. Tenascin-C has many cell surface receptors, such as intergrin, EGFR etc., which may affect genome stability associated with interference with genome safeguard functions and escape from cell cycle checkpoints ²⁸. Tenascin-C has twenty potential N-linked glycosylation sites but only one glycosylation site (LLQTAEHN#ISGAER, Table 1) has been identified previously (Swiss-Prot Protein knowledgebase, http://us.expasy.org/sprot). In this study, eight N-linked glycosites including the previously identified site were identified in carcinomas (Table 1). They showed increased expression in carcinomas compared to papillomas (Table 2). This observation indicated that Tenascin-C might have increased its glycosylation or abundance during tumor development. In addition, 20 glycoproteins were identified in skin cancer only (Table 2) and these proteins might be used as protein markers to discriminate the malignant and benign tumors. An example of these proteins is Arylsulfatase B. In this study, Arylsulfatase B was identified three times only in cancer tissues with two unique glycosylation sites. Arylsulfatase B is lysosomal enzyme and can degrade proteoglycans in the extracellular matrix and basement membrane. In this way, preteoglycans can obstruct the cancer cell spread. Therefore, Arylsulfatase B plays a key role of accelerating cancer cell migration ²⁹.

Here, we determined the relative abundance of glycosylated proteins using identified glycosylated peptides from the protein. However, glycosylation for individual glycosite from the same protein might be different and can be determined by quantitative analysis of each glycosite. In addition, changes in glycan structure that may be important to the disease cannot be determined by this method, and specific enrichment of glycopeptides with certain glycan structure is needed.

Detected tissue-derived protein in plasma

Since the plasma proteome is dominated by several highly abundant proteins, proteins released from specific tissues would normally be present at low abundance in plasma, and their detection might be obscured by the high abundant plasma proteins. To detect tumor-specific proteins in plasma, we used isotopic labeling to detect the isotopic peaks that consisted of the tissue-derived proteins from both plasma and tissues.

The glycopeptides from four carcinomas tissues were labeled with d4 13 C4-succinic anhydride. The glycopeptides from plasma of the four mice before and after cancer development were labeled with d0 13 C0 and d4 13 C0-succinic anhydride respectively. To monitor the labeling efficiency, we spiked same amount of standard peptide from Angiotensin (0.1 μg) in the glycopeptides isolated from carcinomas and plasma samples as labeling control. Then, all the labeled peptides were combined for MS analysis. The mixture was separated by 2-D Nano-LC then analyzed by MALDI-TOF/TOF. Free Angiotensin (ms 1296.68) was not observed after labeling. Instead, 100Da, 104Da and 108Da shifted from 1296.68 were observed in equal amount in the mixed sample. This indicates the efficient and quantitative isotopic labeling using succinic anhydride.

The mixed glycopeptides from carcinomas and plasma samples contained both skin cancer related peptides and peptides from plasma. In order to detect glycopeptides associated with skin cancer in plasma, we focused our analysis on glycopeptides previously identified as cancer associated glycoproteins from skin tumors in the mixture (Table 2) and avoid the analysis of plasma proteins. To achieve this goal, the peptide peaks that contained masses from glycopeptides specifically identified from carcinomas and their isotopic pairs from plasma were selected for MS/MS analysis.

Two types of paired patterns were observed. One was that the intensity of 4^{13} C4- labeled peptides (with 8 mass unit shift for each amino group from peptides derived from cancer tissues) was much greater than 4^{13} C0-labeled peptide (with 4 mass unit shift for each amino group from peptides derived from plasma of cancer-bearing mice) and intensity of 4^{13} C0-labeled peptide (with 0 mass unit shift for each amino group from peptides derived from plasma before carcinogen induction) was lower than that of peptides from plasma of cancer-bearing mice. This pattern indicated that the peptide was from tumor-specific protein and detectable in cancer plasma at low intensity. The other pattern was that similar or lower intensity of peptides from cancer tissues than in plasma, and peptides with this pattern were derived from plasma proteins.

Tumor-associated glycopeptides could be detected plasma. Tenascin-C was identified in carcinomas with 133 spectra, and it was also identified in benign papillomas with 29 spectra. However, none of these glycopeptides were identified in normal tissue (Table 2). In plasma, the labeled peptide peak of Tenascin-C was found with its paired peaks with eight-Da mass difference (Fig 2A), which indicated that it was also detected in plasma after cancer development, but not in control plasma before the carcinogen treatment. Another skin tumor-specific glycoprotein, Arylsulfatase B, was also detected in plasma successfully in the similar way (Fig 2B). These data indicated that extracellular proteins associated with tumor development were identifiable in plasma from tumor-bearing mice using glycopeptide capture, isotopic labeling, and mass spectrometry.

One of the advantages using this tissue-targeted approach is that tumor-associated proteins can be identified in plasma even they present in very low abundance. The peptides from cancer tissue are likely to be at higher abundance compared to the same peptides in plasma. These allowed us to determine their masses and peptide sequences in the mixture using isotopic peaks from tumors. Using this information, tumor-derived peptides in plasma can be identified while they are not identifiable by data-dependent MS/MS acquisition and database search. Both Tenascin-C and Arylsulfatase B are low abundant proteins. They were not identified in plasma before cancer development and their detection in plasma was associated with cancer development. Their peak intensities in cancer plasma were at least 100 folds lower than that for plasma proteins detected in the same mixture.

Proteins from plasma can also detected in tissues and plasma as isotopic pairs due to visualization of the tissue. If a glycopeptide detected in both cancer tissues and plasma was

derived from plasma, the peptide peak showed similar or lower intensity in cancer tissues than that in plasma. An example of this was the identification and quantification of glycoprotein, Ig gamma-3 chain C region, in tissue and plasma. However, its paired peptide peaks were found in a different pattern from that observed with Tenascin-C (Fig 2C). The intensities of $d0^{13}$ CO-and $d4^{13}$ CO- labeled peptides from plasma before and after tumor induction were much higher than that from $d4^{13}$ C4- labeled peptides from tumors. This indicated that this peptide was from a plasma-derived proteins and Ig gamma-3 could be detected from tissue due to the blood circulation in tissue.

The methodology of targeted detection of tumor proteins using glycopeptide capture, isotopic labeling, and mass spectrometry is based on the analysis of *N*-linked glycopeptides to study extracellular proteins from tumors and plasma, and it has shown to increase the delectability of tumor proteins by focusing the same subset of glycopeptides in both tumors and plasma ¹³. The tumor-associated glycopeptides could be detected in plasma on account of the several advantages of our methodologies. First, glycopeptides capture method dramatically reduces the sample complexity. Non-glycoproteins and non-glycopeptides from glycoproteins were removed from the pool of samples. For example, albumin, the most abundant serum protein, was automatically transparent to this method since it does not contain *N*-linked glycosylation. Second, the glycopeptides isolation method could be used to enrich extracellular proteins due to the fact that most extracellular proteins are glycosylated and likely to enter the bloodstream. Third, we used isotopic labeling method to facilitate the detection of tumor proteins within complex plasma by identifying paired peptide peaks from tumor tissues and plasma. However, the method described here is only for proteins that contain *N*-linked glycosylation. For proteins that do not contain *N*-linked glycosylation, this method will miss the detection of those proteins.

These results show our strategy for detection of tumor-specific proteins in plasma is specific and sensitive for low abundant tumor-associated proteins. Differ from the previous report of identification of prostate cancer-derived proteins in serum using xenograft-bearing mice ³⁰, our study is more focus on tumor-associated extracellular proteins that are likely to be used in early detection.

CONCLUSIONS

In this study, we described a platform for quantitative detection of tumor-specific extracellular proteins in tumor and plasma. This suggests that it possible of detection of cancer from plasma.

The fact that tumor-specific proteins were detectable in plasma from tumor-bearing mice indicates that cancer-specific markers could be detected in plasma using targeted approaches and these proteins could be serum tumor marker candidates ⁷. Once such candidate proteins are identified, the homologues of the proteins can be verified in human sera using the targeted approach. ELISA assays can be developed using a pair of antibodies. However, if antibodies against the candidate proteins are not available, mass-spectrometry-based methods can be applied to detect candidate proteins in plasma. One approach is referred as a multiple reaction monitoring (MRM) ^{17–19}. In another approach called stable isotope standards and capture by anti-peptide antibodies (SISCAPA), a specific peptide from sample and the synthetic heavy isotope labeled peptide of the candidate protein are captured by peptide antibody. The mass spectrometer is then used to detect and quantify the specific peptide with known precursor mass and fragmentation ions ³¹.

Acknowledgments

This work was supported with federal funds from the National Cancer Institute, National Institutes of Health, by Grants R21-CA-114852. We gratefully acknowledge the support from the Mass Spectrometry Facility at the Johns Hopkins

University and the support of Trans-Proteomic Pipeline (TPP) Software tools available from Aebersold group at the Institute for Systems Biology.

References

- 1. Etzioni R, et al. The case for early detection. Nat Rev Cancer 2003;3:243–252. [PubMed: 12671663]
- Pieper R, et al. Multi-component immunoaffinity subtraction chromatography: an innovative step towards a comprehensive survey of the human plasma proteome. Proteomics 2003;3:422–432.
 [PubMed: 12687610]
- 3. Adkins JN, et al. Toward a human blood serum proteome: analysis by multidimensional separation coupled with mass spectrometry. Mol Cell Proteomics 2002;1:947–955. [PubMed: 12543931]
- Tirumalai RS, et al. Characterization of the low molecular weight human serum proteome. Mol Cell Proteomics 2003;2:1096–1103. [PubMed: 12917320]
- Shen Y, et al. Ultra-high-efficiency strong cation exchange LC/RPLC/MS/MS for high dynamic range characterization of the human plasma proteome. Anal Chem 2004;76:1134–1144. [PubMed: 14961748]
- Coombes KR. Analysis of mass spectrometry profiles of the serum proteome. Clin Chem 2005;51:1–
 [PubMed: 15613701]
- 7. Zhang H, Chan DW. Cancer Biomarker Discovery in Plasma Using a Tissue-targeted Proteomic Approach. Cancer Epidemiol Biomarkers Prev 2007;16:1915–1917. [PubMed: 17932335]
- Zhang H, Li XJ, Martin DB, Aebersold R. Identification and quantification of N-linked glycoproteins using hydrazide chemistry, stable isotope labeling and mass spectrometry. Nat Biotechnol 2003;21:660–666. [PubMed: 12754519]
- 9. Tian Y, Zhou Y, Elliott S, Aebersold R, Zhang H. Solid-phase extraction of N-linked glycopeptides. Nat Protocols 2007;2:334–339.
- 10. Zhou Y, Aebersold R, Zhang H. Isolation of N-linked glycopeptides from plasma. Anal Chem 2007;79:5826–5837. [PubMed: 17591751]
- Roth J. Protein N-glycosylation along the secretory pathway: relationship to organelle topography and function, protein quality control, and cell interactions. Chem Rev 2002;102:285–303. [PubMed: 11841244]
- Zhang H, et al. High throughput quantitative analysis of serum proteins using glycopeptide capture and liquid chromatography mass spectrometry. Mol Cell Proteomics 2005;4:144–155. [PubMed: 15608340]
- 13. Zhang H, et al. Mass spectrometric detection of tissue proteins in plasma. Mol Cell Proteomics 2007;6:64–71. [PubMed: 17030953]
- 14. Schulz BL, Laroy W, Callewaert N. Clinical laboratory testing in human medicine based on the detection of glycoconjugates. Curr Mol Med 2007;7:397–416. [PubMed: 17584080]
- 15. Pan S, et al. High throughput proteome screening for biomarker detection. Mol Cell Proteomics 2005;4:182–190. [PubMed: 15637048]
- 16. Zhang H, Yan W, Aebersold R. Chemical probes and tandem mass spectrometry: a strategy for the quantitative analysis of proteomes and subproteomes. Curr Opin Chem Biol 2004;8:66–75. [PubMed: 15036159]
- Keshishian H, Addona T, Burgess M, Kuhn E, Carr SA. Quantitative, multiplexed assays for low abundance proteins in plasma by targeted mass spectrometry and stable isotope dilution. Mol Cell Proteomics 2007;6:2212–2229. [PubMed: 17939991]
- Stahl-Zeng J, et al. High sensitivity detection of plasma proteins by multiple reaction monitoring of N-glycosites. Mol Cell Proteomics 2007;6:1809–1817. [PubMed: 17644760]
- Anderson L, Hunter CL. Quantitative mass spectrometric multiple reaction monitoring assays for major plasma proteins. Mol Cell Proteomics 2006;5:573–588. [PubMed: 16332733]
- 20. Kemp CJ. Multistep skin cancer in mice as a model to study the evolution of cancer cells. Semin Cancer Biol 2005;15:460–473. [PubMed: 16039870]
- 21. Eng J, McCormack AL, Yates JR 3rd. An approach to correlate tandem mass spectral data of peptides with amino acid sequences in a protein database. J Am Soc Mass Spectrom 1994;5:976–989.

22. Han DK, Eng J, Zhou H, Aebersold R. Quantitative profiling of differentiation-induced microsomal proteins using isotope-coded affinity tags and mass spectrometry. Nat Biotechnol 2001;19:946–951. [PubMed: 11581660]

- 23. Keller A, Nesvizhskii AI, Kolker E, Aebersold R. Empirical statistical model to estimate the accuracy of peptide identifications made by MS/MS and database search. Anal Chem 2002;74:5383–5392. [PubMed: 12403597]
- 24. Whiteaker JR, et al. Integrated pipeline for mass spectrometry-based discovery and confirmation of biomarkers demonstrated in a mouse model of breast cancer. J Proteome Res 2007;6:3962–3975. [PubMed: 17711321]
- 25. Zou Z, et al. Synthesis and evaluation of superparamagnetic silica particles for extraction of glycopeptides in the microtiter plate format. Anal Chem 2008;80:1228–1234. [PubMed: 18197692]
- 26. Liu H, Sadygov RG, Yates JR 3rd. A model for random sampling and estimation of relative protein abundance in shotgun proteomics. Anal Chem 2004;76:4193–4201. [PubMed: 15253663]
- Jones FS, Jones PL. The tenascin family of ECM glycoproteins: structure, function, and regulation during embryonic development and tissue remodeling. Dev Dyn 2000;218:235–259. [PubMed: 10842355]
- 28. Orend G. Potential oncogenic action of tenascin-C in tumorigenesis. Int J Biochem Cell Biol 2005;37:1066–1083. [PubMed: 15743679]
- 29. Ghosh D. Human sulfatases: a structural perspective to catalysis. Cell Mol Life Sci 2007;64:2013–2022. [PubMed: 17558559]
- 30. van den Bemd GJ, et al. Mass spectrometric identification of human prostate cancer-derived proteins in serum of xenograft-bearing mice. Mol Cell Proteomics 2006;5:1830–1839. [PubMed: 16714762]
- 31. Anderson NL, et al. Mass spectrometric quantitation of peptides and proteins using Stable Isotope Standards and Capture by Anti-Peptide Antibodies (SISCAPA). J Proteome Res 2004;3:235–244. [PubMed: 15113099]

For the second s

Figure 1. Flow chart for detection of tumor-specific proteins in plasma

Figure 2.

Detection of tumor-specific proteins in plasma. A). The detected paired peaks of succinic anhydride labeled Tenascin-C and MS/MS spectrum of Tenascin-C. B) The paired peak of succinic anhydride labeled Arylsulfatase B and MSMS of Arylsulfatase B. C) The paired peak of succinic anhydride labeled Ig gamma-3 chain C region showed different peak pattern from Tenascin-C and MS/MS of Ig gamma-3 chain C region. NrP: Mouse plasma without carcinogen treatment; CaP: Mouse plasma from cancer-bearing mice after carcinogen treatment; MT: Mouse cancer tissues.

Table 1

Identified N-linked glycoproteins and glycosites.

IPI	Protein Name	P	Identified Sequences
IPI00120245	Integrin alpha-V	1	K.AN#TTQPGIVEGGQVLK.C
IPI00120245	Integrin alpha-V	1	R.TAADATGLQPILNQFTPAN#VSR.Q
IPI00127447	Lysosome membrane protein II	1	R.N#QSVGDPNVDLIR.T
IPI00127447	Lysosome membrane protein II	1	T.GEDNYLN#FSK.I
IPI00127447	Lysosome membrane protein II	1	R.TMVFPVMYLN#ESVLIDK.E
IPI00127447	Lysosome membrane protein II	1	R.YKVPAEILAN#TSENAGF.C
IPI00322447	RA175	1	K.VSLTN#VSISDEGR.Y
IPI00322447	RA175	1	R.FQLLN#FSSSELK.V
IPI00118413	Thrombospondin 1	1	L.DNNVVN#GSSPAIR.T
IPI00118413	Thrombospondin 1	1	K.VSCPIMPCSN#ATVPDGECCPR.C
IPI00118413	Thrombospondin 1	1	W.PNENLVCVAN#ATYHCK.K
IPI00123678	Cadherin-22	0.98	R.ETAGWHN#ITVLAMEADN.H
IPI00154057	Protocadherin 1	0.99	N.DNAPFITAPSN#TSHR.L
IPI00126090	Integrin alpha-3	1	I.AMN#YSLPLR.M
IPI00126090	Integrin alpha-3	1	W.LECPLPDTSN#ITN#VTVK.A
IPI00132474	Integrin beta-1	1	R.NPCTSEQN#CTSPFSYK.N
IPI00132474	Integrin beta-1	1	R.KEN#SSEICSNNGECVCGQCVCR.K
IPI00132474	Integrin beta-1	1	K.DTCAQECSHFN#LTK.V
IPI00227969	Integrin alpha-6	1	K.YQTLN#CSVNVR.C
IPI00227969	Integrin alpha-6	0.91	R.VEQKN#NTFFDMNIF.E
IPI00320605	Integrin beta-2	1	K.LN#FTGPGEPDSLR.C
IPI00320605	Integrin beta-2	0.99	Y.LRPGQAAAFN#VTFR.R
IPI00415773	Integrin alpha-M	1	R.TPVLN#CSVAVCK.R
IPI00415773	Integrin alpha-M	1	V.GGPQDFN#MSVTLR.N
IPI00415773	Integrin alpha-M	1	R.LN#YTLVGEPLR.S
IPI00132067	Fibulin-2	1	Y.QLPGCHGN#FSDAEEGDSER.Q
IPI00132067	Fibulin-2	1	K.DLDECALGTHN#CSEAETCHNIQGSFR.C
IPI00132067	Fibulin-2	1	K.SCVAGVMGAKEGETCGAEDN#DTCGVSLYK.A
IPI00223769	CD44 antigen	1	R.TEAADLCQAFN#STLPTMDQMK.L
IPI00110810	Prostate stem cell antigen	1	R.DCLNVQN#CSLDQHSCFTSR.I
IPI00110852	Translocon-associated protein alpha, muscle specific isoform	1	K.DLNGNVFQDAVFN#QTVT.V
IPI00110852	Translocon-associated protein alpha, muscle specific isoform	1	R.YPQDYQFYIQN#FTALPLNTVVPPQR.Q
IPI00112326	Epithelial membrane protein 1	1	K.N#CTGGNCDGSLSYGNEDAIK.A
IPI00113480	Myeloperoxidase	1	R.ALMPFDSLHDDPCLLTN#R.S
IPI00111013	Cathepsin D	1	K.YYHGELSYLN#VTR.K
IPI00111013	Cathepsin D	1	K.N#GTSFDIHYGSGSL.S

IPI	Protein Name	P	Identified Sequences
IPI00128154	Cathepsin L	1	R.AEFAVAN#DTGFVDIPQQEK.A
IPI00403938	Tenascin C	1	L.EADTTQTVQN#LTVPGGLR.S
IPI00403938	Tenascin C	1	R.EPEIGNLN#VSDVTPK.S
IPI00403938	Tenascin C	1	R.LLQTAEHN#ISGAER.T
IPI00403938	Tenascin C	1	N.NVEAAQN#LTVPGSLR.A
IPI00403938	Tenascin C	0.99	N.NVETAHN#FTVPGNLR.A
IPI00403938	Tenascin C	1	R.ESGLN#MTLPEENQPVVFNHIYNIK.L
IPI00403938	Tenascin C	1	K.ASTEEVPSLEN#LTVT.E
IPI00403938	Tenascin C	1	R.LN#YSLPTGQSMEVQLPK.D
IPI00108535	Carcinoembryonic antigen-related cell adhesion molecule 1	1	R.FVPNSNMN#FTGQAYSGR.E
IPI00108535	Carcinoembryonic antigen-related cell adhesion molecule 1	1	K.N#ITVLEPVTQPFLQVTN#TTVK.E
IPI00313428	CEA-related cell adhesion molecule 2	1	R.TLTLLN#VTR.N
IPI00122977	Plasma protease C1 inhibitor	1	R.DTYVN#ASQSLYGSSPR.V
IPI00122977	Plasma protease C1 inhibitor	1	K.VGQLQLSHN#LSFVIVVPVFPK.H
IPI00128689	Collagen alpha 1(V) chain	1	K.VYCN#FTAGGSTCVFPDKK.S
IPI00130249	GPI-anchored metastasis-associated protein homolog	1	A.N#VTVSLPVR.G
IPI00130249	GPI-anchored metastasis-associated protein homolog	1	K.CQGSMPPVVNCYN#ASGR.V
IPI00130486	FK506-binding protein 9	1	R.YHYN#GTLLDGTLFDSSYSR.N
IPI00130486	FK506-binding protein 9	1	R.YHYN#GTFLDGTLFDSSHNR.M
IPI00132600	Niemann-Pick C1 protein	1	R.LYN#VTHQFCN#ASVMDPTCVR.C
IPI00132600	Niemann-Pick C1 protein	1	R.LIASN#ITETMR.S
IPI00131881	ADAM 10	1	R.IN#TTSDEKDPTNPFR.F
IPI00130342	Lymphocyte antigen 6 complex locus G6C protein	1	K.LGLNYN#TTCCDK.D
IPI00130342	Lymphocyte antigen 6 complex locus G6C protein	1	R.EVFN#ETNHK.L
IPI00133082	CD177 antigen	1	K.VQGCMAQPDCNLLN#GTQAI.G
IPI00134549	Lysosome-associated membrane glycoprotein 2	1	A.LIVN#LTDSK.G
IPI00134549	Lysosome-associated membrane glycoprotein 2	1	K.VPFIFNINPATTN#FTGSCQPQSAQLR.L
IPI00134549	Lysosome-associated membrane glycoprotein 2	1	K.EVNVYMYLAN#GSAFN#ISNK.N
IPI00121430	Collagen alpha 1(XII) chain	1	K.EAGN#ITTDGYEILGK.L
IPI00122272	Extracellular matrix protein 1	1	K.QIPGLIQN#MTVR.C
IPI00122272	Extracellular matrix protein 1	1	R.NVALVAGDTGN#ATGLGEQGPTR.G
IPI00122493	FK506-binding protein 10	1	R.YHYN#CSLLDGTR.L
IPI00122493	FK506-binding protein 10	1	R.YHYN#GSLMDGTLFDSSYSR.N
IPI00123342	Hypoxia up-regulated 1	1	R.VFGSQN#LTTVK.L
IPI00123342	Hypoxia up-regulated 1	1	R.LSALDNLLN#HSSIFLK.G
IPI00123342	Hypoxia up-regulated 1	1	K.EN#GTDAVQEEEESPAEGSK.D
IPI00123831	SDR1 protein	1	K.ENGVFEEISN#SSGR.F
IPI00123831	SDR1 protein	1	R.FFITNKEN#YTEL.S
IPI00123831	SDR1 protein	1	R.ESLLPVTLQCN#LTSSSH.T
IPI00224728	Cd63 antigen	1	K.DRVPDSCCIN#ITVGCGNDFK.E

Tian et al.

IPI00409393

IPI00409393

IPI00409393

IPI00108535

IPI00117424

IPI00122971

isoform 1L

isoform 1L

isoform 1L

isoform

Intercellular adhesion molecule 2

IPI **Protein Name** P **Identified Sequences** IPI00462199 Basigin 1 K.TSDTGEEEAITN#STEANGK.Y K.TQLTCSLN#SSGVDIVGHR.W IPI00462199 1 Basigin IPI00462199 Basigin 1 K.SQLTISNLDVNVDPGTYVCN#ATNAQGTTR.E IPI00308609 VESICULAR INTEGRAL-MEMBRANE PROTEIN 1 R.VFPYISVMVNN#GSLSYDHSK.D VIP36 IPI00308990 R.N#PSPDELPQVGN#LSLK.G Monocyte differentiation antigen CD14 1 Prostaglandin G/H synthase 2 IPI00308785 1 R.TGFYGEN#CTTPEFLTR.I IPI00308971 K.ISTN#ITLVCKPGDLESAPVLR.A Cation-independent mannose-6-phosphate receptor IPI00308971 1 R.SLLEFN#TTMGCQPSDSQHR.I Cation-independent mannose-6-phosphate receptor IPI00124836 Beta-sarcoglycan 1 R.ITSN#ATSDLNIK.V IPI00124836 Beta-sarcoglycan 0.99 I.ILN#GTVMVSPTR.L IPI00122737 222 kDa protein 1 R.QAEEAEEQANTN#LSK.F R.VQLLHSQN#TSLINQKK.K IPI00122737 0.98 222 kDa protein IPI00119063 K.LTSCATN#ASMCGDEAR.C AM2 receptor IPI00119063 AM2 receptor K.LNLDGSN#YTLLK.Q A.VAN#DTNSCELSPCR.I IPI00119063 AM2 receptor 1 IPI00119063 R.MGCQHHCVPTPSGPTCYCN#SSFQLE.A AM2 receptor 1 IPI00119063 AM2 receptor 0.99 R.GVTHLN#ISGLK.M IPI00119063 R.FN#STEYQVVTR.V AM2 receptor 1 IPI00124265 Latent transforming growth factor beta binding protein 4 R.N#ATSVDSGAPGGAAPGGPGFR.A IPI00124265 Latent transforming growth factor beta binding protein 4 R.CTPACDPGYQPTPGGGCQDVDECRN#R.S IPI00129304 Collectin sub-family member 12 1 R.HTDDLTSLN#NTLVNIR.L IPI00129304 Collectin sub-family member 13 1 K.ETLQN#NSFLITTVN#K.T IPI00153959 Stabilin-1 H.ADLISN#MSQDELAR.I IPI00153959 K.GFVDN#MTLSGPDLELH.A Stabilin-1 1 IPI00316575 Cathepsin K 1 Y.VGQDESCMYN#ATAK.A IPI00126769 0.94 K.VYIN#DSVELSR.N Cathepsin F R.DIVQNVFMSN#MSMDLQSHPSSCPK.C IPI00121190 Epidermal growth factor receptor 1 IPI00320420 Clusterin 1 R.QELN#DSLQVAER.L IPI00320420 0.99 K.MLN#TSSLLEQLNDQFNWVSQLAN#LTQGEDK. Clusterin IPI00406459 H.EACAPIESLN#GTR.C Arylsulfatase B 1 IPI00406459 Arylsulfatase B R.IYAGMVSLMDEAVGN#VTK.A 1

Page 15

1

1

0.91

1

1

R.YGQEQGTAPFQVSN#HTGR.I

Y.NLNDASLCDNVLAPN#VTK.Q

K.VCTN#GSCTNLEGSYM.C

R.EIIYSN#GSLLFQMITMK.D

R.DGQLLPSSN#YSNIK.I

K.IN#CSTNCAAPDMGGLETPTNK.I

Latent transforming growth factor beta binding protein,

Latent transforming growth factor beta binding protein,

Latent transforming growth factor beta binding protein,

Carcinoembryonic antigen-related cell adhesion molecule 1

N-CAM 180 of Neural cell adhesion molecule 1, 180 kDa

Tian et al.

core protein

core protein

core protein

Desmocollin-3

Eosinophil peroxidase

Basement membrane-specific heparan sulfate proteoglycan

Basement membrane-specific heparan sulfate proteoglycan

IPI00113824

IPI00113824

IPI00113853

IPI00113854

IPI **Protein Name** P **Identified Sequences** IPI00406901 Platelet/endothelial cell adhesion molecule 1 K.EETVLSQYQN#FSK.I IPI00115976 K.VTGLSN#CTSN#YTPN.S 1 Integrin alpha-5 IPI00313479 Integrin beta 4 Isoform 2 1 K.TCN#CSTGSLSDTQPCLR.E IPI00466371 Integrin alpha 1 K.DSCESNQN#ITCR.V IPI00230432 H.SYN#SSLETIFIK.R Fibulin-1 0.98 IPI00119756 1 K.GTGTGIEN#STESHFHSN#GTTSVTSILR.V OX-2 membrane glycoprotein IPI00222589 PTK7 protein tyrosine kinase 7 0.98 R.MHIFQN#GSLVIH.D IPI00314779 1 R.AGVVVFN#CSLR.Q TGF-beta receptor type III IPI00112787 W.SPDGDCVTTSESHSN#GTVTVR.S Cell surface glycoprotein OX2 receptor 1 IPI00113528 Transmembrane 9 superfamily protein member 3 R.IVDVN#LTSEGK.V IPI00114304 R.LGFLGN#QSQGCVPAR.T Thrombospondin-3 1 IPI00119809 Mama protein 1 R.ALGYEN#ATQALGR.A IPI00119809 Mama protein 1 K.GLN#LTEDTYKPR.L IPI00469218 R.LN#MTLPDALVPTFSISN#HSLK.A Lysosomal membrane glycoprotein 1 1 IPI00469218 1 K.N#VTVVLR.D Lysosomal membrane glycoprotein 2 IPI00120025 Similar to KALLIKREIN 9 R.LTPAVQPLN#LTESRPPVGTQ.C 1 IPI00338790 Glandular kallikrein KLK13 1 K.ILN#GTN#GTSGFLPGGYTCLPH.S IPI00116993 0.94 A.PKQGLN#NSPPVK.E Tuberin IPI00111550 Mucin and cadherin-like protein 1 R.VTN#SSEFMMNK.D IPI00108041 Stromal interaction molecule 1 1 R.LAVTN#TTMTGTVLK.M IPI00108328 0.93 M.ETTSLLLCIGN#NSSGIRSRHR.S Methylated-DNA-- protein-cysteine methyltransferase containing protein IPI00108811 Glucosylceramidase 1 R.DLGPALAN#SSHDVK.L IPI00109281 Enabled protein homolog 1 W.ERTNTMN#GSK.S IPI00109612 L.ASGN#VSGGVCDGCQHNTAGR.H 1 Laminin, beta 2 IPI00109727 1 K.VLTLAN#FTTK.D Thy-1 membrane glycoprotein Ig gamma-2A chain C region, membrane-bound form IPI00109908 R.EDYN#STLR.V 1 IPI00111014 T.AFN#DTVEFYR.W Elongation of very long chain fatty acids protein 4 IPI00111115 Similar to METASTASIS-ASSOCIATED GPI-1 R.MNIGN#FSVPVYIR.T ANCHORED PROTEIN IPI00111960 R.GVFITN#ETGQPLIGK.V Lysosomal alpha-glucosidase 1 IPI00112176 Copper homeostasis protein cutC homolog 0.94 R.N#SSVAMGASLAHSEYSLK.V IPI00113057 Plasma kallikrein 1 K.LQTPLN#YTEFQKPICLPSK.A IPI00113797 Napsin A 0.96 W.FN#LTGQDYVIK.I IPI00113824 Basement membrane-specific heparan sulfate proteoglycan 0.98 K.LTVPSSQN#SSFR.L

Page 16

1

1

0.99

0.99

R.SLTQGSLIVGNLAPVN#GTSQGK.F

R.VAQQDSGQYICN#ATNSAGH.T

K.AN#FTILK.G

F.DNLHEDPCLLTN#R.S

IPI	Protein Name	P	Identified Sequences
IPI00114065	Complement factor B	1	K.IVLDPSGSMNIYLVLDGSDSIGSSN#FTGAK.R
IPI00114065	Complement factor B	0.94	R.SPFYN#LSDQI.S
IPI00114206	Prothrombin	1	R.WVLTAAHCILYPPWDKN#FTENDLLVR.I
IPI00114206	Prothrombin	1	R.ITDNMFCAGFKVN#DTK.R
IPI00400016	Laminin gamma-1 chain	1	K.LLNN#LTSIK.I
IPI00400016	Laminin gamma-1 chain	1	R.TLAGEN#QTALEIEELNR.K
IPI00400016	Laminin gamma-1 chain	1	L.SYGQN#LSFSFR.V
IPI00400016	Laminin gamma-1 chain	1	R.KYEQAKN#ISQDLEKQ.A
IPI00317340	Lactotransferrin	1	I.PMGLLAN#QTR.S
IPI00317340	Lactotransferrin	1	K.N#SSNFHLNQLQGLR.S
IPI00113539	Fibronectin	1	R.DQCIVDDITYNVN#DTFHK.R
IPI00113539	Fibronectin	1	K.LDAPTNLQFVN#ETDR.T
IPI00113539	Fibronectin	1	R.HEEGHMLN#CTCFGQGR.G
IPI00119818	Inter alpha-trypsin inhibitor, heavy chain 4	1	K.AFITN#FSMIIDGVTYPGVVK.E
IPI00119818	Inter alpha-trypsin inhibitor, heavy chain 5	1	R.GLMLLLN#DTQHFSNNVK.G
IPI00114256	Synaptophysin-like protein	1	K.N#QTVTATFGYPFR.L
IPI00114319	Extracellular superoxide dismutase [Cu-Zn]	1	R.LEAYFSLEGFPAEQN#ASNR.A
IPI00114641	CD98 heavy chain	1	K.LMNAPLYLAEWQN#ITK.N
IPI00114810	Suppressor of tumorigenicity 14	0.99	R.VIN#QTTCEDLMPQQITPR.M
IPI00114958	HMW of Kininogen-1	1	K.HSIEHFNN#NTDHSHLFTLR.K
IPI00114958	HMW of Kininogen-1	1	T.YTIVQTN#CSK.E
IPI00114958	HMW of Kininogen-1	1	K.IAN#FSQSCTLYSGDDLVEALPKPCPGCPR.D
IPI00115089	Ectonucleoside triphosphate diphosphohydrolase 2	1	R.LLN#LTSPEATAK.V
IPI00115516	EMILIN-1	1	R.FN#STLGPSEEQEK.N
IPI00115530	Beta-hexosaminidase beta chain	1	K.TQVFGPVDPTVN#TTYA.F
IPI00115762	Neural cell adhesion molecule L1	1	K.EQLFFN#LSDPELR.T
IPI00115817	PREDICTED: similar to ribosomal protein L21	0.95	K.TGRVYN#VTQHAMGIIVNK.Q
IPI00115854	TROP2 protein	1	R.AFN#HSDLDSELR.R
IPI00116105	Corticosteroid-binding globulin	1	K.DLFTN#QSDFADTTK.D
IPI00116105	Corticosteroid-binding globulin	1	R.EEDFYVN#ETSTVK.V
IPI00116105	Corticosteroid-binding globulin	1	K.VPMMVQSGN#ISYFR.D
IPI00116105	Corticosteroid-binding globulin	1	R.GSTQYLENLGFN#MSK.M
IPI00116599	p130Cas-associated protein	0.92	R.RQVDEGMWPPPNNLLN#QSPK.K
IPI00116913	Laminin alpha-5 chain	1	R.QLLAN#SSALEETILGHQGR.L
IPI00116913	Laminin alpha-5 chain	1	H.N#FSGCISNVFVQR.L
IPI00116945	Complement factor D	1	K.LSQN#ASLGPHVRPLPLQYEDK.E
IPI00117093	Laminin beta-3 chain	1	R.QTACTPGDCPGELCPQDN#GTACGSHCR.G
IPI00117140	Fc receptor, IgG, low affinity IIb	1	R.YHHYSSN#FSIPK.A
IPI00117735	Myelin P0 protein	1	K.DGSIVIHNLDYSDN#GTFTCDVK.N
IPI00117831	Ceruloplasmin	1	K.EYEGAVYPDN#TTDFQR.A

IPI	Protein Name	P	Identified Sequences
IPI00117857	Alpha-1-antitrypsin 1–6	1	K.GDTHTQILEGLQFN#LTQTSEADIHK.S
IPI00117932	Paired amphipathic helix protein Sin3a	0.96	P.DAN#SSVLLSKTTAEK.V
IPI00117957	Asporin	1	R.ITDIEN#GTFANIPR.V
IPI00118011	mannosidase, beta A, lysosomal	0.97	V.AEILFNN#VTIGK.T
IPI00118130	Alpha-1-acid glycoprotein 1	1	R.ESQTIGDQCVYN#STHLGFQR.E
IPI00118130	Alpha-1-acid glycoprotein 1	1	R.QAIQTMQSEFFYLTTNLIN#DTIELR.E
IPI00118130	Alpha-1-acid glycoprotein 1	1	R.EN#GTFSKYEGGVETFAHLIVLR.K
IPI00118191	Receptor-type tyrosine-protein phosphatase N2	0.98	K.VSANIQN#MTTADVIK.A
IPI00118385	Glutamate [NMDA] receptor subunit zeta 1	1	K.VICTGPN#DTSPGSPR.H
IPI00118437	Complement component C8 gamma chain homolog	1	R.EAN#LTEDQILFFPK.Y
IPI00119004	Hypothetical Lipolytic enzyme, G-D-S-L containing protein	0.91	R.KGPGMENPVAVTIFFGAN#DSSLK.D
IPI00119299	Leukemia inhibitory factor receptor	1	K.VVLAGSN#MTICCMSPTK.V
IPI00119299	Leukemia inhibitory factor receptor	1	R.IEGLTN#ETYR.L
IPI00119299	Leukemia inhibitory factor receptor	1	R.LGVQMHPGQEIHN#FTLTGR.N
IPI00119522	Carboxypeptidase N, polypeptide 2 homolog	1	R.LQDLEITGSPVSN#LSAHIFSN#LSSLEK.L
IPI00119627	Insulin receptor substrate 1	0.93	K.LLPCTGDYMN#MSPVGDSN#TS.S
IPI00120187	Fibromodulin	0.97	R.VPNNALEGLEN#LT.A
IPI00120751	Proton myo-inositol transporter homolog	1	K.IN#GSAVIDSSCVPVNK.A
IPI00120769	Solute carrier family 29 (nucleoside transporters), member 1	1	R.LDVSQN#VSSDTDQSCESTK.A
IPI00120848	Mimecan	0.95	I.SSLTDDTFCKAN#DTR.Y
IPI00121038	Versican core protein	1	R.FEN#QTCFPLPDSR.F
IPI00121120	Procollagen, type V, alpha 2	1	K.EASQN#LTYICR.N
IPI00121312	MFIRE1	1	K.IDLTDFEKN#SSFA.Q
IPI00121362	F11r protein	1	R.AFMN#SSFTIDPK.S
IPI00121418	Retinoblastoma-associated protein	0.97	K.QLEN#DTRIIEVLCKEHECNIDEVKN.V
IPI00121550	Sodium/potassium-transporting ATPase beta-1 chain	1	K.LDWLGN#CSGLNDDSYGYR.E
IPI00121634	High-affinity cationic amino acid transporter-1	0.94	K.FLAKINN#RTKTPVIATVTSGAIAAVM.A
IPI00122293	Prolargin	1	R.VPVIPPRIHYLYLQNNFITELPLESFQN#ATGLR.W
IPI00122302	Neutrophil elastase homolog	0.91	R.LGTNRPSPSVLQELN#VT.V
IPI00122368	P2X4c receptor subunit	1	K.TSICDSDAN#CTLGSSDTHSSGIGTGR.C
IPI00122438	Fibrillin-1	1	K.AWGTPCELCPSVN#TSEYK.I
IPI00122438	Fibrillin-1	1	V.DTDECSVGNPCGN#GTCK.N
IPI00122438	Fibrillin-1	1	V.N#VTDYCQLVR.Y
IPI00122438	Fibrillin-1	1	R.NYYADN#QTCDGELLFN#MTK.K
IPI00122438	Fibrillin-1	1	R.N#CTDIDECR.I
IPI00123194	Biglycan	1	R.MIEN#GSLSFLPTLR.E
IPI00123196	Decorin	1	K.LGLSFNSITVMEN#GSLANVPHLR.E
IPI00123196	Decorin	1	K.YIQVVYLHNNN#ISAVGQNDFCR.A
IPI00123223	Murinoglobulin-1	1	R.NYEVQLFHVN#ATVTEEGTGLEFSR.S
IPI00123223	Murinoglobulin-1	1	R.N#ASFVYTK.A

IPI	Protein Name	P	Identified Sequences
IPI00123824	Amiloride-sensitive sodium channel beta-subunit	1	K.GEPYSPCTMN#GSDVAIK.N
IPI00123957	Cd97 protein	1	R.DFNPATVN#YTIQK.L
IPI00123996	Neuropilin-1	1	K.RGPECSQN#YTAPTGVIK.S
IPI00124283	Macrophage scavenger receptor types I and II	1	R.VLNN#ITNDLR.L
IPI00124640	Osteoclast-like cell cDNA, clone:I420031M06 product:granulin	1	K.SDTPCDDFTRCPTN#NTCCK.L
IPI00124830	Leukocyte surface antigen CD47	1	I.EFTSCN#ETVVIPCIVR.N
IPI00125058	Laminin alpha-3 chain	1	K.IESINQQLLPLGN#ISDNVDR.I
IPI00125058	Laminin alpha-3 chain	0.99	K.TTFNLN#TTEVEPCRR.R
IPI00125266	Acid ceramidase	1	R.SVLEN#TTSYEEAK.N
IPI00125293	Eosinophil cationic protein 1	0.97	R.VHITVCN#ITSR.A
IPI00125310	Complement C1q subcomponent, A chain	1	K.VLTNQESPYQN#HTGR.F
IPI00125325	Peroxisomal 2,4-dienoyl-CoA reductase	0.96	F.RDHGGVIVN#ITATLSMR.G
IPI00125514	Ectonucleoside triphosphate diphosphohydrolase 5	1	R.GYLTSFEMFN#STFK.L
IPI00125877	Hypothetical protein	1	N.YQN#NTEVIQGIR.T
IPI00125877	Hypothetical protein	1	R.GLTFLKN#VSSTCAASPSTDILTFTIPPSFADIFLSK S
IPI00126050	Plasma glutamate carboxypeptidase	1	K.EVMNLLQPLN#VTK.V
IPI00126186	Macrophage mannose receptor 1	1	R.TSYCN#ESFYFLCK.K
IPI00126194	Alpha-2-macroglobulin	1	K.N#ITSVVSPLGYLSIFTTDEHGLAN#ISIDTSN#FTAPFLF
IPI00126194	Alpha-2-macroglobulin	1	R.IN#VSYTGERPSSNMVIVDVK.M
IPI00126194	Alpha-2-macroglobulin	1	Y.LN#ETQQLTEAIK.S
IPI00126194	Alpha-2-macroglobulin	1	K.VN#LSFPSAQSLPASDTHLK.V
IPI00126316	Mast cell carboxypeptidase A	1	R.NQN#STCIGTDLNR.N
IPI00126834	Vascular cell adhesion protein 1	1	K.ETTIWVSPSPILEEGSPVN#LTCSSDGIPAPK.I
IPI00127280	Myeloid bactenecin	1	K.DCDFLEDGEERN#CTGK.F
IPI00127352	AMBP protein	1	K.EDSCQLN#YSEGPCLGMQER.Y
IPI00127560	Transthyretin	1	K.TLGISPFHEFADVVFTAN#DSGHR.H
IPI00127672	PREDICTED: hypothetical protein LOC66967	1	K.LLPAFN#TTSGLPYPR.I
IPI00127856	Alpha-1-acid glycoprotein 2	1	R.EYHTIDDHCVYN#STHLGIQR.E
IPI00127856	Alpha-1-acid glycoprotein 2	1	D.PITN#ETLSWLSDK.W
IPI00127933	Androgen binding protein alpha	1	R.KVDLFLN#GTTEEY.V
IPI00128249	Alpha-2-HS-glycoprotein	1	R.RPFGVVYEMEVDTLETTCHALDPTPLAN#CSVR.Q
IPI00128249	Alpha-2-HS-glycoprotein	1	R.CPLLTPFN#DTNVVHTVNTALAAFNTQNN#GTYFK.L
IPI00128484	Hemopexin	1	R.VAEVEN#GTKPD.S
IPI00128484	Hemopexin	1	R.SWSTVGN#CTAALR.W
IPI00128484	Hemopexin	1	K.SLGPNTCSSN#GSSLYFIHGPNLYCYSSIDK.L
IPI00128484	Hemopexin	1	M.DHN#GTMLFFK.G
IPI00128905	Golgi phosphoprotein 2	1	K.AVLVNN#ITTGEK.L
IPI00128989	Vacuolar ATP synthase subunit S1	1	A.IHPPVSYN#DTAPR.I
IPI00129158	Tyrosine-protein phosphatase non-receptor type substrate 1	1	R.GIAN#LSNFIR.V

IPI	Protein Name	P	Identified Sequences
IPI00129243	Gamma-glutamyl hydrolase	1	K.LPLN#FTEGAR.K
IPI00129243	Gamma-glutamyl hydrolase	0.99	L.ALEN#LTANFHK.W
IPI00129250	Leucine-rich alpha-2-glycoprotein	1	L.SVEFSN#LTQLPAAALQGCPGLR.E
IPI00129250	Leucine-rich alpha-2-glycoprotein	1	K.MFSQN#DTR.C
IPI00129359	zinc finger protein 68	0.97	K.ELAGIGNTCN#VSTNH.I
IPI00129965	PREDICTED: similar to alpha-1-B glycoprotein	1	K.LLFVGPQHAGN#YSCR.Y
IPI00129966	PREDICTED: similar to alpha-1-B glycoprotein	0.99	R.VYQPGN#YSCSYQTHGECTSSTPSR.I
IPI00129968	Embigin	1	K.DDEPLETTGDFN#TTK.M
IPI00130010	Complement factor H	1	K.DNSCVDPPHVPN#ATIVTR.T
IPI00130010	Complement factor H	1	K.LTEFTHN#STMDYK.C
IPI00130010	Complement factor H	1	R.TKCIN#GTINYPTCV
IPI00130015	Dipeptidyl-peptidase I	1	R.ILTN#NSQTPILSPQEVVSCSPYAQGCDGGFPYLIAGI
IPI00130483	KH domain RNA binding protein QKI-5A	0.96	R.KDMYN#DTLN#GSTEK.R
IPI00130627	Legumain	0.97	Y.DDIANSEEN#PTPGVVINRPN#GTDVYK.G
IPI00130630	Glutamate carboxypeptidase II	1	K.VPYNVGPGFAGN#FSTQK.V
IPI00130654	Afamin	1	P.TKPQDVDHFN#ATQK.F
IPI00130654	Afamin	1	L.ADLVLGELCGVNTN#R.T
IPI00130661	Tripeptidyl-peptidase I	0.97	K.DVGSGTTN#NSQACAQFLEQYFHNSDLTEFMR.L
IPI00130661	Tripeptidyl-peptidase I	1	K.SSSHLPPSSYFN#ASGR.A
IPI00131114	Type VI collagen alpha 3 subunit	1	R.GPPGVN#GTQGFQGCPGQR.G
IPI00131114	Type VI collagen alpha 3 subunit	1	R.ALN#GSALYTGSSLDFVR.N
IPI00131114	Type VI collagen alpha 3 subunit	1	R.QLINALQIN#NTAVGHALVLPAR.R
IPI00131137	9 kDa protein	0.96	K.GKAN#ASEDANNPAENGDAK.T
IPI00131209	Keratin intermediate filament 16a	1	R.KTEELNKEVASNSDLIQSN#R.S
IPI00131366	Keratin, type II cytoskeletal 6B	1	R.VPGLN#RSGFSSVSVCR.S
IPI00131526	CD209 antigen-like protein B	1	R.IPIFQGQN#ESIQEK.I
IPI00131830	Serine protease inhibitor A3K	1	K.NLINDYVSN#QTQGMIK.E
IPI00131830	Serine protease inhibitor A3K	1	K.YTGN#ASALLILPDQGR.M
IPI00131951	Serpin A12	0.91	L.SLGAQN#STLEEIR.E
IPI00133035	NAD(P)(+)arginine ADP-ribosyltransferase	1	R.LGN#FTLAYSAKPETADNQR.V
IPI00133035	NAD(P)(+)arginine ADP-ribosyltransferase	1	K.GTSNDLVLQSIN#STCSYYECAFLGGLK.T
IPI00133172	Serpin B11	1	K.N#SSECSQVGVMHPDFR.A
IPI00133257	Hematopoietic progenitor cell antigen CD34	1	M.VLAN#STELPSK.L
IPI00133751	Microfibril-associated glycoprotein 4	1	R.VDLEDFEN#NTAYAK.Y
IPI00133751	Microfibril-associated glycoprotein 4	1	R.FN#GSVSFFR.G
IPI00134191	Solute carrier family 2, facilitated glucose transporter member 3	1	K.DFLN#YTLEER.L
IPI00134483	Lectin lambda	1	R.PGACTN#ITMGVVCK.L
IPI00134483	Lectin lambda	1	R.VTPVCN#ASLPAQR.W
IPI00134547	Zinc finger autosomal protein	0.98	V.ELLDPN#NSICVPREK.M

Tian et al.

IPI **Protein Name** P **Identified Sequences** IPI00134652 Type VII collagen 1 K.LQILN#ASSDVLR.V IPI00134808 C4b-binding protein R.LACLN#GTVLR.G 1 IPI00134808 R.LVGSPFIGCTVVN#K.T C4b-binding protein 1 IPI00136642 Antithrombin-III K.LGACN#DTLK.Q IPI00136902 Piccolo protein 0.97 Y.RRQISAVQPSIIN#LSAASSLGTPVTMDSK.T IPI00136925 1 R.EN#ISDPTSPLR.R Immunoglobulin J chain IPI00137177 R.LDPPCTN#TTAPSNYLNNPYVR.K Lysosomal protective protein IPI00137987 1 K.DTTGSHTFQGMFGCEITNN#R.S Zinc-alpha-2-glycoprotein IPI00138342 Liver carboxylesterase N 1 R.FHSELN#ISESMIPAVIEK.Y IPI00139788 Serotransferrin K.N#STLCDLCIGPLK.C IPI00153187 1 K.FVN#STGYLTEAEK.F Sulfatase modifying factor 1 IPI00153202 0.99 Y.FFVTSPQN#VSDVIPR.S Angiotensin-converting enzyme 2 IPI00153258 Protein Z-dependent protease inhibitor R.ASQQLSN#ETSSFGFNLLR.K IPI00153548 0.9 C.QFGVGTFANVFLFVYN#FSPISTGSK.Q Hypothetical protein IPI00169815 1 Procollagen, type VI, alpha 2 R.GTFTDCALAN#MTQQIR.Q IPI00169815 Procollagen, type VI, alpha 2 1 I.GYTN#FTLEK.N IPI00169815 1 Procollagen, type VI, alpha 2 R.MALLQYGSQNQQQVAFPLTYN#VTTIHEALER.A IPI00169815 Procollagen, type VI, alpha 2 1 R.N#MTLFSDLVAEK.F IPI00169858 Hypothetical protein LOC435366 0.97 R.HERN#QSAEKPSEYTQHGKAFALHAHSHAQ.R IPI00169896 Choline transporter-like protein 2 1 K.TCNPETFPLRN#ESLQCPTAR.C IPI00221418 Hypothetical Phospholipase D/Transphosphatidylase K.VFIVPVGN#HSNIPFSR.V 1 IPI00221426 Glucosamine (N-acetyl)-6-sulfatase 1 K.YYN#YTLSINGK.A K.KVLSMSLAIN#ASFASLSSFVQGY.G IPI00221456 Synaptic vesicle glycoprotein 2 b 0.96 IPI00221833 0.96 Hypothetical Zinc finger, C2H2 type containing protein D.WMPNN#HSVILIDDFESPQK.L IPI00223446 1 R.HVTDMN#STIHLLR.T Laminin alpha-4 chain IPI00223987 R.MAFDLIDYLKN#ETHTAPI.T Insulin-regulated membrane aminopeptidase IRAP homolog IPI00224456 A.PLIN#VTEPPR.V Sarcalumenin 1 IPI00224456 Sarcalumenin 1 K.TN#VSKFDLPNR.E IPI00224584 Calsequestrin 2 K.IDLFKPQIGVVN#VTDADSI.W IPI00224654 1 R.AYIQDFQEFSKN#ISIMLGR.C Hypothetical protein IPI00225355 Target of Nesh-SH3 variant 1 0.99 K.VHIN#TTSDSILLK.F IPI00226310 Hypothetical von Willebrand factor type A domain R.DLSVFAPN#MTEIIK.D containing protein IPI00226310 Hypothetical von Willebrand factor type A domain 1 K.LGN#FSELATHN#QTFLK.K containing protein IPI00226310 Hypothetical von Willebrand factor type A domain 0.99 L.LDMAIN#GSQEDLDHLK.A containing protein IPI00226790 GPI transamidase component PIG-T 0.92 L.GLAN#DTDDYFLR.Y IPI00226932 Quinoprotein alcohol dehydrogenase structure containing 1 R.FINYN#QTVSR.M IPI00227834 Inter-alpha trypsin inhibitor, heavy chain 2 1 K.GAFISN#FTMTVNGMTFTSSIK.E

Page 21

IPI	Protein Name	P	Identified Sequences
IPI00227857	Hepatocyte growth factor activator	1	R.FCNIVPTEHCFLGN#GTEYR.G
IPI00229117	Tenascin-N	1	Y.ILTYQFPN#GTVK.E
IPI00230289	Excitatory amino acid transporter 2	1	K.VLVAPPSEEAN#TTK.A
IPI00266902	PREDICTED: similar to type V P-type ATPase isoform 3	0.99	K.VCDPNSDVCN#TTR.S
IPI00271166	Huntington disease gene homolog	0.94	R.GYSLLPSITDVTMENN#LSR.V
IPI00271262	Murinoglobulin-2	1	K.ELIFYYLVMAQGSIIQTGN#HTHQVEPGEAPVK.C
IPI00272381	Proline 4-hydroxylase, alpha 1	1	K.DMSDGFISN#LTIQR.Q
IPI00279010	Lu protein	1	F.VFLN#SSSTVVN#CSAR.G
IPI00279051	RIKEN cDNA A930025J12	1	R.LFQN#CSELYK.A
IPI00279079	Fibrinogen beta chain	1	K.GTAGNALMDGASQLVGEN#R.T
IPI00281188	140 kDa protein	0.99	K.VLEPPHIN#GSEGPGEV.S
IPI00281344	Hypothetical Glycosyl transferase, family 8 containing protein	0.93	R.TGVNSGVMLMN#MTR.M
IPI00308213	Ig gamma-1 chain C region, membrane-bound form	1	R.EEQFN#STFR.S
IPI00308658	Olfactomedin-like protein 3	1	K.IYVLDGTQN#DTAFVFPR.L
IPI00309068	E130014G12 product:Kaiso protein	1	K.EDLPSN#NT.A
IPI00309214	Serum amyloid P-component	1	K.LIPHLEKPLQN#FTLCFR.T
IPI00309230	Beta-glucuronidase	0.98	R.ITIAIN#NTLTPH.T
IPI00309999	Laminin alpha-2 chain	1	R.LEQMTMNIN#LTGPLPAPYK.I
IPI00309999	Laminin alpha-2 chain	1	K.LN#ETLGNQDK.T
IPI00309999	Laminin alpha-2 chain	1	R.ICNQN#SSNPYQR.H
IPI00309999	Laminin alpha-2 chain	1	K.VFQAESHAAQLN#DSSAVLDGILDEAK.N
IPI00309999	Laminin alpha-2 chain	1	K.VCN#CSTVGSLASQCNVNTGQCSCHPK.F
IPI00309999	Laminin alpha-2 chain	1	K.ILYGLEN#TTQELK.H
IPI00309999	Laminin alpha-2 chain	1	K.YIGGGVCIN#CTHNTA.G
IPI00309999	Laminin alpha-2 chain	1	Y.VGGLPIN#YTTR.R
IPI00309999	Laminin alpha-2 chain	1	L.NLASNALITTN#ATCGEK.G
IPI00310049	Carboxypeptidase B2	1	K.EVHFFVN#ASDVDSVK.A
IPI00311808	Transmembrane glycoprotein NMB	1	R.DLPIVFDVLIHDPSHFLN#DSAISYK.W
IPI00313900	Lumican	1	K.LHINYNN#LTESVGPLPK.S
IPI00313900	Lumican	1	R.LSHNELADSGVPGNSFN#ISSLLELDLSYNK.L
IPI00313900	Lumican	1	K.AFEN#VTDLQWLILDHNLLENSK.I
IPI00313900	Lumican	1	K.LGSFDGLVN#LTFIYLQHNQLK.E
IPI00316329	keratin complex 2, basic, gene 1	1	R.MSGECTPN#VSVSVSTSHTSMSGSSSR.G
IPI00318012	T-cell immunomodulatory protein	1	V.PCNN#ASCEEVHR.M
IPI00318595	Adipocyte-derived leucine aminopeptidase	1	L.N#SSHPVSTPVENPAQIR.E
IPI00319814	Suprabasal-specific protein suprabasin	1	K.EANQLLN#GSHQGQGGYGGQHGGAATT.T
IPI00320204	RIKEN cDNA 2210023G05	1	R.DGTSQPAICPQN#VTMNMEGLK.E
IPI00320675	Complement factor I	1	R.WGEVDLIGN#CSQFYPDR.Y
IPI00320675	Complement factor I	1	N.FN#VSLIYGR.T

IPI	Protein Name	P	Identified Sequences
IPI00321190	Sulfated glycoprotein 1	1	K.TN#SSFIQGFVDHVKEDCDR.L
IPI00321190	Sulfated glycoprotein 1	1	K.DN#ATQEEILHYLEK.T
IPI00322304	Histidine-rich glycoprotein HRG	1	R.LPPLNIGEVLTLPEANFPSFSLPNCN#R.S
IPI00322463	Beta-2-glycoprotein I	1	K.DYRPSAGN#NSLYQDTVVFK.C
IPI00322463	Beta-2-glycoprotein I	1	K.N#ISFACNPGFFLN#GTSSSK.C
IPI00322575	ATP-binding cassette transporter sub-family A member 8a	0.95	K.NTQNILVQN#LSGGQKRK.L
IPI00330747	5730439E10Rik protein	0.94	R.YLMGN#NSSEDSFLTANTVQPLAETGLQLSK.R
IPI00331214	Platelet glycoprotein IV	1	R.QFWIFDVQNPDDVAKN#SSK.I
IPI00331214	Platelet glycoprotein IV	1	K.DPFLSLVPYPISTTVGVFYPYN#DTVDGVYK.V
IPI00331214	Platelet glycoprotein IV	1	K.VISNN#CTSYGVLDIGK.C
IPI00331214	Platelet glycoprotein IV	1	K.RPYIVPILWLN#ETGTIGDEK.A
IPI00331214	Platelet glycoprotein IV	1	K.EN#ITQDPEDH.T
IPI00331214	Platelet glycoprotein IV	1	R.N#LSYWPSYCDMIN#GTDAASFPPFVEK.S
IPI00331259	Desmoglein-1 gamma	1	K.LN#ATDADEPNNLNSMIAFK.I
IPI00331617	Hypothetical olfactomedin-like domain containing protein	1	R.VDKLEEEVSKN#LTK.E
IPI00338565	Mutant fibrillin-1	1	R.VLPFN#VTDYCQLVR.Y
IPI00338785	CDNA, clone:M5C1012G13 product:laminin B1 subunit 1	1	K.MEMPSTPQQLQN#LTEDIR.E
IPI00338785	CDNA, clone:M5C1012G13 product:laminin B1 subunit 1	1	K.QADEDIQGTQNLLTSIESETAASEETLTN#ASQR.I
IPI00338785	CDNA, clone:M5C1012G13 product:laminin B1 subunit 1	1	L.ATGN#VSGGVCDNCQHNTMGR.N
IPI00338785	CDNA, clone:M5C1012G13 product:laminin B1 subunit 1	1	R.VN#ASTTDPN#STVEQSALTR.D
IPI00338785	CDNA, clone:M5C1012G13 product:laminin B1 subunit 1	1	K.LTDTASQSN#STAGELGALQAEAESLDK.T
IPI00339885	Collagen alpha 1(VI) chain	1	R.AALQFLQN#YTVL.A
IPI00339885	Collagen alpha 1(VI) chain	1	L.DDGFLKN#ITAQICIDKK.C
IPI00340463	PREDICTED: similar to hypothetical protein A030003A19	1	K.LLNDYVSN#QTQGMIK.E
IPI00346978	Spink5 protein	0.99	E.TNKNSASRSN#GTGSATGKDVCDQFR.S
IPI00346978	Spink5 protein	0.96	K.GNQDPCMKFQAQMKN#GTLTCPK.G
IPI00348602	Weakly similar to Zinnc finger protein GLI4	0.98	R.FRN#SSNLARHR.R
IPI00350715	PREDICTED: similar to protocadherin 9	1	R.IDPVTGN#ITLEEKPAPTDVGLHR.L
IPI00355606	PREDICTED: expressed sequence AL022779	0.96	M.QN#NSVFGDLK.S
IPI00378430	Ortholog of human Ras association	0.94	R.QETNMAN#FSYR.F
IPI00381122	Weakly similar to Tiarin	1	K.IN#LTTNVVDVNRPLPL.A
IPI00403586	Hypothetical Lipolytic enzymes	1	M.IVNN#HTSLDVER.A
IPI00405742	Plexin B2	0.95	K.QDLALSGN#LSSLYAMTQDK.V
IPI00406434	Mini-agrin	1	K.NELMLN#SSLMR.I
IPI00407222	PREDICTED: similar to human KIAA1815 protein	0.99	H.IPEIN#DTIR.A
IPI00408344	PREDICTED: similar to solute carrier family 4 member 11	0.94	R.EDSLGDEVFDTVN#SSIVSGESIR.F
IPI00409148	Haptoglobin	1	K.NLFLN#HSETASAK.D
IPI00409148	Haptoglobin	1	K.N#LTSPVGVQPILNEHTFCAGLTK.Y
IPI00409148	Haptoglobin	1	K.CVVHYEN#STVPEK.K
IPI00409148	Haptoglobin	1	K.VVLHPN#HSVVDIGLIK.L

IPI	Protein Name	P	Identified Sequences
IPI00410951	Thyroxine-binding globulin homolog	1	K.VTTCHLPQQN#ATLYK.M
IPI00420489	Von Willebrand factor	1	V.LEGSDEVGEANFN#K.S
IPI00420955	Sortilin 1	1	K.DITNLIN#NTFIR.T
IPI00453607	Killer cell inhibitory receptor-like protein p91A	1	R.LSVLPSPVVTAGGN#MTLH.C
IPI00458917	Sodium/glucose cotransporter 1	1	K.VSNGN#FTAK.E
IPI00459432	Kidney predominant protein	1	S.ADFQGRPVDDPTGAFAN#GSLTFK.V
IPI00460063	Prenylcysteine oxidase	1	K.GELN#STLFSSRPK.D
IPI00461281	NudC domain containing protein 2	1	K.ENPGFDFSGAEISGN#YTK.G
IPI00462999	Ahi-1 isoform III	0.92	D.EFVNTEN#NSSR.K
IPI00463311	PREDICTED: similar to RIKEN cDNA E330026B02	0.99	R.DLGMFAPN#MTR.I
IPI00467180	Translocon-associated protein beta subunit	1	R.IAPASN#VSHTVVLRPLK.A
IPI00467944	61 kDa protein	1	K.VVN#VSELYGTPCTK.R
IPI00468097	340 kDa protein	1	R.NLQVYN#ATSNSLTVK.W
IPI00469000	Zinc transporter SLC39A6	0.98	R.NTNDNIQECFN#TTK.L
IPI00469387	GUGU alpha	1	R.VLYLPAYN#CTLRPVSK.R
IPI00469387	GUGU alpha	1	R.SPPAPPLPQRPLSPLHPLGCN#DSEVLAVAGFALQNIN
IPI00469542	Histidine-rich calcium-binding protein	1	R.EVGEEN#VSEEVFR.G
IPI00469839	19 kDa protein	0.91	K.TRTIDVVYN#ASNNELVCTK.T
IPI00471081	RIKEN cDNA 1100001H23	1	K.NGDAYGYYN#DSIK.T
IPI00471273	Apoptosis-related protein 3	1	A.LPEICTLCPGGMHN#LSR.V
IPI00473625	PREDICTED: laminin, alpha 3	0.98	R.FN#ISTPAFQGCMK.N
IPI00473830	Biliary glycoprotein	1	R.MTLSQN#NSILR.I
	Dolichyl-diphosphooligosaccharideprotein		
IPI00475154	glycosyltransferase 63 kDa	1	Q.VLSGCEISVSN#ETK.E
IPI00475157	Serpina1b protein	1	R.ELVHQSN#TSNIFFSPVSIATAFAMLSLGSK.G
IPI00475157	Serpina1b protein	1	N.ASAVFLLPEDGK.M
IPI00551354	PREDICTED: ring finger and KH domain containing 3	0.91	R.N#GSGGGGGGGGGGGGGGGTLDDQR.A
IPI00553278	H-2D cell surface glycoprotein	1	R.NLLGYYN#QSAGGSHTLQQM.S
IPI00554833	Eosinophil-associated ribonuclease 12	1	V.GVCGN#PSGLCSDN#ISQNCHN#SSSR.V
IPI00606550	Ig gamma-2B chain C region, membrane-bound form	1	R.EDYN#STIR.V
IPI00607976	Serine (or cysteine) proteinase inhibitor, clade A, member 3A	1	K.FN#LTETPEADIH.Q
IPI00621319	43 kDa protein	0.92	K.RLFLLDLLN#ATGK.D
IPI00624663	Pzp protein	0.99	K.ACVSLNHVN#ETVM.L
IPI00624761	44 kDa protein	1	R.PVDDPTGAFAN#GSLTFK.V
IPI00626315	38 kDa protein	0.94	P.PSSTDLLWSILN#ASALALLYKTQRDN#ASESK.D
IPI00627061	MKIAA4087 protein	0.94	R.CNIN#GSFSEICHTR.T
IPI00649090	Adult male thymus cDNA, clone:5830446P09 product:CD72 antigen	0.96	V.GSEQPTATWSSVN#SSALRQIPR.C
IPI00649281	52 kDa protein	0.98	R.YHYN#GTLLDGTAFDNSYSR.N
IPI00654271	Myosin light chain, regulatory B	0.91	K.N#PTDAYLDAMMNEAPAPIN#FTMFL.T

IPI	Protein Name	P	Identified Sequences
IPI00654907	Hypothetical protein CEACAM1/2sec	1	R.FHVHQPVTQPFLQVTN#TTVK.E

P: peptide probability

N#: N-linked glycosylation site

NIH-PA Author Manuscript

Glycoproteins upregulated in skin tumors

Table 2

Ca/Pa 100.0 11.3 8.0 7.0 9.0 8.5 7.5 6.7 Pa/Nr 100.0 0.0 3.0 0.3 0.4 1.0 Ca/Nr 100.0 34.0 5.0 3.0 3.0 7.0 Total 17 13 19 Ξ 38 22 23 ∞ S 4 α α α α α α α 9 6 6 ż 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Pa 0 α Ca17 20 Ξ 34 17 15 α ∞ 4 4 α α 2 Protein Location Transmembrane Cell Surface Cell Surface Intracellular Cell Surface Intracellular Secreted Dolichyl-diphosphooligosaccharide--protein glycosyltransferase 63 kDa Basement membrane-specific heparan sulfate proteoglycan core protein Latent transforming growth factor beta binding protein, isoform 1L Solute carrier family 29 (nucleoside transporters), member CDNA, clone:M5C1012G13 product:laminin B1 subunit 1 Tyrosine-protein phosphatase non-receptor type substrate Latent transforming growth factor beta binding protein 4 Cation-independent mannose-6-phosphate receptor Collectin sub-family member 12 Leukocyte surface antigen CD47 Mannosidase, beta A, lysosomal Prostaglandin G/H synthase 2 Lysosomal alpha-glucosidase Procollagen, type V, alpha 2 Weakly similar to Tiarin Sulfated glycoprotein 1 Myeloperoxidase Integrin alpha-M 222 kDa protein Arylsulfatase B Integrin beta-2 Protein Name AM2 receptor Mama protein Cathepsin K Legumain Embigin Stabilin-1 IPI00129968 IPI00121120 IPI00129304 IPI00320605 IPI00124265 IPI00321190 IPI00308785 IPI00409393 IPI00111960 IPI00129158 IPI00113480 IPI00119063 IPI00381122 IPI00153959 IPI00316575 IPI00475154 IPI00122737 IPI00406459 IPI00119809 IPI00118011 IPI00120769 IPI00415773 IPI00338785 IPI00130627 IPI00113824 IPI00124830 IPI00308971 IPI

Tian et al.

IPI	Protein Name	Protein Location	Ca	Pa	Ņ	Total	Ca/Nr	Pa/Nr	Ca/Pa
IPI00308990	Monocyte differentiation antigen CD14	Cell Surface	13	2	0	15	100.0	100.0	6.5
IPI00133082	CD177 antigen	Secreted	9	-	0	7	100.0	100.0	6.0
IPI00130486	FK506-binding protein 9	Cell Surface	5	_	0	9	100.0	100.0	5.0
IPI00308609	VESICULAR INTEGRAL-MEMBRANE PROTEIN VIP36	Transmembrane	5	1	0	9	100.0	100.0	5.0
IPI00403938	Tenascin C	Cell Surface	133	29	0	162	100.0	100.0	4.6
IPI00462199	Basigin	Transmembrane	13	3	0	16	100.0	100.0	4.3
IPI00120245	Integrin alpha-V	Transmembrane	8	2	0	10	100.0	100.0	4.0
IPI00120245	Integrin alpha-V	Transmembrane	8	2	0	10	100.0	100.0	4.0
IPI00110852	Translocon-associated protein alpha, muscle specific isoform	Cell Surface	4	1	0	5	100.0	100.0	4.0
IPI00125266	Acid ceramidase	Secreted	4	1	0	5	100.0	100.0	4.0
IPI00121038	Versican core protein	Cell Surface	11	3	2	16	5.5	1.5	3.7
IPI00124283	Macrophage scavenger receptor types I and II	Transmembrane	7	2	0	6	100.0	100.0	3.5
IPI00132067	Fibulin-2	Secreted	31	6	0	40	100.0	100.0	3.4
IPI00223769	CD44 antigen	Transmembrane	10	3	0	13	100.0	100.0	3.3
IPI00127447	Lysosome membrane protein II	Transmembrane	32	10	0	42	100.0	100.0	3.2
IPI00322447	RA175	Transmembrane	9	2	0	8	100.0	100.0	3.0
IPI00154057	Protocadherin 1	Cell Surface	3	-	0	4	100.0	100.0	3.0
IPI00121312	MFIRE1	Secreted	3	1	0	4	100.0	100.0	3.0
IPI00124640	Osteoclast-like cell cDNA, clone:1420031M06 product:granulin	Secreted	3	1	0	4	100.0	100.0	3.0
IPI00134483	Lectin lambda	Cell Surface	3	1	1	5	3.0	1.0	3.0
IPI00272381	Proline 4-hydroxylase, alpha 1	Secreted	17	9	0	23	100.0	100.0	2.8
IPI00122493	FK506-binding protein 10	Secreted	7	3	0	10	100.0	100.0	2.3
IPI00123831	SDR1 protein	Transmembrane	111	5	0	16	100.0	100.0	2.2
IPI00224728	Cd63 antigen	Transmembrane	8	4	0	12	100.0	100.0	2.0
IPI00128689	Collagen alpha 1(V) chain	Secreted	9	3	0	6	100.0	100.0	2.0
IPI00125877	Hypothetical protein	Transmembrane	9	3	0	6	100.0	100.0	2.0
IPI00130015	Dipeptidyl-peptidase I	Secreted	4	2	0	9	100.0	100.0	2.0
IPI00318012	T-cell immunomodulatory protein	Transmembrane	4	2	0	9	100.0	100.0	2.0
IPI00123678	Cadherin-22	Transmembrane	2	-	0	3	100.0	100.0	2.0
IPI00126316	Mast cell carboxypeptidase A	Secreted	2	-	0	3	100.0	100.0	2.0

Page 27

IPI	Protein Name	Protein Location	Ca	Pa	Ŋ	Total	Ca/Nr	Pa/Nr	Ca/Pa	
IPI00130661	Tripeptidyl-peptidase I	Cell Surface	2	1	0	3	100.0	100.0	2.0	Tia
IPI00131366	Keratin, type II cytoskeletal 6B	Transmembrane	2	1	0	3	100.0	100.0	2.0	an et
IPI00221418	hypothetical Phospholipase D/Transphosphatidylase	Transmembrane	2	1	0	3	100.0	100.0	2.0	al.
IPI00279051	RIKEN cDNA A930025112	Transmembrane	2	1	0	3	100.0	100.0	2.0	
IPI00554833	Eosinophil-associated ribonuclease 12	Secreted	2	1	0	3	100.0	100.0	2.0	
IPI00127280	Myeloid bactenecin	Secreted	43	22	0	92	100.0	100.0	2.0	
IPI00118413	Thrombospondin 1	Secreted	20	11	0	31	100.0	100.0	1.8	
IPI00127352	AMBP protein	Secreted	22	14	0	36	100.0	100.0	1.6	
IPI00132600	Niemann-Pick C1 protein	Transmembrane	3	2	0	5	100.0	100.0	1.5	
IPI00137177	Lysosomal protective protein	Secreted	3	2	0	5	100.0	100.0	1.5	
IPI00132474	Integrin beta-1	Transmembrane	18	13	1	32	18.0	13.0	1.4	
IPI00123342	Hypoxia up-regulated 1	Secreted	19	14	0	33	100.0	100.0	1.4	
IPI00126090	Integrin alpha-3	Transmembrane	4	3	0	7	100.0	100.0	1.3	
IPI00131881	ADAM 10	Cell Surface	4	3	0	7	100.0	100.0	1.3	
IPI00406434	Mini-agrin	Secreted	4	3	0	7	100.0	100.0	1.3	
IPI00410951	Thyroxine-binding globulin homolog	Secreted	4	3	0	7	100.0	100.0	1.3	
IPI00125058	Laminin alpha-3 chain	Secreted	6	7	1	17	0.6	7.0	1.3	
IPI00112326	Epithelial membrane protein 1	Transmembrane	9	5	0	11	100.0	100.0	1.2	
IPI00128154	Cathepsin L	Secreted	23	20	0	43	100.0	100.0	1.2	
IPI00121362	F11r protein	Transmembrane	6	6	0	18	100.0	100.0	1.0	
IPI00108535	Carcinoembryonic antigen-related cell adhesion molecule 1	Cell Surface	7	7	0	14	100.0	100.0	1.0	
IPI00407222	PREDICTED: similar to human KIAA1815 protein	Transmembrane	9	9	0	12	100.0	100.0	1.0	
IPI00128989	Vacuolar ATP synthase subunit S1	Transmembrane	5	5	0	10	100.0	100.0	1.0	
IPI00471081	RIKEN cDNA 1100001H23	Cell Surface	5	5	0	10	100.0	100.0	1.0	
IPI00226932	Quinoprotein alcohol dehydrogenase structure containing protein	Secreted	4	4	0	8	100.0	100.0	1.0	
IPI00127672	PREDICTED: hypothetical protein LOC66967	Secreted	2	2	0	4	100.0	100.0	1.0	
IPI00346978	Spink5 protein	Secreted	2	2	0	4	100.0	100.0	1.0	
IPI00469387	GUGU alpha	Secreted	23	23	3	49	7.7	7.7	1.0	
IPI00134549	Lysosome-associated membrane glycoprotein 2	Transmembrane	8	6	0	17	100.0	100.0	6.0	Pag
IPI00121430	Collagen alpha 1(XII) chain	Secreted	11	14	0	25	100.0	100.0	8.0	ge 28

								000,	8.0
- 	Extracellular matrix protein 1	Secreted	11	14	0	25	100.0	100.0	
-	Integrin alpha-6	Transmembrane	9	8	1	15	6.0	8.0	8.0
-+	Type VII collagen	Secreted	5	7	0	12	100.0	100.0	0.7
-	Synaptophysin-like protein	Transmembrane	10	14	3	27	3.3	4.7	0.7
H	Prostate stem cell antigen	Secreted	6	13	0	22	100.0	100.0	0.7
IPI00467180 Trans	Translocon-associated protein beta subunit	Transmembrane	15	22	0	37	100.0	100.0	0.7
IPI00133172 Serpin B1	n B11	Intracellular	2	3	0	5	100.0	100.0	0.7
IPI00111013 Cathepsin	epsin D	Secreted	19	30	0	49	100.0	100.0	9.0
IPI00117093 Lami	Laminin beta-3 chain	Cell Surface	3	9	0	6	100.0	100.0	0.5
IPI00130342 Lymp	Lymphocyte antigen 6 complex locus G6C protein	Secreted	2	4	0	9	100.0	100.0	0.5
IPI00125293 Eosin	Eosinophil cationic protein 1	Secreted	1	2	0	3	100.0	100.0	0.5
IPI00320204 RIKE	RIKEN cDNA 2210023G05	Secreted	1	2	0	3	100.0	100.0	0.5
IPI00468097 340 k	340 kDa protein	Secreted	4	8	1	13	4.0	8.0	0.5
IPI00113853 Desm	Desmocollin-3	Transmembrane	2	9	0	8	100.0	100.0	0.3
IPI00319814 Supra	Suprabasal-specific protein suprabasin	Secreted	3	10	0	13	100.0	100.0	0.3
IPI00115854 TROI	TROP2 protein	Transmembrane	1	4	0	5	100.0	100.0	0.3
IPI00127933 Androgen	ogen binding protein alpha	Secreted	1	4	0	5	100.0	100.0	0.3
IPI00130249 GPI-a	GPI-anchored metastasis-associated protein homolog	Secreted	10	09	0	70	100.0	100.0	0.2
IPI00111014 Elong	Elongation of very long chain fatty acids protein 4	Transmembrane	3	20	2	25	1.5	10.0	0.2
IPI00129243 Gam	Gamma-glutamyl hydrolase	Secreted	1	8	0	6	100.0	100.0	0.1
IPI00338790 Glandular	dular kallikrein KLK13	Cell Surface	0	9	0	9	0.0	100.0	0.0
IPI00111115 Simil	Similar to METASTASIS-ASSOCIATED GPI- ANCHORED PROTEIN	Secreted	0	4	0	4	0.0	100.0	0.0
IPI00473830 Biliar	Biliary glycoprotein	Transmembrane	0	4	0	4	0.0	100.0	0.0
IPI00153548 Hypo	Hypothetical protein	Transmembrane	0	3	0	3	0.0	100.0	0.0

Ca/Nr: Ratio of spectral count of carcinomas to normal tissue

Pa/Nr: Ratio of spectral count of apillomas to normal tissue

Ca/Pa: Ratio of spectral count of carcinomas to papillomas