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Bacterial protein synthesis is the target for numerous natural and synthetic antibacterial agents. We have
developed a poly(U) mRNA-directed aminoacylation/translation protein synthesis system composed of phenyl-
tRNA synthetases, ribosomes, and ribosomal factors from Escherichia coli. This system, utilizing purified
components, has been used for high-throughput screening of a small-molecule chemical library. We have
identified a series of compounds that inhibit protein synthesis with 50% inhibitory concentrations (IC50s)
ranging from 3 to 14 �M. This series of compounds all contained the same central scaffold composed of
tetrahydropyrido[4,3-d]pyrimidin-4-ol (e.g., 4H-pyridopyrimidine). All analogs contained an ortho pyridine
ring attached to the central scaffold in the 2 position and either a five- or a six-member ring tethered to the
6-methylene nitrogen atom of the central scaffold. These compounds inhibited the growth of E. coli, Staphylo-
coccus aureus, Streptococcus pneumoniae, Haemophilus influenzae, and Moraxella catarrhalis, with MICs ranging
from 0.25 to 32 �g/ml. Macromolecular synthesis (MMS) assays with E. coli and S. aureus confirmed that
antibacterial activity resulted from specific inhibition of protein synthesis. Assays were developed for the steps
performed by each component of the system in order to ascertain the target of the compounds, and the
ribosome was found to be the site of inhibition.

Bacterial infections continue to represent a major world-
wide health problem. Infections range from the relatively
innocuous, such as skin rashes and common ear infections in
infants, to serious and potentially lethal infections in im-
mune-compromised patients. Resistance to antibacterial
agents has increased in many pathogenic bacteria and can
occur through a variety of mechanisms, such as target mu-
tation, induction of efflux pumps, or induction of metabolic
pathways leading to the degradation of the compound. Re-
sistance developed in one cell can be transferred to other
bacteria by horizontal gene transfer. The need for new an-
tibiotics to address the increase in resistance has become
critical.

Antibacterial agents interfere with cellular processes that
are essential for the survival of the cell (for a complete list,
see reference 4). For both naturally occurring and synthetic
antibiotics, protein synthesis is a major target of antibiotic
action. Bacterial protein synthesis inhibitors include the
macrolides (e.g., erythromycin, clarithromycin, and azithro-
mycin), clindamycin, chloramphenicol, the aminoglycosides
(e.g., streptomycin, gentamicin, and amikacin), and the tet-
racyclines (2, 18, 49). The newest class of antibacterials, the
synthetic oxazolidinones (exemplified by linezolid, the only
novel and approved ribosomal inhibitor), also inhibit pro-
tein synthesis (21, 45). Protein synthesis is the cellular pro-

cess most frequently targeted by naturally occurring anti-
bacterials, providing compelling evolutionary evidence for
the susceptibility of this process to antibiotic intervention
(21).

There has been much well-deserved ado recently concerning
access to the crystal structures of ribosomes, either alone or
bound to a variety of antibiotics (2, 17, 35, 44). This work has
led to great progress in refining the effectiveness of these
classes of inhibitors via structure-based drug design (19). How-
ever, extant resistance mechanisms may also be circumvented
by identifying new structural classes that bind in substantially
different ways or at different sites on the ribosome. In addition,
certain molecular inhibitors bind to and inhibit their targets in
an induced-fit mode (12), and this has been seen with some
ribosomal inhibitors (10). Since this type of interaction may not
be immediately recognized in a structure-based design process,
the discovery of inhibitors of function remains a useful method
for novel drug discovery.

The ribosome is a well-established target for drug discov-
ery, but other components that are essential for protein
synthesis also offer attractive targets. Elongation factor Tu
(EF-Tu) delivers the charged tRNA to the A-site of the
ribosome in a ternary complex with GTP and an aminoac-
ylated tRNA, hydrolyzing the GTP to GDP in the process
(14, 39). Elongation factor Ts (EF-Ts) then interacts with
EF-Tu to regenerate EF-Tu to an active form, facilitating
the replacement of bound GDP with GTP (50). Elongation
factor G (EF-G) plays a central role in the elongation phase
of protein synthesis by catalyzing GTP-dependent translo-
cation (1, 13, 40). EF-G is also one of the proteins involved
in the termination of protein synthesis in a GTP-dependent
fashion (47). Amino-acyl tRNA synthetases (aaRS) catalyze

* Corresponding author. Mailing address: Chemistry Department,
SCIE. 3.320, The University of Texas—Pan American, 1201 W. Uni-
versity Drive, Edinburg, TX 78541. Phone: (956) 381-2950. Fax: (956)
384-5006. E-mail: bullardj@utpa.edu.

† Present address: Crestone, Inc., Boulder, Colorado.
‡ Present address: CSU Ventures, Inc., Fort Collins, Colorado.
� Published ahead of print on 9 August 2010.

4648



the attachment of amino acids to their cognate tRNAs. They
are essential components in protein synthesis and individu-
ally provide attractive targets for the discovery of antibiotics
(42).

Recently, attempts have been made to screen chemical-com-
pound libraries by using cell extracts containing native tran-
scription and translation systems from Escherichia coli (37),
Streptococcus pneumoniae (9, 37), and Staphylococcus aureus
(28). This approach has had only limited success. The use of
cell extracts for screening can be problematic due to the pres-
ence of nucleases, degraded nucleic acids, soluble but dena-
tured proteins, and turbidity (22). In addition, different prep-
arations of S30 fractions can differ in activity and are therefore
undependable (23). To avoid these problems, we have devel-
oped a poly(U)-directed aminoacylation/translation (A/T) pro-
tein synthesis system composed of phenyl-tRNA synthetases,
ribosomes, and ribosomal factors from E. coli. Using this sys-
tem as a platform for screening, we have discovered a com-
pound series capable of inhibiting protein synthesis in vitro and
in whole-cell assays. The development of the screening system
and the characterization of the resulting inhibitors is described.

MATERIALS AND METHODS

Gel electrophoresis and protein analysis. Sodium dodecyl sulfate-polyacryl-
amide gel electrophoresis (SDS-PAGE) was performed using either 12% or 4 to
12% polyacrylamide precast gels (Novex NuPAGE; Invitrogen) with morpho-
linepropanesulfonic acid (MOPS) running buffer (Invitrogen). Benchmark un-
stained protein molecular weight markers were from Invitrogen. Gels were
stained with SimplyBlue Safe stain (Invitrogen). Photography and densitometry
were performed using a Kodak Image Station, model 440CF. Protein concen-
trations were determined by the method of Bradford (3) using bovine serum
albumin as the standard.

Purification of ribosomes and proteins. Early-phase ribosomes from E. coli
strain MRE600 were prepared in the Hill laboratory at the University of Mon-
tana (Missoula) as previously described (46). Native E. coli EF-Tu was purified
from cells grown to an optical density of 2.0. The cells were first lysed with a
homogenizer (Niro) and then clarified by centrifugation (22,000 � g, 60 min,
4°C), and the protein was precipitated using ammonium sulfate. The protein
precipitating between 35 and 73% saturated ammonium sulfate was collected by
centrifugation (23,000 � g, 60 min, 4°C) and further purified using DEAE ion
exchange (GE Healthcare) and Superdex-200 (GE Healthcare) size exclusion
chromatography on an AKTA liquid chromatography system (GE Healthcare).
The resulting protein was more than 98% homogeneous.

The gene encoding E. coli EF-G was PCR amplified from E. coli genomic
DNA using forward primer 5�-CACCATGCATCATCATCATCATCATGGTG
GCGCTCGTACAACACCCATCG and reverse primer 5�-CTATTATTTACCA
CGGGCTTCAA, which was designed to add six histidine amino acid residues to
the N terminus. The PCR product was inserted into a pET101D/TOPO vector
(Invitrogen), transformed into Rosetta (DE3) (Novagen) cells, and expressed as
an N-terminally His tagged protein. EF-G was purified to more than 98%
homogeneity using nickel-nitrilotriacetic acid (NTA) affinity chromatography
(Qiagen).

The genes encoding the E. coli PheRS � and � subunits were PCR amplified
from genomic DNA as a natural operon using 5�-CACCATGTCACATCTCGC
AGAACTG as a forward primer and 5�-ACTAGTTCAATCCCTCAATGA
TGCC as a reverse primer, and the PCR product was inserted into pET101D/
TOPO (Invitrogen). The resulting plasmid was transformed into BL21 Star
(DE3) cells (Novagen), and the two subunits were expressed in their native
forms. The cells were lysed; the lysate was clarified by centrifugation; and the
protein was precipitated using ammonium sulfate (as described above). The
proteins precipitating between 40 and 55% saturated ammonium sulfate were
further purified using DEAE ion exchange and Superdex-200 size exclusion
chromatography. PheRS was purified to more than 98% homogeneity.

Bacteria overexpressing an N-terminally His tagged form of E. coli EF-Ts were
a gift from the Spremulli laboratory (University of North Carolina, Chapel Hill).
EF-Ts was purified to more than 98% homogeneity using Ni-NTA affinity chro-
matography (Qiagen).

A/T assays. A scintillation proximity assay (SPA) was developed for the A/T
assay. The complete assay mixture contained 50 mM Tris-HCl (pH 7.5), 40 mM
KCl, 10 mM MgCl2, 0.1 mM spermine, 1.5 mM ATP, 0.5 mM GTP, 25 �M
[3H]phenylalanine (100 cpm/pmol), and 0.25 mg/ml poly(U). To maintain con-
stant levels of ATP and GTP, the assay mixture contained a nucleotide regen-
eration system composed of 4.75 mM phosphoenolpyruvate (PEP) and 0.026
U/�l pyruvate kinase (PK). The concentrations of ribosomes and proteins in the
assay were as follows: ribosome, 0.11 �M; PheRS, 0.025 �M; EF-Tu, 0.9 �M;
EF-Ts, 0.03 �M; EF-G, 0.16 �M. These concentrations were arrived at through
sequential rounds of optimization: each concentration is just below the satura-
tion point of the titration.

The screening reactions were carried out in 96-well microtiter plates (Costar).
Test compounds were equilibrated by the addition of 39 �l of the protein-
substrate mixture (without tRNA) to 1 �l of the chemical compound (3.2 mM)
dissolved in 100% dimethyl sulfoxide (DMSO). This mixture was allowed to
incubate at ambient temperature for 15 min, and then reactions were initiated by
the addition of 10 �l of E. coli tRNA (150 �M), followed by a 2-h incubation at
room temperature (comparable to 1 h at 37°C). Reactions were stopped by the
addition of 5 �l of 0.5 M EDTA. Two hundred micrograms of SPA beads (RNA
binding beads [YSi]; Perkin-Elmer) in 150 �l of 300 mM citrate buffer (pH 6.2)
was added. The plates were analyzed using a Packard Topcount NXT scintilla-
tion counter. Assays to determine 50% inhibitory concentrations (IC50s) were
carried out as described above with the test compounds serially diluted from 200
�M to 0.39 �M. The concentration ranges of antibiotics in control plates were as
follows: spiramycin, 0.07 �M to 18.0 �M; tylosin, 0.05 �M to 13.0 �M.

PheRS assay. SPAs to determine PheRS inhibition by chemical compounds
were carried out as described previously (6), with the exception that the enzyme
mixture was preincubated with 0.4 to 200 �M compound for 15 min prior to the
addition of tRNA. The reactions were stopped by the addition of 5 �l of 0.5 M
EDTA. Four hundred micrograms of SPA beads (polyethyleneimine [PEI]-
polyvinyl toluene [PVT] beads; Perkin-Elmer) in 150 �l of 300 mM citrate buffer
(pH 2.0) was added, and the plates were analyzed as described above.

EF-Tu GDP exchange assay. Nitrocellulose binding assays were used to de-
termine inhibition of GDP exchange by EF-Tu as previously described (5, 38),
with the exception that the enzyme (12.0 �M) was preincubated with 0.4 to 200
�M compound for 15 min prior to the addition of [3H]GDP. EF-Ts stimulates
the exchange of GDP bound by EF-Tu. The ability of compounds to inhibit
EF-Ts stimulation of GDP exchange by EF-Tu was measured in assays as de-
scribed for EF-Tu/GDP exchange, with the exceptions that EF-Ts was present
(0.0075 �M), the concentration of EF-Tu was reduced to 0.75 �M, and the time
for the reaction was decreased from 30 min to 30 s. The concentration of the
compound ranged from 0.8 to 400 �M.

EF-Tu ternary-complex formation assay. In a ternary complex, the acceptor
stem and attached amino acid are protected by EF-Tu from hydrolysis by RNase
A (24). Inhibition of EF-Tu in ternary-complex formation and in the protection
of tRNA from hydrolysis was analyzed using filter binding assays as previously
described (5). Enzyme mixtures contained 6 �M EF-Tu and 1.5 mM [3H]Phe-
tRNAPhe and were preincubated with 0.8 to 400 �M compound for 15 min at
37°C prior to digestion with RNase A.

Ternary-complex–ribosome binding assay. Aminoacylated tRNAs are deliv-
ered to the A-site on the ribosome in a ternary complex composed of EF-Tu,
GTP, and Phe-tRNAPhe. To determine ternary-complex binding to the ribosome,
a mixture similar to the A/T assay mixture was used except that phenylalanine,
PheRS, and ATP were removed, and deacylated tRNA was replaced by [3H]Phe-
tRNAPhe. GTP was also replaced with the nonhydrolyzable analog guanosine
5�-[�,�-imido]triphosphate (GDPNP). All components except for the ribosomes
were preincubated with 0.8 to 400 �M compound at 37°C for 15 min. Ribosomes
were then added (0.5 �M), and incubation was continued for an additional 15
min. Assay products were analyzed using glass microfiber filter binding (What-
man) as previously described (7).

EF-G GTPase assay. Assay mixtures for ribosome-dependent GTP hydrolysis
by EF-G contained 50 mM Tris-HCl (pH 7.5), 10 mM MgCl2, 70 mM NH4Cl, 1
mM dithiothreitol (DTT), 1.8 mM [35S]GTP�S, 0.04 �M ribosomes, and 2.2 �M
EF-G. Mixtures were assembled on ice, and 48 �l of the mixture was added to 2
�l of the compound, transferred to 37°C, and incubated for 30 min. The final
concentration of the compound ranged from 0.8 to 400 �M. The reaction was
stopped by spotting 6.0 �l onto PEI-cellulose plates (Selecto Scientific). GTP
and PPi were separated by thin-layer chromatography (TLC) using 4 M urea–
0.75 M KPi (pH 3.5) as a mobile phase (26). GTP, PPi, and Pi were quantified by
phosphorimaging with a Storm 840 phosphorimager (Molecular Dynamics).

Eukaryotic protein synthesis assay. Reaction mixtures contained 60% wheat
germ extract (Promega), 3.0 �g poly(U), 75.0 �M [3H]phenylalanine (100 cpm/
pmol), 4.0 �M yeast tRNAPhe, and 6.0 mM magnesium acetate (MgOAc). All
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components were assembled on ice, mixed with the compound, and incubated at
ambient temperature for 2 h. Reactions were stopped by the addition of 2 ml of
5% trichloroacetic acid (TCA), and reaction products were heated to 90°C for 15
min and filtered through glass fiber filters (Whatman). The concentrations of the
compound ranged from 0.3 to 300 �M, and the concentration of the control,
cycloheximide, ranged from 0.3 to 300 �M.

Microbiological assays. Broth microdilution MIC testing was performed in
96-well microtiter plates according to National Committee for Clinical Labora-
tory Standards (NCCLS; now CLSI) document M7–A6 (30). MICs were deter-
mined for E. coli tolC mutants, E. coli ATCC 25922, polymyxin B nonapeptide
(PMBN)-treated E. coli, S. aureus, and Streptococcus pneumoniae as previously
described (31). Secondary tests were carried out against Haemophilus influenzae,
Enterococcus faecalis, and Moraxella catarrhalis.

Macromolecular synthesis (MMS) assays were performed in cultures of E. coli
tolC mutants and in cultures of wild-type S. aureus as described previously (31).
Briefly, E. coli �tolC5 CGSC5633 was obtained from the E. coli Genetic Stock
Center (Yale University). This strain is an efflux mutant and was used to evaluate
the global mode of action of the hit compounds. Assays were performed using
the radiolabeled precursors [methyl-3H]thymidine, [5-3H]uridine, and L-[4,5-
3H]leucine or L-[2,6-3H]phenylalanine (Amersham Biosciences Corp., Piscat-
away, NJ) to determine the effect of the representative compound REP323219
on the synthesis of DNA, RNA, and protein, respectively. For protein synthesis,
the 10-min labeling reaction with L-[4,5-3H]leucine was followed by 5 min of
chasing with 10 mM cold leucine to decrease the background due to tRNA-
bound leucine. The effect of a selected compound (REP323370) on cell wall and
lipid synthesis was also evaluated using radiolabeled precursors [3H]N-acetyl-D-
glucosamine and [1,3-3H]glycerol, respectively.

Time-kill experiments were performed using three different bacteria according
to the NCCLS guidelines (29). Bacterial strains H. influenzae ATCC 49766, S.
pneumoniae ATCC 49619, and M. catarrhalis ATCC 25238 were from the Amer-
ican Type Culture Collection (Manassas, VA). Growth media were Haemophilus
test medium (HTM) and Mueller-Hinton Broth (MHB) with or without 3%
lysed horse blood from Remel (Lenexa, KS). For the experiments, 10 ml of broth
medium was inoculated with 0.1 ml of a fresh overnight culture, and the mixture
was grown at 35°C with shaking (200 rpm) for 2 to 3 h. Prewarmed flasks
containing 10 ml of the medium alone or 10 ml of the medium with a compound
at 4� MIC were then inoculated with 0.1 ml of the exponentially growing
cultures. Samples were removed at 0, 2, 4, 6, and 24 h, and serial dilutions were
plated on blood agar to allow for colony enumeration and the calculation of the
live-cell density.

Assays for bacterial cell wall lysis were conducted with Live/Dead BacLight
bacterial viability kits (Invitrogen) according to the manufacturer’s instructions.
Potential hemolytic activity was assessed by exposing equine erythrocytes (1% in
Tris-buffered saline) to serially diluted test compounds for 10 min, followed by
centrifugation and visual observation of hemolysis.

RESULTS

Development and optimization of the A/T assay for screen-
ing. An aminoacylation/translation (A/T) system that con-
tained the components required for the translation of poly(U)

mRNA—ribosomes, EF-Tu, EF-Ts, EF-G, and PheRS—was
developed. All the components of the A/T assay were purified
to near-homogeneity as described in Materials and Methods.
The coupled A/T reaction was adapted from separate amino-
acylation and translation assays (5, 6, 11). The assay was opti-
mized for inhibitor screening in a 96-well microtiter plate for-
mat. Ribosomes were initially titrated in the presence of
saturating amounts of the other components (Fig. 1A), and 0.1
�M was chosen as the screening concentration that yielded
sufficient signal over the background level. At this concentra-
tion of ribosomes, all other components of the system were
then individually titrated into the system to determine the
inflection point of saturation on a titration curve (see Fig. 1B
for an example). Concentrations were set just below the satu-
ration points to facilitate the maximum sensitivity to inhibition
of each and every component of the system. In the initial
screening assays, crude E. coli tRNA was used, but secondary-
assay mixtures contained purified E. coli tRNAPhe. A scintil-
lation proximity assay (SPA) was developed for the initial
screening assay. The RNA portion of ribosomes was used to
localize the ribosome to scintillation beads, enabling the
detection of the nascent radiolabeled polyphenylalanine
[poly(Phe)] peptide still attached to the ribosome. Yttrium
silicate RNA binding beads (Perkin-Elmer) at 200 �g/well gave
optimal results. Figure 1C shows the titration of SPA beads in
assays to determine the amount of beads required for the
capture of the maximum amounts of ribosomes allowing anal-
ysis of the activity of the system. The optimal pH for ribosome-
bead binding was determined to be 6.2. In the absence of
ribosomes, negligible amounts of tRNA charged with [3H]phe-
nylalanine or free [3H]phenylalanine bound to the beads.

Rationale and development of positive controls. We selected
the macrolides spiramycin and tylosin, each containing a 16-
member lactone ring and a disaccharide at the C-5 position on
the lactone ring, as control antibiotics. Both of these antibiotics
inhibited the synthesis of poly(Phe), apparently by binding the
50S ribosomal subunit near the peptidyl transferase (PT) cen-
ter, thereby stopping peptide synthesis (16). Spiramycin and
tylosin were both effective at inhibiting poly(Phe) synthesis in
the A/T assay, with IC50s of 0.022 �M and 0.038 �M, respec-
tively (Fig. 2).

FIG. 1. Optimization of the coupled aminoacylation/translation (A/T) assay. (A) Titration of E. coli ribosomes in the A/T protein synthesis
system assay. Ribosomes (0.013 to 0.42 �M) were assayed in the presence of saturating amounts of the other components. The arrow indicates
the concentration of ribosomes used in the screening assay. (B) Plot of poly(Phe) synthesis as a function of increasing concentrations of E. coli
EF-Tu (0.023 to 3.0 �M) in the A/T system. The arrow indicates the concentration of EF-Tu used in the screening assay. (C) Determination of
the amount of SPA beads needed to quantify the signal from poly(Phe) synthesis in the A/T reactions. The arrow indicates the amount of SPA
beads used in the screening reactions.
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Screening of chemical compounds yields primary hits com-
posed of compounds containing 4H-pyridopyrimidine central
scaffolds. A chemical-compound library containing 2,100 com-
pounds from Asinex (Moscow, Russia) was tested in a high-
throughput format. The screening concentration was 64 �M,
and the reactions were carried out as described in Materials
and Methods. Nine compounds were observed to inhibit more
than 50% of poly(Phe) synthesis. Inhibition of more than 50%
of poly(Phe) synthesis defines a hit compound. The ability to
inhibit poly(Phe) synthesis was confirmed in triplicate assays
for all nine compounds. Structural inspection of the nine com-
pounds revealed that all had the same central scaffold, a tet-
rahydropyrido[4,3-d]pyrimidin-4-ol (e.g., 4H-pyridopyrimi-
dine) (Fig. 3). In addition, all the structures contained an
ortho-pyridine in position 2 of the central scaffold and held all
structural variations in a heteroaromatic ring (A-ring) that
connected to the N-6 atom via a methylene group. The 2,100-
individual-sample library contained numerous chemotypes, of
which approximately 113, or 5.4%, were of the 4H-pyridopyri-

midine class. This small set of 113 4H-pyridopyrimidines con-
tained an approximately equal distribution of regioisomers
(e.g., ortho, meta, para) of the pyridyl ring connected at posi-
tion 2 of the central scaffold. Other than the nine hit com-
pounds, a subset exhibited activity inhibiting less than 50% of
poly(Phe) synthesis, and another subset exhibited no inhibitory
activity.

The nine compounds were serially diluted from 200 �M to
0.4 �M, and IC50s were determined. The most potent inhibi-
tors of the A/T reaction were REP321436 and REP321437,
with IC50s of 3.7 and 4.9 �M, respectively (Fig. 4). The IC50s of
all the test compounds ranged from 3.7 to 14.0 �M (Table 1).

Determination of the target of 4H-pyridopyrimidines. In our
system, poly(Phe) synthesis is inhibited by the 4H-pyridopy-
rimidines. Other than the ribosome, four accessory proteins
are required for poly(Phe) synthesis. We used specialty assays
to rule out the possibility that the function (or functions) of
one of the accessory proteins was inhibited (see below). The
4H-pyridopyrimidines were not observed to inhibit any of the
four accessory proteins.

First, the compounds were tested to determine if they inhib-
ited the activity of PheRS. The assay tested the ability of
PheRS to attach phenylalanine to its cognate tRNAPhe. Puri-
fied E. coli tRNAPhe was used in these assays as described in
Materials and Methods. No inhibition of PheRS activity by any
of the compounds was observed at compound concentrations
as high as 200 �M (data not shown).

Next, the abilities of the 4H-pyridopyrimidines to inhibit the
function of EF-Tu were tested. In the absence of EF-Ts and
GTP, EF-Tu binds GDP, and the exchange of the bound GDP
for free GDP can be monitored. This binding has historically
been used to characterize the activities of EF-Tu molecules
from various species (33). In these assays, 3H-labeled GDP was
used to track the amount of GDP exchanged by EF-Tu and the
abilities of the test compounds to inhibit this exchange. We
observed no reduction in the exchange of bound and free GDP
by EF-Tu in the presence of any of the test compounds at
concentrations as high as 200 �M (data not shown). In the
presence of EF-Ts, the turnover of GDP binding by EF-Tu is
stimulated 5-fold (51). Thus, when EF-Ts is added to the

FIG. 2. IC50 determination for positive controls in the A/T assay. Titrations of tylosin (A) and spiramycin (B) in the A/T assay are shown. The
concentrations of tylosin and spiramycin ranged from 0.05 to 13.0 �M and 0.07 to 18 �M, respectively. The antibiotics were diluted into DMSO
so that the concentration of DMSO was the same as that in the screening assays. Positive controls were assays in which there were no antibiotics
and approximately 1,000 pmol of phenylalanine was synthesized. The curve fits and IC50s were determined by using XLfit (version 4.1; IDBS) as
part of Microsoft Excel.

FIG. 3. Chemical structures of screening hits. The first nine com-
pounds are hits identified in the initial A/T screening assays. These
inhibitors were identified in the A/T screening system from a library of
2,100 compounds. REP323219 and REP323370 are compounds mod-
ified from the original nine compounds and were used in macromo-
lecular synthesis (MMS) assays.
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EF-Tu/GDP exchange assay mixture in the presence of the test
compounds, inhibition of the exchange stimulated by EF-Ts
may be monitored. The concentration of EF-Tu was reduced
from 12 �M to 0.75 �M, and the time for completion of the
assay was reduced from 30 min to 30 s. EF-Ts was added to a
concentration equal to 1% of the concentration of EF-Tu
(0.0075 �M). The stimulatory activity of EF-Ts was not af-
fected by the presence of any of the test compounds at con-
centrations as high as 400 �M (data not shown).

When EF-Tu, GTP, and aminoacylated tRNA are associ-
ated in a ternary complex, EF-Tu protects the acceptor stem of
the tRNA and the attached amino acid from nuclease digestion
(RNase A). The RNase A assay, as described in Materials and
Methods, was used to monitor the ability of EF-Tu to form a
ternary complex and protect aminoacylated tRNA (5). E. coli
tRNAPhe was aminoacylated using [3H]Phe, yielding [3H]Phe-
tRNAPhe, and the radiolabeled aminoacylated tRNA was sub-
sequently used to test the effects of the test compounds on
ternary-complex formation. The compounds were assayed to
concentrations as high as 400 �M, and no effect on the ability
of EF-Tu to form a ternary complex and protect the bound
tRNA was observed (data not shown).

EF-Tu delivers the aminoacylated tRNA to the A-site of the
ribosome in the form of a ternary complex. The binding of the
cognate tRNA to the A-site stimulates the hydrolysis of GTP
by EF-Tu, and the tRNA is subsequently released for sole
binding at the A-site. When GTP is replaced with a nonhydro-
lyzable analog (GDPNP), the ternary complex binds the A-site

of the ribosome, but since GTP is not hydrolyzed, the ternary
complex remains bound to the ribosome, and this interaction
can be monitored. In these reactions, there is a certain amount
of residual binding of the ternary complex to the filters in the
absence of the ribosome. Using glass microfiber filters, we were
able to achieve a 7-fold discrimination between the binding of
the ternary complex and that of ternary-complex–ribosome
complexes. The reaction was carried out in serial dilutions of
the test compounds to 400 �M. We observed no effect on
ribosome binding by the ternary complex in the presence of
any of the test compounds.

Assays to determine the direct interaction of EF-G with its
substrate, GTP, proved to be quite challenging, since the dis-
sociation constant for the binary complex is on the order of 10
�M (8). In filter binding assays, the complex was unstable
during the washing step, resulting in high variability. There-
fore, we assayed the GTPase activity of EF-G in the presence
of ribosomes in order to determine the effects of the com-
pounds on the function of EF-G. In these experiments, the
release of 35S-labeled inorganic phosphate from [35S]GTP�S
was monitored using thin-layer chromatography (TLC) as de-
scribed in Materials and Methods. We were unable to detect
any inhibition of the GTPase activity of EF-G by any of the test
compounds to a concentration up to 400 �M (data not shown).

The 4H-pyridopyrimidines did not inhibit any of the acces-
sory protein activities represented in the coupled A/T screen-
ing assay. The inhibition of poly(Phe) synthesis in the biochem-
ical assay therefore leads us to conclude that the likely
mechanism of action of this compound class is direct inhibition
of the ribosome itself.

4H-pyridopyrimidines specifically inhibit bacterial protein
synthesis. An ideal antibacterial compound would show potent
inhibition of its bacterial target but little or no inhibition of the
corresponding eukaryotic system. Wheat germ extract assays
were used to determine whether the 4H-pyridopyrimidines in-
hibited protein synthesis in a eukaryotic system. Poly(U)
mRNA, yeast tRNAPhe, [3H]phenylalanine, and Mg2� concen-
trations were optimized for poly(Phe) synthesis in wheat germ
extract assays. The 4H-pyridopyrimidines were tested along
with a known inhibitor of protein synthesis, cycloheximide
(41). In these assays, cycloheximide inhibited 80% of the pro-

FIG. 4. IC50 determination for protein synthesis inhibitors. The titration of representative 4H-pyridopyrimidines is shown. REP321436 (A) and
REP321437 (B) exhibited IC50s of 3.7 and 4.9 �M, respectively, in A/T reactions. The reactions were carried out as described in Materials and
Methods, with the concentrations of the compounds ranging from 0.4 to 400 �M. Positive controls were assays in which there were no antibiotics
and approximately 1,000 pmol of phenylalanine was synthesized. The curve fits and IC50s were determined using XLfit (version 4.1; IDBS) as part
of Microsoft Excel.

TABLE 1. Inhibitory potencies of 4H-pyridopyrimidines against
bacterial protein synthesis

Compound IC50 (�M)

REP321436........................................................................................3.70
REP321437........................................................................................4.90
REP321439........................................................................................4.60
REP321141........................................................................................9.12
REP321443........................................................................................9.48
REP321525........................................................................................6.28
REP321528........................................................................................6.30
REP321532........................................................................................13.4
REP321799........................................................................................14.0
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tein synthesis at 30 �M. In contrast, none of the test com-
pounds inhibited protein synthesis at concentrations up to 300
�M (Fig. 5). The level of poly(Phe) synthesis in the wheat germ
assays is only approximately 10% of that seen in the A/T
assays; this is due to the limited number of ribosomes present
in the wheat germ lysate.

The compounds were negative in assays carried out to de-
termine if they nonspecifically bind nucleic acid and thereby
inhibit mRNA interactions with the ribosome. None of the
compounds were shown to interact with nucleic acid nonspe-
cifically (data not shown).

Microbiological testing of the 4H-pyridopyrimidines. The
4H-pyridopyrimidines were tested in broth microdilution as-
says to determine their MICs. Despite the similarity in the
biochemical potencies of the compounds, their abilities to in-
hibit bacterial growth differed widely. None of the compounds
inhibited wild-type E. coli at compound concentrations below
128 �g/ml. The compounds showing the highest levels of ac-
tivity were REP321525 and REP321528. REP321525 inhibited
the growth of an E. coli tolC efflux pump mutant, E. coli treated
with the permeabilizing agent PMBN, S. aureus, and S. pneu-
moniae at 8, 32, 32, and 8 �g/ml, respectively. REP321528 was
slightly less active; it inhibited the four bacteria at 32, 128,
	128, and 32 �g/ml, respectively (Table 2). The other 4H-
pyridopyrimidines inhibited S. pneumoniae to a lesser extent.

REP321528 and REP321525 showed activity against three
additional pathogens: H. influenzae, E. faecalis, and M. ca-
tarrhalis. The MICs of REP321525 against these three bacteria
were 4, 32, and 0.25 �g/ml, respectively, while the MICs for
REP321528 were 8, 128, and 2 �g/ml, respectively. REP321528
and REP321525 demonstrated broad-spectrum activity and
had good to moderate activity against the major respiratory
pathogens S. aureus, S. pneumoniae, H. influenzae, and M.

catarrhalis. However, the growth of the Gram-negative bacte-
rium E. coli was affected only if the bacteria were additionally
compromised, either by the presence of a permeabilizing agent
or by an efflux mutation, to allow the compounds access to the
interiors of the cells.

Macromolecular synthesis (MMS) assays can be used to
determine the global mode of action of an inhibitor on the
growth of bacteria (15, 31). MMS assays were carried out with
the test compounds to determine if RNA, DNA, cell wall, lipid,
or protein synthesis was inhibited in bacterial cultures. Assays
were carried out in cultures containing the E. coli tolC mutant
and also in cultures of S. aureus. The MMS data for two
representative compounds, REP323219 and REP323370, show
that the 4H-pyridopyrimidines are specific inhibitors of protein
synthesis in the cell (Fig. 6). These molecules are similar to
REP321525 except that the fluorine in the A-ring was replaced
with chlorine and moved from the meta to the para or ortho
position, respectively, relative to the attachment carbon (see
Fig. 3). These compounds were tested as we had begun pro-
ducing modifications of the original hits and focused on testing
only the more potent compounds. REP323219 preferentially
inhibited protein synthesis in E. coli tolC with an IC50 of 5.6
�g/ml. REP323370 demonstrated a similar MMS profile; mea-
surements from the inhibition plots of the precursor incorpo-
ration assays resulted in IC50s of 	64 �g/ml for the synthesis of
RNA, DNA, the cell wall, and lipids, and an IC50 of 5.8 �g/ml
for protein synthesis. The results did not change significantly if
the cultures contained E. coli tolC mutants or S. aureus bacteria
(data nor shown). This shows that the 4H-pyridopyrimidines
are broad-spectrum inhibitors and preferentially inhibit pro-
tein synthesis in both Gram-negative and Gram-positive bac-
teria. The decreases in the synthesis of RNA, DNA, the cell
wall, and lipids at high compound concentrations seen in Fig.

FIG. 5. Inhibition of protein synthesis in wheat germ extract. Poly(U) mRNA, yeast tRNAPhe, [3H]phenylalanine, and Mg2� concentrations
were optimized for activity as described in Materials and Methods. Titrations of cycloheximide (A) and Rep323370 (B) are shown.

TABLE 2. Antibacterial activities of 4H-pyridopyrimidines against selected pathogens

Pathogen
MIC (�g/ml)a of:

REP321436 REP321437 REP321439 REP321441 REP321443 REP321525 REP321528 REP321532 REP322799

E. coli tolC mutant 	128 	128 	128 	128 	128 8 32 	128 	128
E. coli ATCC 25922 	128 	128 	128 	128 	128 	128 	128 	128 	128
PMBN-treated E. coli ATCC 25922 	128 	128 	128 	128 	128 32 128 	128 	128
S. aureus ATCC 29213 	128 	128 	128 	128 	128 32 	128 	128 	128
S. pneumoniae ATCC 49619 128 128 128 128 128 8 32 128 128
H. influenzae ATCC 49766 ND ND ND ND ND 4 8 ND ND
E. faecalis ATCC 29212 ND ND ND ND ND 32 128 ND ND
M. catarrhalis ATCC 25238 ND ND ND ND ND 0.25 2 ND ND

a ND, not determined.
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6 represent indirect effects of the inhibition of protein synthe-
sis. Assays with the known protein synthesis inhibitor tylosin
gave similar results (data not shown).

Minimum bactericidal concentration (MBC) testing of the
4H-pyridopyrimidines initially indicated that the compounds
were bactericidal against H. influenzae but only bacteriostatic
against S. pneumoniae. Time-kill assays with REP321525 at 4�
MIC confirmed these results (Fig. 7). A 	1,000-fold decrease
in viable cell counts within 24 h, which is indicative of bacte-
ricidal effects, was achieved upon exposure of H. influenzae to
REP321525. However, in the time-kill assays, the compound
exhibited bacteriostatic effects against both S. pneumoniae and
M. catarrhalis.

The 4H-pyridopyrimidine compounds were also evaluated
for their potential to cause nonspecific membrane damage
and/or cell lysis. Live/Dead BacLight bacterial viability kits
were used to determine whether the test compounds affected
the integrity of the bacterial membrane. In E. coli tolC mu-
tants, the test compounds did not cause cell lysis at concentra-
tions as high as 128 �g/ml. Similarly, the compounds had no
adverse effects on eukaryotic cell membranes, since hemolysis
was not observed upon exposure of equine erythrocytes to this
class of compounds at 128 �g/ml.

DISCUSSION

Biochemical screening and target identification of bacterial
protein synthesis inhibitors. The results presented here show
that a coupled aminoacylation/translation (A/T) system con-
structed using purified components is functional in poly(Phe)
synthesis and can be used to screen for compounds that inhibit
protein synthesis in bacteria in a high-throughput format. We
have used this system to screen a small-molecule compound
library containing 2,100 compounds, and we identified a series
of 4H-pyridopyrimidine analogs that are bacterial protein syn-
thesis inhibitors. All of the compounds in the library had mo-
lecular masses of approximately 500 Da. Through the use of a
set of assays to determine the effects of the 4H-pyridopyrimi-
dines on the activities of the ribosomal ligands, we have deter-
mined that the likely target of the inhibitors is the ribosome.
The activities of EF-Tu, EF-Ts, EF-G, and PheRS showed no
sign of a reduction when assayed in the presence of test com-
pounds, whereas in A/T assay mixtures containing ribosomes,
protein synthesis was reduced in a dose-dependent manner.

Using macromolecular synthesis assays, the mode of action
was confirmed to be inhibition of protein synthesis. In contrast,
the 4H-pyridopyrimidines had little or no effect on DNA,
RNA, cell wall, or lipid production in bacteria, and the syn-

FIG. 6. Macromolecular synthesis (MMS) in E. coli. Compounds REP323219 (A) and REP323370 (B) were tested in MMS assays to determine
the effect of each compound on protein (�), RNA (f), DNA (Œ), cell wall (}), and lipid (F) synthesis.

FIG. 7. Time-kill kinetics of 4H-pyridopyrimidines. REP321525 was added to bacterial cultures at four times the MIC. Samples were analyzed by
plating for live-cell counts at 0, 2, 4, 6, and 24 h. Bacterial cultures contained H. influenzae (A), S. pneumoniae (B), or M. catarrhalis (C). Filled symbols
represent control cultures grown in the absence of inhibitor, and open symbols represent cultures containing the test compound at 4� MIC.
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thesis of these macromolecules was affected only indirectly due
to blocking of the production of proteins essential for their
synthesis. In addition, the 4H-pyridopyrimidines did not block
protein synthesis in eukaryotic cells. Inhibition of protein syn-
thesis in bacteria as a mode of action with the ribosome as the
target and specificity for bacteria makes the 4H-pyridoprymi-
dines candidates for drug development against pathogenic bac-
terial infections.

4H-pyridopyrimidines are active in microbiological assays.
The compounds identified in the A/T screen were subjected to
microbiological assays in which they inhibited bacterial growth.
Initial assays indicated that the more potent compounds had
activity against S. aureus, S. pneumoniae, and permeabilized or
efflux-compromised E. coli. Secondary assays confirmed the
broad-spectrum activity of this compound series against both
Gram-positive and Gram-negative bacteria (Table 2). In par-
ticular, the 4H-pyridopyrimidines had good activity against all
the respiratory pathogens tested, including S. aureus, S. pneu-
moniae, H. influenzae, and M. catarrhalis. In time-kill assays,
the compounds were shown to have bacteriostatic activity
against S. pneumoniae and M. catarrhalis but were bactericidal
against H. influenzae. In general, inhibitors of protein biosyn-
thesis tend to exhibit a static effect on the growth of bacteria;
however, some protein synthesis inhibitors, such as certain
aminoglycosides, do exhibit bactericidal effects (20). The bac-
teriostatic/bactericidal effects of 4H-pyridopyrimidines appear
to be bacterial strain specific.

Antibiotics targeting the ribosome and mechanisms of ac-
tion. Previous work indicates that chloramphenicol and certain
macrolides fail to inhibit poly(Phe) synthesis in cell extracts
(25, 32, 34). We initially tested azithromycin and chloramphen-
icol in the A/T system, and a 
5% decrease in poly(Phe)
synthesis was detected. More-recent evidence suggested that
macrolides containing a 14-member lactone ring structure in-
efficiently inhibited the peptidyl transferase reaction, and cer-
tain macrolides containing a 16-member lactone ring but only
a single sugar moiety at C-5 also failed to inhibit peptidyl
transfer completely (36). These macrolides apparently bind in
the peptide exit tunnel adjacent to the PT center, and in nor-
mal protein synthesis, they allow 6 to 8 amino acids to be
synthesized before completely arresting synthesis (4, 17, 43,
48). Other macrolides, such as tylosin and spiramycin, contain
16-member lactone rings. Besides a different number of carbon
constituents, the 16-member macrolides have a disaccharide at
C-5, whereas the 14- and 15-member macrolides have a single
sugar moiety at that position. There are subtle differences in
the 16-member macrolides, but the disaccharide at C-6 ap-
pears to be constant. In X-ray crystal structures of the large
ribosomal subunit bound to these 16-member macrolides, tylo-
sin or spiramycin, the disaccharide protrudes back up the exit
tunnel toward the PT center (16). The 15-member macrolide
azithromycin does not protrude as far into the PT ring struc-
ture as do the 16-member macrolides (16, 43).

Although the 15-member macrolide azithromycin was as-
sayed for inhibition of the A/T system, less than a 5% decrease
in the level of poly(Phe) synthesis was observed. In contrast,
both tylosin and spiramycin showed potent inhibition in the
A/T assay, although a level of residual poly(Phe) synthesis was
detectable. The residual activity may have been the result of
allowing 2 to 4 amino acids to be polymerized, as has been

previously observed for both tylosin and spiramycin (4). This
may be a characteristic of the synthesis of pure poly(Phe),
which is atypically hydrophobic compared to a natural protein
sequence (32, 34). We have not yet determined the exact mode
of action of the 4H-pyridopyrimidines on the ribosome, but the
levels of residual activity observed in poly(Phe) synthesis were
similar to the levels observed with tylosin and spiramycin. One
possibility is that the 4H-pyridopyrimidine may be binding in or
near the exit tunnel for the polypeptide or near the PT center,
allowing several amino acids to be polymerized before synthe-
sis is completely blocked. Additional structure/function studies
will be needed to elucidate the mechanism of action.

Other compounds in this class have a different mode of
action. Concurrent with the work described here, in an attempt
to elucidate inhibitors of bacterial growth, Miller et al. at Pfizer
(Ann Arbor, MI) screened a 1.6 million-compound library
against E. coli (tolC imp) in whole-cell assays (27). A series of
compounds with a pyridopyrimidine scaffold was identified and
was shown to inhibit the activity of bacterial biotin carboxylase.
By use of macromolecular synthesis assays, the mode of action
was confirmed to be inhibition of fatty acid synthesis. In con-
trast, the 4H-pyridopyrimidines described here had no effect
on the synthesis of lipids (Fig. 6B). Conversely, the Pfizer
compounds had no effect on protein synthesis. There are subtle
differences in the electronic configuration of the pyridine ring
structure within the central scaffold between the two series of
compounds. The Pfizer compounds also lack the pyridine ring
attached to the central scaffold that is present in the 4H-
pyridopyrimidine series, and even though the central scaffolds
of the two compound series are structurally similar, the site of
action is completely different.

The A/T system as a screening platform. Initially, nine com-
pounds from a selected low-molecular-mass chemical-com-
pound library were identified as inhibitory in the A/T system.
The results shown here demonstrate that a reconstituted pro-
tein synthesis system composed entirely of purified compo-
nents can be an effective screening system. The resulting hits
can be characterized through a series of assays to identify the
target component. This system can be applied to the screening
of larger chemical-compound libraries and offers significant
advantages over reactions carried out using crude extracts. The
A/T system has the potential to be adapted to a 384-well
microtiter plate format with further optimization of enzymatic
and detection components, allowing higher-throughput screen-
ing. In addition, this system can be used to aid in the identifi-
cation of targets of lead compounds identified in whole-cell
screens with a mode of action of inhibiting protein synthesis.

The A/T system has obvious limitations in that only inhibi-
tors of poly(Phe) synthesis will be detected. In the translation
of a natural mRNA, 19 additional aminoacyl-tRNA syntheta-
ses and several additional initiation and termination factors are
required. To detect inhibitors of all components of protein
synthesis, a more complete system will be required.

To proceed in the development of the 4H-pyridopyrimidines
as drug candidates requires in-depth development. During fol-
low-up studies, the 4H-pyridopyrimidines were subjected to
further medicinal chemistry optimization to maximize antibac-
terial activity, and during the course of this work, more than
100 additional analogs have been synthesized. The IC50s for
these optimized compounds have been reduced in the A/T
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protein synthesis system to the low nanomolar range, and the
MICs for H. influenzae, S. pneumoniae, M. catarrhalis, and S.
aureus have been reduced to 1, 2, 
0.12, and 4 �g/ml, respec-
tively. These studies will be discussed elsewhere.
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