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Abstract: In contrast to rodents, adipose tissue serves as the major site of lipogenesis and storage reservoir for excess dietary energy in 
cattle. Research in rodents shows that adding corn oil (57% C18:2 n-6) to the diet alters lipogenesis enhancing deposition of omega-6 
fatty acids. This study examines changes in lipogenic gene expression of subcutaneous adipose tissue from eighteen steers fed increas-
ing levels of dietary corn oil [0 (NONE), 0.31 kg/d (MED) and 0.62 kg/d (HI)] using two platforms, qPCR and microarray. The results 
show that MED level of oil supplementation up-regulates gene expression of key lipogenic enzymes but that as oil supplementation 
reaches HI level mRNA encoding lipogenic enzymes responsible for de novo synthesis and desaturation are down-regulated. Changes 
in specific lipogenic mRNA levels are correlated with changes in tissue fatty acid composition where de novo and desatured fatty acids 
were reduced with the highest level of oil supplementation.
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Introduction
Fat accumulation in bovine adipose tissues is the 
result of combined adipocyte hyperplasia and hyper-
trophy. However, Robelin1 showed that 70% of fat 
accumulation during postnatal growth is due to an 
increase in adipocyte hypertrophy alone. Fatty acids 
used for fat accumulation and adipocyte hypertrophy 
originate from either de novo fatty acid synthesis or 
dietary sources. In rodents, dietary polyunsaturated 
fatty acids (PUFA; both omega-6 and omega-3) are 
potent inhibitors of hepatic de novo lipogenesis.2–4 
Jeffcoat and James2 reported that supplementing 
corn oil to weanling rats at levels from 0.5 to 10% of 
diet (w/w) reduced FASN activity to about 30% of 
the level for a fat-free diet. Further studies showed 
diets rich in PUFA fed to adult and weanling rats 
reduced hepatic abundance of FASN message by 
2-fold3 and 5.8-fold.4 The majority of research to 
date examining changes in lipogenic gene expres-
sion and dietary factors regulating gene expression 
has been conducted in rodents; however, several 
differences exist among murine and bovine lipo-
genesis including location of and primary substrate 
utilized for fatty acid synthesis.5–8 Therefore, our 
objective was to examine changes in expression of 
genes involved in lipogenesis (LPL, ACC, FASN, 
and SCD) and proposed transcription factors or 
co-activators (PPARγ, C/EBPα, NF-Y, STAT5, 
Spot-14, SREBP1) in bovine adipose tissues from 
animals supplemented with increasing levels corn 
oil (57% C18:2 n-6).

Materials and Methods
Eighteen Angus steers (438  ±  4  kg body weight) 
were randomly assigned to 1 of 3  supplementation 
treatments. The 3 treatments consisted of 3 corn oil 
(57% linoleic acid, 28% oleic acid; 11% palmitic 
acid) supplementation levels: 0 (NONE), 0.31 kg/d 
(MED) and 0.62  kg/d (HI). Pelleted cottonseed 
hulls were used as a carrier for the oil supplement 
and were fed at equal amounts to all steers regardless 
of treatment throughout the experiment. Additional 
information on dietary conditions and animal perfor-
mance are available in Pavan et al (2007).9 After 116 
d on treatment, animals were euthanized and a sam-
ple of subcutaneous fat from the tail head region was 
removed from each carcass. Approximately, 10 g of 
subcutaneous fat was immediately frozen in liquid 

nitrogen and stored at -80 °C for subsequent RNA 
extraction.

Initial attempts to isolate high quality RNA from 
subcutaneous adipose tissue using TRIzol (Invitro-
gen, Town, CA) procedure found low 260/280 ratios 
(#1.6) and yields (,10 ug/g). Therefore, we devel-
oped a method (Table 1) that would yield high qual-
ity RNA in appropriate amounts for qRT-PCR and 
microarray from subcutaneous adipose tissue. Snap-
frozen adipose samples (2  g) were homogenized in 
5 vol of TRIzol and centrifuged at 2600  x g, 2 °C 
for 30  min. to remove cellular debri and excess 
lipid. Chloroform (0.2  ml/ml of TRIzol used) was 
added, mixed, and centrifuged at 2600 x g, 2 °C for 
30  min. Isopropanol (0.57x vol of aqueous layer) 
was added to the clear aqueous layer, and this phase 
was added to PureYield™ RNA Midiprep columns 
(Promega, Madison, WI). RNA purification was used 
completed following the manufacturer’s directions. 
tcRNA was quantified using Quant-iT™ RiboGreen 
RNA Reagent (Invitrogen, Town, CA). Integrity of 
the isolated RNAs was confirmed by visualization 
of 18S and 28S ribosomal bands of individual sam-
ples subjected to denaturing slab gel electrophoresis 

Table 1. Protocol developed for high quality RNA isolation 
from high fat, subcutaneous adipose tissues.

  1. �Homogenize 1 g adipose tissue in 5 mL of cold TRIzol 
solution for 30s.

  2. �Centrifuge at 2600 x g for 30 min at 2 °C.
  3. �Remove excess fat layer.
  4. �Transfer cleared homogenate to clean tube.
  5. �Incubate for 5 min. at 22 °C.
  6. �Add 0.2 ml of chloroform per ml of TRIzol reagent.
  7. �Cap tubes and shake vigorously for 15s.
  8. Incubate for 2–3 min. at 22 °C.
  9. Centrifuge at 2600 x g for 30 min.
10. Transfer clear aqueous layer to clean tube.
11. �Add 0.57x the amount of aqueous layer in isopropanol 

to the tube and mix.
12. �Load onto PureYield™ RNA Midiprep System 

clearing column (Promega).
13. Elute under vacuum.
14. Wash with 20 mL RNA wash solution under vacuum.
15. �Place column in clean 50 mL tube and 1 ml of 

RNase-free water to top of column.
16. Centrifuge at 2000 x g for 3 min.
17. �Quantify RNA. Approximate yield of 35 ug/g of 

subcutaneous bovine adipose tissue with 260/280 
ratios of .1.8 using this method.
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in 1.2% agarose gel and 260/280 absorbance ratios. 
All tcRNA samples used in qRT-PCR analysis exhib-
ited 260/280 ratios of .1.8 and RNA yield averaged 
32 ug/g adipose tissue.

For microarray analysis, tcRNA was pooled by 
treatment for NONE and HI on an equal weight 
basis for all individual samples in a treatment group. 
The Affymetrix GeneChip Bovine Genome array 
was used for hybridization of the extracted mRNAs 
according to the Affymetrix protocol at Medical Col-
lege of Georgia, Genomics facility. Four GeneChips 
were analyzed per treatment group. The GeneChip 
Bovine Genome Array contained 24,027 probe sets, 
representing over 23,000 transcripts. The array was 
scanned and the gene expression data was generated 
using the Affymetrix software. Statistical analysis was 
performed for each gene separately using the follow-
ing simple linear model: yijk = µi + Tij + eijk, where yijk 
is the base-2 logarithm of background adjusted and 
normalized average difference of signal intensity for 
gene i; µi is the overall mean expression of gene i, Tij 
is dietary supplement j( j = 1,2) on gene i, and eijk is the 
residual term. F-ratios were computed for all possible 
contrasts between the treatment levels using the con-
trast statement in SAS. In order to control experiment 
wise error rates, a false discovery rate (FDR) criteria 
was employed. The Benjamini Hochberg method10 
was used to identify genes differentially expressed 
at a given FDR level. The process is summarized in 
the following steps: 1) after selecting a significance 
level, αe, genes were sorted by P-values from the 
most to the least significant, 2) threshold values were 
calculated for each test as: thresholdi = i*αe  /R for 

i = 1 to R, where R is the total number of tests (also 
the total number of genes) and i is the sorted position 
of the test, 3) each P-value was then compared to its 
respective threshold, starting with the most significant 
P-value, until a P-value greater than the threshold 
value was encountered. All following contrast was 
then considered to be insignificant. For this study an 
FDR of 0.05 was used to identify potentially differen-
tially expressed genes. Least square estimates of both 
treatments for each single gene was calculated using 
the LSMEANS statement of SAS. The fold-change 
for each gene was calculated by taking the ratio of the 
least square estimates for all the two treatment com-
parisons to determine the magnitude of change in gene 
activity corresponding to each diet supplement.

PCR primers that span intron/exon junctions were 
designed using Primer3  software. Primer sequences 
for both end-point and real time quantitative PCR 
efficiencies are presented in Table  2. Primer sets 
were evaluated first by using end-point PCR. Pooled 
tcRNA (1 ug) was reverse-transcribed in a 20 ul reac-
tion volume using oligo dT and SuperScript™ III 
reverse transcriptase (Invitrogen) in a 2-step RT-PCR 
reaction. PCR was conducted using GoTaq (Promega) 
and 100 pM of each respective primer. Products were 
subjected to slab gel electrophoresis and visualized by 
ethidium bromide staining and fluorescence. Further 
all products were purified and subjected to di-deoxy 
sequencing at the Clemson University Genomics 
Institute to verify identity. For primer efficiency, a 
standard curve based on the original mass of tcRNA 
in the RT reaction was generated (50, 10, 2, 0.4, 
0.08, and 0.016 ng per reaction) ran in triplicate, and 

Table 2. Primer sequences (5’ to 3’) for quantitative real-time PCR.

Gene Forward Reverse Efficiency

β-Actin CTCTTCCAGCCTTCCTTCCT GGGCAGTGATCTCTTTCTGC 0.85
ACC AGCTGAATTTTCGCAGCAAT GGTTTTCTCCCCAGGAAAAG 1.07
C/EBPα TGGACAAGAACAGCAACGAG GGTCATTGTCACTGGTCAGC 0.95
FASN GCATCGCTGGCTACTCCTAC GTGTAGGCCATCACGAAGGT 0.93
GAPDH GGGTCATCATCTCTGCACCT GGTCATAAGTCCCTCCACGA 0.93
LPL GGGTTTTGAGCAAGGGTACA GCCACAATGACCTTTCCAGT 0.97
NF-Y ATGCAGGATCCAAATCAAGC AAAAGGGCAGAATGTGATCG 1.05
PPARγ AGGATGGGGTCCTCATATCC GCGTTGAACTTCACAGCAAA 0.86
SCD TTATTCCGTTATGCCCTTGG GGTAGTTGTGGAAGCCCTCA 0.95
Spot14 CCTCACCCATCTTACCCTGA CAAGCTAGCAAACTGCACCA 1.05
SREBP1 CTGGAGAAGCTGGACTGAGG GCTTTCCCAAGACTCAGCAC 0.86
STAT5 TGGGAAAGATGGGAACTGAG ACCAACAAGTCTGGGTCAGG 1.00
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subjected to qPCR by using the QuantiTect® SYBR® 
Green PCR kit (Qiagen) on an Eppendorf® Mastercy-
cler® ep realplex (Eppendorf). Primer efficiency was 
calculated by regression analyses using the Eppen-
dorf Mastercycler Software and all efficiencies were 
between 0.85−1.07. For all qPCR conducted the ther-
mal cycling conditions included: DNA polymerase 
activation at 95 °C for 15 min., 40 PCR cycles for 15s 
at 94 °C, 30s at 60 °C, and 30s at 72 °C in the pres-
ence of 100 nM of each primer combination.

For real time quantitative PCR (qPCR), 1 µg of 
tcRNA per steer was reverse transcribed (RT) and 
2 ng of RT reaction subjected to qPCR by using the 
QuantiTect® SYBR® Green PCR kit (Qiagen) on an 
Eppendorf® Mastercycler® ep realplex (Eppendorf). 
Each 96-well plate with all samples, primer set of 
interest, and housekeeping gene was replicated. For 
all qPCR conducted the thermal cycling conditions 
included: DNA polymerase activation at 95 °C for 
15 min., 40 PCR cycles for 15s at 94 °C, 30s at 60 °C, 
and 30s at 72 °C in the presence of 100 pM of each 
primer combination. Melting curves were generated at 
the conclusion of amplification to verify presence of a 
single product. Two genes, GAPDH and β-actin, were 
evaluated as housekeeping genes for data normaliza-
tion. To determine the appropriate housekeeping gene 
to be used to normalize the data, the CT for GAPDH 
and β-actin, and all target genes per sample were 
entered into the BESTKEEPER program (http://www.
gene-quantification.info/). The program determines 
the most stable housekeeping gene to be used for nor-
malization by repeated pair-wise correlation analysis. 
Both GAPDH and β-actin in the analysis exhibited 
a coefficient of correlation of 0.99 (P , 0.001) and 
would be suitable for data normalization.

The transcript levels for each gene were calculated 
at cycle threshold values (CT) at which each fluo-
rescent signal was first detected above background. 
For the analysis of relative gene expression, all CT 
values for each sample/primer pair combination 
and the respective primer efficiency were analyzed 
using the REST-2008 program (http://www.gene-
quantification.de/rest-2008.html) for analysis and 
data normalized using GAPDH. The software calcu-
lates relative gene expression using Pair-wise Fixed 
Reallocation Randomization Test and relative expres-
sion determined at the 95% confidence interval. The 
fold-change in gene expression for MED or HI versus 

NONE were calculated using X-∆∆CT method if upreg-
ulated or -1 divided by X-∆∆CT if downregulated, 
where X = primer efficiency for each gene of interest, 
according to Pfaffl et al (2002)11 and these results are 
presented in the manuscript.

Results
RNA quality and yield from the TRIzol procedure 
without clean up were unacceptable for qRT-PCR 
or microarray analysis. After development of a new 
method for RNA extraction from high fat, subcutane-
ous adipose tissues (Table 1), all tcRNA samples used 
in these analyses exhibited 260/280 ratios of .1.8 and 
RNA yield averaged 32 µg/g adipose tissue (range of 
15–50 ug/g).

Results from the Affymetrix GeneChip Bovine 
Genome array show that several genes involved 
in lipogenesis were altered with omega-6 fatty 
acid supplementation (Table  3). Carnitine palmi-
toytransferase II, fatty acid synthase (FASN), isoci-
trate dehydrogenase 1, hormone-sensitive lipase, 
glycerol-3-phosphate acyltransferase, diacylglyc-
erol O-acyltransferase, 1-acylglycerol-3-phosphate 
O-acyltransferase 1, signal transducer and activa-
tor of transcription 5B (STAT5), and stearoyl-CoA 
desaturase (SCD) were all down regulated (P , 0.05) 
with HI levels of oil supplementation compared to 
NONE. Expression of CCAAT/enhancer binding 
protein (C/EBPα), C/EBP∆, isocitrate dehydroge-
nase 3, lipoprotein lipase (LPL), long-chain fatty 
acid acyl elongase, and peroxisome proliferators acti-
vated receptor γ  (PPARγ) mRNA were up-regulated 
(P , 0.05) with HI oil supplementation compared to 
NONE. Additional genes associated with fatty acid 
synthesis and metabolism that were identified to be 
differentially expressed in subcutaneous adipose tis-
sues from steers supplemented with HI corn oil levels 
compared to NONE is shown in supplementary 
Table 1.

For qPCR analyses, expression of SCD mRNA was 
biomodal being up regulated (P , 0.05) in the MED 
group and down regulated (P , 0.05) in the HI group 
compared to NONE (Table 4; Figs. 1 and 2). Relative 
message levels for ACC mRNA were decreased 
(P , 0.05) compared to NONE for both oil treatments. 
At MED oil supplementation levels, FASN mRNA 
tended to be up-regulated (P  =  0.08) compared to 
NONE. However as for expression levels of ACC and 
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SCD, FASN message decreased (P , 0.05) in HI com-
pared to NONE. Among the lipogenic genes examined, 
only LPL message levels increased (P , 0.05) by 3.9-
fold in the HI treatment compared to NONE. At MED 
corn oil supplementation levels, LPL expression was 
down-regulated (P , 0.05) compared to NONE.

The relative expression of transcription factors or 
co-activators thought to be involved in fat metabo-
lism12 is presented in Table 4. At MED supplementa-
tion level, the transcription factors of PPARγ, SREBP1, 
and STAT5 mRNA were down-regulated (P , 0.05) 
compared to NONE. Message levels of C/EBPα and 
NF-Y did not differ (P . 0.05) in MED group com-
pared to NONE. At the HI corn oil level, PPARγ, 
STAT5 and SREBP-1 mRNA expression did not dif-
fer (P . 0.05) compared to NONE. C/EBPα mRNA 
expression level tended (P = 0.06) to be reduced with 

Table 3. Microarray results for gene expression in subcutaneous adipose tissues from steers supplemented with HI corn 
oil levels compared to NONE.*

Gene product Gene symbol P-value Fold-change Up or down 
regulated

Genes involved in lipogenesis
Acetyl-CoA carboxylase ACC 0.17
Carnitine palmitoyltransferase II CPT2 ,0.01 2.63 Down
Fatty acid synthase FASN ,0.01 2.73 Down
Isocitrate dehyrogenase 2 IDH2 0.06 1.52 Up
Isocitrate dehydrogenase 1 IDH1 ,0.01 6.81 Down
Lipase, hormone-sensitive HSL ,0.01 7.46 Down
Lipoprotein lipase LPL ,0.01 3.70 Up
Long-chain fatty acyl elongase ELOVL 0.04 4.96 Up
Stearoyl-CoA desaturase SCD 0.001 7.78 Down
Glycerol-3-phosphate 
acyltransferase mitochondrial

GPAT ,0.01 24.96 Down

Putative diacylglycerol 
O-acyltransferase

DGAT2 ,0.01 5.40 Down

1-Acylglycerol-3-phosphate 
O-acyltransferase 1

AGPAT1 ,0.01 7.96 Down

Solute carrier family 25 
(citrate transporter)

SLC25 A 0.002 3.31 Down

Transcription factors/co-activators involved in fat metabolism
CCAAT/enhancer binding 
protein-α

C/EBPα ,0.01 14.31 Up

CCAAT/enhancer binding 
protein-∆

C/EBP∆ ,0.01 4.37 Up

Peroxisome proliferators 
activated receptor γ

PPAR-γ ,0.01 34.99 Up

Signal transducer and activator 
of transcription 5B

STAT5b ,0.01 2.54 Down

Sterol regulatory element 
binding protein

SREBP 0.23

Note: *If the FDR corrected P-value is not significant then the fold-change and directionality of the expression of those genes are not provided.

HI compared to NONE. NF-Y and Spot-14 message 
levels were up-regulated (P , 0.05) 1.7- and 3-fold, 
respectively, for HI group compared to NONE.

The correspondence between the two methods of 
gene expression analysis is presented in Table 5. Four 
out of eight genes showed similar expression changes. 
There was agreement between microarray and qPCR 
for FASN, LPL, SCD, and SREBP in which significance 
and direction were similar between the two platforms. 
In contrast, there was a lack of agreement between 
the platforms for changes in ACC, PPARγ, C/EBPα, 
and STAT5  mRNA expression with oil supplemen-
tation. For ACC, mRNA expression was unchanged 
(P . 0.05) using microarray analysis but was down-
regulated (P , 0.05) with qPCR analysis. For PPARγ 
and C/EBPα, mRNA expression was up-regulated 
(P  ,  0.05) in microarray analysis but unchanged 
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(P . 0.05) according to qPCR. For STAT5, message 
levels were down-regulated (P , 0.05) for microarray 
but unchanged (P . 0.05) according to qPCR.

Discussion
Extraction of high quality RNA from fatty tissues is 
especially difficult compared to other tissues. Utili-
zation of typical extraction methods, ie, TRIzol pro-
cedure, for fatty tissues results in poor RNA yields, 
unacceptable RNA quality and DNA carryover.13 Thus, 
extracted RNA from TRIzol procedure is unacceptable 
for use in qPCR or microarray without additional puri-
fication procedures that remove protein and/or DNA 

contaminants not effectively removed due to high lipid 
levels in adipose tissue. In addition, the low yield of 
RNA from fatty tissues requires the use of larger tissue 
samples sizes to purify adequate quantities for gene 
expression analyses including northern blotting, pro-
tection assays, qPCR, and microarray analyses. There-
fore, we developed a new protocol for the extraction of 
high quality RNA from high fat, subcutaneous adipose 
tissues utilizing the chemistry of two commercially 
available RNA purification reagants. This protocol 
produced tcRNA samples with high quality (260/280 
ratios of .1.8) and adequate RNA yield (avg  =  32 
µg/g adipose tissue with range of 15–50 ug/g).
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Figure 1. Fold change in mRNA expression for lipogenic genes (ACC, 
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Figure 2. Fold change in mRNA expression for transcription factors or 
co-activators (PPARγ, SREBP1, STAT5, C/EBPα, SPOT 14, NF-Y) for 
MED and HI versus NONE.

Table 4. qPCR results for differential gene expression in subcutaneous adipose tissues from steers supplemented with 
MED and HI corn oil levels compared to NONE.

Corn oil treatment level MED HI
Gene Gene 

symbol
P-level Fold- 

change
Up or 
down

P-level Fold- 
change

Up or 
down

Acetyl-CoA carboxylase ACC 0.03 1.56 Down 0.01 1.87 Down
Fatty acid synthase FASN 0.08 1.39 Up 0.04 1.36 Down
Lipoprotein lipase LPL 0.02 1.70 Down 0.02 3.9 Up
Stearoyl-CoA desaturase SCD 0.01 1.44 Up 0.02 1.20 Down
CCAAT/enhancer binding 
protein-α

C/EBPα 0.13 1.30 Down 0.06 1.63 Down

Nuclear factor Y NF-Y 0.17 1.16 Down 0.02 1.74 Up
Peroxisome proliferators 
activated receptor γ

PPARγ 0.01 2.60 Down 0.42 1.12 Down

Signal transducer and 
activator of transcription 5B

STAT5b 0.03 2.75 Down 0.67 1.12 Down

Spot-14 Spot-14 0.08 1.12 Down 0.01 3.08 Up
Sterol regulatory element 
binding protein

SREBP 0.01 1.78 Down 0.26 1.13 Up
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PUFA (linoleic, linolenic and eicosapentaeinoic 
acid) also down-regulated SCD-1  mRNA; whereas, 
stearic and oleic acids did not alter SCD-1  mRNA 
level. Similarly, Ntambi (1992) found reductions in 
SCD-1 mRNA abundance after feeding triglycerides 
containing linoleic, linolenic and arachidonic acids 
but not with triglycerides containing palmitic, stearic 
or oleic acid compared to a fat-free diet. In the rodent 
studies, dietary PUFA supplementation was at higher 
levels (10% of diet) than in this study. Total dietary 
fatty acid content in this study was lower (HI = 8% 
of diet) than those in rodent studies (10%) but higher 
than recommended for optimal growth performance 
in high concentrate fed cattle (4%–6% of diet).20 In 
addition, dietary PUFA would be biohydrogenated in 
ruminant animals such that much smaller proportions 
of PUFA would reach the tissues and may explain 
the lower response in changes in gene expression to 
PUFA supplementation observed in this beef study 
versus rodent studies.

Both ACC and FASN are key enzymes regulating 
de novo fatty acid synthesis and palmitic acid pro-
duction. These results indicate that at HI supplemen-
tation levels (8% fatty acids) both ACC and FASN 
were down regulated, which would result in lower 
de novo fatty acid synthesis and palmitic acid produc-
tion. Indeed, tissue (L.M. and s.c.) concentrations of 
palmitic acid were lower in steers grazing endophyte 
free tall fescue with HI levels of oil supplementation.9 
This reduction in palmitic acid content with oil 
supplementation was an interesting result from this 
research project as this fatty acid is considered to be 
hypercholesterolemic.21 Thus, oil supplementation 
appears to down-regulate de novo fatty acid synthesis 
to reduce the concentration of the end product, palm-
itic acid, a hypercholesterolemic fatty acid. Dietary 
polyunsaturated fatty acids (PUFA; both omega-6 
and omega-3) are potent inhibitors of hepatic de 
novo lipogenesis in rodents.2–4 Wilson et al (1990)22 
showed that PUFA feeding to rats resulted in a dose-
dependent reduction of hepatic fatty acid synthesis 
in vivo. Jeffcoat and James (1978)2 reported that sup-
plementing corn oil to weanling rats at levels from 
0.5% to 10% of diet (w/w) reduced FASN activity 
to about 30% of the level for a fat-free diet. Further 
studies showed diets rich in PUFA fed to adult and 
weanling rats reduced hepatic abundance of FASN 
by 2-fold3 and 5.8-fold4 in vivo.

Table 5. Comparison among microarray and qPCR results 
for HI compared to NONE.*

Gene Symbol Microarray 
P-value

qPCR  
P-value

ACC 0.167 ,0.01* (1.87) ⇓
FASN ,0.01* (2.73) ⇓ 0.04* (1.36) ⇓
LPL ,0.01* (3.70) ⇑ 0.02* (1.58) ⇑
SCD ,0.01* (7.78) ⇓ 0.02* (1.20) ⇓
PPARγ ,0.01* (34.99) ⇑ 0.420 
SREBP 0.229 0.26 
STAT5 ,0.01* (2.54) ⇓ 0.67 (1.12) ⇓
C/EBPα ,0.01* (14.31) ⇑ 0.06
Note: * Indicates statistical significance; Fold change is shown with in the 
brackets; If the p-value is not statistically significant then the fold-change 
and direction of expression changes of those genes are not shown.

Lipogenic gene expression was altered due to 
dietary lipid in this study. Stearoyl-CoA desaturase 
catalyzes the rate-limiting step in monounsaturated 
fatty acid (MUFA) synthesis and conversion of 
trans-11 vaccenic acid (TVA) to cis-9 trans-11 con-
jugated linoleic acid (CLA), a potent anticarcinogen 
found in ruminant products.14 Oil supplementation 
level influenced the mRNA expression of SCD in 
subcutaneous adipose tissues. At MED levels, SCD 
mRNA was up-regulated; however at HI levels, SCD 
mRNA was down-regulated. Because the major-
ity of cis-9 trans-11 CLA is produced via desatura-
tion by SCD (80%),15 the down-regulation of SCD 
mRNA expression with HI would result in a lower 
conversion of TVA to CLA even though dietary lino-
leic acid supply was increasing. Indeed, a curvilin-
ear response in CLA concentration with increasing 
corn oil supplementation was identified.9 Similarly, 
Duckett et al (2009)16 and Waters et al (2009)17 also 
reported down-regulation of SCD expression in adi-
pose tissue of steers supplemented with corn oil or 
soybean oil.

Research in rodents has shown that omega-6 
supplementation in vitro or in vivo down regulated 
SCD-1 mRNA. Rodents have several SCD isoforms, 
with SCD-1 being highly expressed in lipogenic tis-
sues.18 Jeffcoat and James (1978)2 found that SCD 
activity was diminished by 60% in the first 18  h 
after feeding a PUFA diet (corn oil) to rats. Addition 
of arachidonic acid to 3T3-L1 adipocytes in culture 
reduced SCD activity by 60% and SCD-1  mRNA 
by 80% within 6–12  h after treatment.19 Additional 
research in vitro showed that addition of individual 
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Lipoprotein lipase (LPL) is the enzyme responsible 
for the uptake of dietary fatty acids. These results 
suggest that HI levels of corn oil supplementa-
tion up-regulate LPL expression to uptake greater 
amounts of available dietary fatty acids. Similarly, 
Waylan et al (2004)23 reported that feeding flaxseed 
at 5% of diet also increased gene expression of LPL 
in muscle tissues.

Morrison and Farmer (2000)12 proposed several 
transcription factors that are believed to be involved 
in fat metabolism and these were examined in this 
study. Our qPCR results show that STAT5 was down-
regulated at MED oil supplementation level but 
unchanged at HI oil supplementation level. Hogans 
and Stephens (2005)24 found that STAT5 directly 
represses the expression of FASN in adipocytes. These 
results agree with those in this study as STAT5 was 
down-regulated and FASN up-regulated at the MED 
oil supplementation level. SREBP-1 contains a sterol 
regulatory element (SRE) and PUFA supplementation 
in rodents down regulates this transcription factor in 
rodents25 and chickens.26 Current research shows that 
FASN27 and SCD26 promoters contains recognition 
sites for SREBP-1, upstream stimulatory factor, stim-
ulatory protein 1, and NF-Y, which are involved in 
the regulation by PUFA. Teran-Garcia et al (2007)27 
has shown PUFA decrease in vivo binding of NF-Y 
and SREBP-1c to the proximal promoter of hepatic 
FASN, Spot 14 and SCD. These results suggest that 
PUFA regulate the binding of NF-Y and SREBP-1c 
to coordinately target genes involved in lipid metabo-
lism. Waters et al (2008)17 also observed a decreased 
expression of SREBP-1c and no change in PPARα 
with 4% soybean oil and 2% fish oil addition to 
high concentrate diet in steers. PPARγ and C/EBPα 
are transcription factors known to be involved in 
the differentiation of adipocytes. Data suggests that 
the majority of adipocyte differentiation in beef ani-
mals occurs prior to 8  month of age.28 In addition, 
accumulation of fat in older beef animals appears 
to be primarily due to hypertrophy of the fat cell 
instead of fat cell proliferation/differentiation.1 Taken 
with our current data, the low levels of PPARγ and 
C/EBPα would support little adipocyte proliferation 
and greater adipocyte hypertrophy occurring for lipid 
accumulation in these steers at the time of this study.

Spot-14 is a nuclear protein that is responsive to 
thyroid hormone (T3) and is involved in regulation of 

lipid synthesis in rat hepatocytes.29 The function of 
Spot-14 is unknown but a high correlation between 
fatty acid synthase (FASN) and Spot-14 indicate that it 
is involved in lipid metabolism.3 Zhu et al30 suggested 
that Spot-14 protein is involved in allosteric regula-
tion of de novo fatty acid synthesis. Zhu et al1 has also 
shown that Spot-14 knock-out mice had increased 
hepatic lipogenesis, which shows that Spot-14 is not 
required but may alter lipogenic rates. In this study, 
HI level of oil supplementation increased Spot-14 
expression and tended to decrease FASN expression, 
which resulted in a reduction of palmitic acid, a prod-
uct of de novo lipogenesis, in s.c. adipose tissues.

The correspondence between microarray 
and qRT-PCR for four lipogenic genes and four 
transcription factors of interest was within the accept-
able limits. Joseph et  al32 also reported a similar 
agreement among the two gene expression platforms. 
Hausman et al33 reported significant correlations and 
linear regression between microarray and RT-PCR; 
however they noticed that changes related to animal 
age were only detected by RT-PCR and not by microar-
ray analysis. Even though both the platforms allow 
assay of gene expression, microarrays are infamous 
for their associated error both as technical and bio-
logical error as well as their sequence-specific effects 
which makes expression prediction difficult for at 
least some of the genes.34 This difference in the cor-
respondence across the two platforms might also be 
accounted due to the pooling of RNA for microarray 
analysis where as individual RNA samples were used 
for qRT-PCR. Also, the qRT-PCR primer is designed 
based on the sequence database, which is derived 
from multiple sequence alignment of ESTs. As a 
result there is a high chance that Affymetrix may tar-
get one gene, while the sequence database may infact 
represent an entire gene family with less specificity 
and therefore will interrogate neither the Affymetrix 
gene nor the database gene and thus give results that 
differ from both platforms.35

The results from this study show that the MED 
level of oil supplementation (4.94% total fatty acids 
in diet) up-regulates gene expression of key lipo-
genic enzymes (FASN, SCD, or LPL) but that as oil 
supplementation reaches HI level (7.99% total fatty 
acids in diet) genes encoding lipogenic enzymes 
responsible for de novo fatty acid synthesis and 
MUFA synthesis are down-regulated. These results 
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agree with changes in tissue fatty acid composition in 
which palmitic (C16:0) acid concentration, a product 
of de novo fatty acid synthesis, and CLA cis-9 trans-11 
isomer, a product of desaturation, were reduced with 
the highest level of oil supplementation.
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Supplementary Material
S Table 1. Additional genes associated with fatty acid synthesis and metabolism that were identified to be differentially 
expressed in subcutaneous adipose tissues from steers supplemented with HI corn oil levels compared to NONE.

Gene Gene symbol FDR corrected 
P-value

Pathway involved

Malic enzyme 3, NADP(+)-dependent, 
mitochondrial isoform 2

ME3 ,0.01 Esterification pathway

Malate dehydrogenase 2, mitochondrial MDH2 ,0.01 Esterification pathway
Pyruvate dehydrogenase phosphatase PDP 0.01 Esterification pathway
Pyruvate dehydrogenase kinase isoform 4 PDK4 ,0.01 Esterification pathway
Pyruvate dehydrogenase (lipoamide) beta PDHB ,0.01 Esterification pathway
Adipose differentiation-related protein ADFP ,0.01 Esterification pathway
Propionyl-CoA carboxylase beta PCCB ,0.01 Proprionyl-CoA metabolism
Methylmalonyl-coA mutase MCM ,0.01 Proprionyl-CoA metabolism
Methylmalonyl-coA Epimerase MCE 0.04 Proprionyl-CoA metabolism
Pyruvate Kinase PK ,0.01 Proprionyl-CoA metabolism
Succinate dehydrogenase complex,  
subunit C, integral membrane protein

SDHC ,0.01 Proprionyl-CoA metabolism

Succinate dehydrogenase complex,  
subunit D, integral membrane protein

SDHD ,0.01 Proprionyl-CoA metabolism

Aconitase 2, mitochondrial ACO2 ,0.01 Proprionyl-CoA metabolism
Phosphoenolpyruvate Carboxykinase 2 
(mitochondrial)

PCK2 ,0.01 Glycolysis/gluconeogenesis

Fructose 2,6-bisphosphatase Fru-2,6-P2 ,0.01 Glycolysis/gluconeogenesis
Glucose-6-phosphate dehydrogenase G6PD 0.027 Pentose pathway
6-Phosphogluconate dehydrogenase 6PGDH ,0.01 Pentose pathway
Sterol regulatory element binding  
protein cleavage-activating protein  
(SREBP cleavage-activating protein)

SCAP 0.02 Pentose pathway

Superoxide Dismutase 2, Mitochondrial SOD2 ,0.01 Pentose pathway
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