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Electrical discharges in humid air at atmospheric pressure (nonthermal quenched plasma) generate long-
lived chemical species in water that are efficient for microbial decontamination. The major role of nitrites was
evidenced together with a synergistic effect of nitrates and H2O2 and matching acidification. Other possible
active compounds are considered, e.g., peroxynitrous acid.

Nonthermal plasma gases are currently under study as po-
tential alternatives to conventional sterilization techniques in
numerous settings (the food industry, hospitals). Atmospheric
nonthermal plasmas of the gliding-arc type (Glidarc) (9, 25)
were found to be efficient against microorganisms for treat-
ments performed under burning discharge (12, 13, 22, 26), and
the inactivation of cells in water could continue after the dis-
charge had been switched off (13). Microbial cells were also
killed by contact with water that had first been activated by
discharges (and so-called plasma-activated water [PAW]) with-
out being themselves subjected to the plasma plume (14, 15).
Studies performed hitherto using Glidarc in the context of
microbial decontamination have aimed to test the influence of
biological (i.e., population level, planktonic or adherent state
[14]) and physical parameters on decontamination efficiency.
Little is known of the mechanisms of action, especially when
PAW is used.

UV radiation, charged particles, and temperature are some
of the principal factors governing microbial inactivation under
plasma technology (20), but they are not relevant for PAW
decontamination because the burning discharge is switched off
during treatment. It is likely that reactive-nitrogen- and -oxy-
gen-based species play an important role in the lethal effect of
nonequilibrium atmospheric air-based plasma (10, 20). DNA,
RNA, proteins, and lipids are the principal targets of these
oxidants (4, 8). The main radical species present in the Glidarc
plasma plume have been identified as � OH and NO � when
humid air is the working gas (1). These radicals are precursors
of other active species in water, such as nitrates, nitrites, and
hydrogen peroxide (3), which endow the medium with high and
sustainable reactivity. The efficiency of these long-lived chem-
ical species in removing chemical pollutants was yet evidenced
(24), but their implication in microbial inactivation by PAW

was demonstrated for the first time here. Chemical species are
also responsible for acidification (2) which role in the antimi-
crobial activity was also considered during the present study.

PAW was produced by application of Glidarc (5 min) over
20 ml of sterile distilled water. The design of the device and the
procedure for gas discharge have been described previously
(23), as well as the operating conditions (14). PAW contained
0.01 � 0.01 mmol liter�1 H2O2, 0.13 � 0.02 mmol liter�1

nitrates (evaluated using Spectroquant hydrogen peroxide cell
test and Spectroquant nitrate cell test kits [Merck, Darmstadt,
Germany]), and 1.6 � 0.2 mmol liter�1 nitrites (Griess re-
agent; VWR, Fontenay-sous-Bois, France). Its pH value was
3.0 � 0.1. No major change in PAW characteristics was de-
tected 30 min after the treatment (corresponding to the max-
imum period of disinfection). The contributions of nitrites,
nitrates, and H2O2 to the lethal effect of PAW were tested by
evaluating the disinfection potential of acidified (by HCl) so-
lutions prepared using these compounds alone or in a mixture
at the concentrations found in PAW. Inactivation was per-
formed as previously described (14). Briefly, the suspension
(0.1 ml) of Hafnia alvei (a Gram-negative bacterium belonging
to the Enterobacteriaceae family, selected as a bacterial model)
was added to the disinfecting solutions (9.9 ml) and left in
contact for increasing periods of time. After neutralization,
survivors were evaluated by plating.

More than 50% of the logarithmic abatement by PAW could
be explained by the mixture in the acidic medium of nitrites,
nitrates and, H2O2 (Table 1, lines 1 and 9). When a 20-min
application period was considered, the chemical mixture tested
explained 75% of the logarithmic reduction achieved by PAW
and 99.99% of the number of the dead bacteria. The important
role of acidified nitrites in this death rate was shown. They
were the only compounds that caused a significant lethal effect
(Table 1, line 5). When nitrite formation was prevented by the
use of sulfamic acid (21), no lethal effect of PAW was noted
(Table 1, line 6). Although acidified nitrates and H2O2 were
not lethal when utilized alone, their addition to nitrites en-
hanced the lethal effect (Table 1, lines 3, 4, and 7 to 9). The
mixing of several chemical compounds could lead to the cre-
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ation of other active species with a synergistic lethal effect. The
combination of H2O2 and nitric oxide (which may result from
the disproportionation of acidified nitrites, as discussed below)
appears to have potent antibacterial activity (28). One might
also refer to peroxynitrous acid, an oxidant known as germi-
cidal (11, 17, 19, 29) that was evidenced during the treatment
of water by Glidarc (24). It can be the product of the reaction
between acidified nitrites and H2O2: H2O2 � H� � NO2

� 3
ONO2H � H2O. In addition, it may also form during reactions
between plasma primary active species (2): NO � � HO2 3
ONO2H and ONO � � OH 3 ONO2H. It may thus be tran-
siently encountered and biologically active in PAW. Because
the plasma primary active species were absent from the chem-
ical mixtures tested, one might explain the greater efficiency of
PAW than of the mixtures by a decrease in peroxynitrous acid
formation.

This study also underlined the need for an acidic pH to
ensure the efficacy of PAW, in line with the recent results on
the antimicrobial activity of plasma-treated liquids (5, 27). No
lethal effect was observed during the application of either neu-
tralized PAW or buffered PAW to bacterial suspensions for
periods of up to 30 min (Table 1, lines 10 and 11). An acidic pH
did not exert a lethal action because of its absolute value
(Table 1, line 2). It is important to obtain molecules in biolog-
ically active forms, as weak acids penetrate bacterial mem-
branes in a nondissociated form (18). Moreover, the pH value
governs the production of other active compounds. At an
acidic pH, nitrites are converted into nitrous acid (pKa of
HNO2/NO2

� � 3.3), an unstable acid that disproportionates to
nitrates and nitric oxide. The latter is endowed with antimi-
crobial activity (7). It is a potent oxidant. It could readily
diffuse across biological membranes (6). It could also synergis-
tically act with H2O2, as referred to above.

In conclusion, this study demonstrates the action of long-
lived chemical species in the lethal effect of PAW on H. alvei.
This can also probably be considered for other microorgan-
isms, with efficiency depending on microbial structures. Acid-
ified nitrites and H2O2 are known to be less efficient versus

yeast than versus bacteria (16, 30), and PAW was found to be
more efficient against H. alvei, Staphylococcus epidermidis, and
Leuconostoc mesenteroides than against Saccharomyces cerevi-
siae (15). Furthermore, the chemical species are probably im-
plicated in the lethal effect of Glidarc during treatments under
burning discharge followed (or not) by temporal postdis-
charges, for as long as these treatments are applied to cells
suspended in an aqueous medium.
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