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We cloned and purified the major family 10 xylanase (Xyn10A) from Acidothermus cellulolyticus 11B. Xyn10A
was active on oat spelt and birchwood xylans between 60°C and 100°C and between pH 4 and pH 8. The optimal
activity was at 90°C and pH 6; specific activity and Km for oat spelt xylan were 350 �mol xylose produced min�1

mg of protein�1 and 0.53 mg ml�1, respectively. Based on xylan cleavage patterns, Xyn10A is an endoxylanase,
and its half-life at 90°C was approximately 1.5 h in the presence of xylan.

Xylanase enzymes are important in a wide variety of bio-
technological and industrial applications (reviewed in refer-
ences 5, 7, 14, 20, 29, and 31). Thermostable xylanases from
diverse mesophilic and thermophilic microbes have been de-
scribed (5, 9, 24, 28, 38). An area of intensifying industrial
application for xylanases is in the deconstruction of plant cell
walls to facilitate biofuel production from lignocellulose (8).
With the current dependence on acid and heat pretreatment of
lignocellulosic feedstocks, bioconversion enzymes from ther-
moacidophilic microbes are of particular value (25). Here we
report the characterization of a thermostable glycoside hy-
drolase family 10 (GH10) xylanase (designated Xyn10A)
from Acidothermus cellulolyticus 11B, a Gram-positive acti-
nomycete that was isolated from acidic hot springs in Yel-
lowstone National Park (4, 18).

Transcriptional analyses of A. cellulolyticus 11B (ATCC

43068) grown in LPBM medium (4, 18) supplemented with a
0.5% concentration of either oat spelt xylan, cellulose, cello-
biose, or glucose revealed that the xyn10A gene was more
highly expressed in xylan-grown cultures (Fig. 1). Its expression
was also detected in cellulose medium, but it was almost un-
detectable in cellobiose or glucose medium. Zymogram anal-
ysis (12) of oat spelt xylan- and cellulose-grown A. cellulolyticus
culture supernatants showed a prominent clearing zone (using
birchwood xylan as a substrate and Congo red staining) corre-
sponding to the predicted molecular size of the Xyn10A pro-
tein; tandem mass spectrometry confirmed the presence of
Xyn10A in the xylan medium (data not shown). These results
suggested that Xyn10A hydrolyzes xylan and is the major xy-
lanase produced on xylan by A. cellulolyticus.

The xyn10A gene was cloned by isolating the A. cellulolyticus
chromosomal DNA as described previously (4) and using it to
PCR amplify the full-length Acel_0372 gene. From the A. cel-
lulolyticus genome sequence (4), PCR primers (5�-GTGGTG
GAGCTCGCAATTCGTTCACGTTGAGG-3� and 5�-GTGG
TGTCTAGAACCATCGAGTGGGAGTGACG-3�) containing
SacI and XbaI restriction sites (underlined) were designed to
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FIG. 1. Expression of xyn10A in A. cellulolyticus at mid-exponential
(open bars) and stationary (filled bars) growth phases. Densitometry-
based relative intensity values of reverse transcriptase PCR (RT-PCR)
products are plotted along the y axis. RNA was extracted using the
RNeasy plant minikit (Qiagen). Primers specific to the xyn10A gene
(5�-CAAAGGAAAGATCTGGCAATG-3� and 5�-TGAGCATCCCG
TCGTAGTAGT-3�) were used to amplify a 485-bp product using the
Qiagen OneStep RT-PCR kit. Expression of the housekeeping gyrB
(Acel_0005) gene was used to normalize for the RNA (data not
shown). Identical results were obtained in two independent experi-
ments; data from one experiment are presented.

FIG. 2. Heterologous expression and purification of recombinant
Xyn10A. (A) Zymogram assay showing xylanase activity following
electrophoresis of crude cell extracts. Lanes: ST, molecular weight
standards; 1 and 3, crude cell extracts from DH5�(pK19) (vector
control); 2 and 4, crude cell extracts from DH5�(pK19-xyn10A). Sam-
ples in lanes 3 and 4 were heated at 65°C for 15 min prior to loading.
(B) SDS-PAGE (10% gel) showing purification of Xyn10A. Lanes: A,
molecular weight standards; B, crude cell extract from DH5�(pK19-
xyn10A); C, heat-treated extract from DH5�(pK19-xyn10A); D, con-
centrated fractions from the hydroxyapatite column.
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facilitate cloning of the 1.4-kb PCR product into pK19 (21) for
expression in Escherichia coli DH5� cells (26). Using hydroxy-
apatite column chromatography (19) following heat treatment
(65°C, 15 min) of the crude cell extract, Xyn10A was purified
to �90% purity based on the densitometry of SDS-PAGE gels
(Fig. 2; Table 1).

The specific activity of purified Xyn10A was quantified using
a reducing sugar assay with p-hydroxybenzoic acid hydrazide
(16) and the Bradford assay (6). Xyn10A was active from 60 to
100°C and pH 4 to 8, with an optimum at 90°C and pH 6 under
the conditions tested (Table 2). Other polysaccharides (Sigma-
cell cellulose, carboxymethylcellulose [Fluka], and xanthan
gum [KELCO ZN 85192 A]) did not serve as substrates (data
not shown). The specific activity and Km of purified Xyn10A
(at 90°C and pH 6) on oat spelt xylan were 350 � 27 U mg of
protein�1 and 0.53 � 0.18 mg ml�1, respectively, values com-
parable to those of XynA from Thermotoga maritima MSB8
(37). The optimal temperature for Xyn10A activity (Topt �
90°C at pH 6) was higher than that reported for the most
thermostable cellulase (endoglucanase E1; Topt � 81°C) from
Acidothermus (1, 3, 34), which has a growth optimum of 55°C
(18). Relatively few xylanases described to date have temper-
ature optima of �90°C; most of these were isolated from
hyperthermophiles (growth Topt � 85°C) such as Thermotoga
(27, 37) or from high-temperature environments where hyper-
thermophiles are found (32). Another exception is the high-
temperature xylanase (Topt � 90°C) from a fungus (24).

Xylan hydrolysis products produced by Xyn10A were ana-
lyzed using thin-layer chromatography (TLC) (Fig. 3) as de-
scribed previously (15). The major products from oat spelt and
birchwood xylan had retention factor (Rf) values between
those of xylose and xylopentaose (Fig. 3), indicating that
Xyn10A functions primarily as an endoxylanase. The differ-

ences in the pattern of degradation products from the two
xylans likely reflect the known differences in the structures of
these xylans (13, 17). Oat spelt xylan consists of arabinoxylan
with trace glucose substituents, while birchwood xylan is pri-
marily an unsubstituted xylose polymer with traces of uronic
acids as side groups (17, 22, 30).

Xylans protected Xyn10A against thermal inactivation.
While Xyn10A had a half-life of 12 min at 90°C in buffer,
negligible loss in activity occurred in 1 h in the presence of
either oat spelt or birchwood xylans (Fig. 4A). Nonsubstrate
polysaccharides (listed above) did not stabilize the enzyme

FIG. 3. Time course of Xyn10A product formation with birchwood
(A) and oat spelt (B) xylans, using TLC. Xylan substrates (2% in 10
mM phosphate buffer, pH 6) were incubated with purified Xyn10A at
90°C. Lanes 1 and 8, standards: xylotetraose (X4) and xylotriose (X3)
(Megazyme, Wicklow, Ireland) and xylose (X1). Lane 2, unreacted
xylan; lanes 3 to 7, xylan with increased incubation times in the pres-
ence of purified Xyn10A (10, 20, 40, 60, and 240 min, respectively).

TABLE 2. Specific activity of purified Xyn10A at different temperatures and pH

Temp (°C)
Sp acta at pH:

4.0 5.0 6.0 7.0 8.0

100 37 � 17 (12%) 206 � 35 (65%) 91 � 19 (28%) — —
90 41 � 9 (13%) 187 � 15 (58%) 350 � 27 (100%) 158 � 7 (49%) —
80 — 98 � 44 (31%) 210 � 4 (66%) 169 � 9 (53%) —
70 — 68 � 5 (21%) 111 � 7 (35%) 72 � 11 (22%) 71 � 1 (22%)
60 — 63 � 14 (20%) 67 � 1 (21%) 68 � 2 (21%) 48 � 2 (15%)

a Specific activity in �mol xylose-reducing equivalents min�1 mg protein�1 � standard deviation. n � 4. Values in parentheses are percent activities relative to the
maximum activity (at 90°C and pH 6.0). Dashes indicate an activity value less than 10% of maximal; activities at 30 to 50°C, as well as at pH 3.0 and pH 9.0, were less
than 10% of maximal (data not shown). The pH of the assay mixture was measured at the end of each assay, and no significant change in pH was found in assays in
the pH 3 to 8 range. The pH at the end of the pH 9 assays was consistently 8.6. No significant differences were seen between measurements of pH at room temperature
or at 90°C.

TABLE 1. Typical purification of Xyn10A from
recombinant E. coli

Purification step
Amt of
protein

(mg)

Activitya

Yield
(%)

Purification
(fold)Units Units/mg

protein

Crude cell extract 3,840 14,800 3.85 100
Heat-treated extract 838 13,100 15.6 88 4.1
Hydroxyapatite 4.63 1,740 376 12 97.7

a Units, �mol xylose-reducing equivalents liberated from oat spelt xylan per
min; activities measured at 90°C and pH 6.0.
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(data not shown). In the presence of oat spelt xylan, approxi-
mately 15% of the activity was retained beyond 3 h and up to
24 h of 90°C heat treatment (Fig. 4B). These results indicate
that xylans stabilize purified Xyn10A at high temperature; pre-
sumably, substrate-enzyme interactions prevent conforma-
tional changes at higher temperatures. It should be noted that
Xyn10A is actively degrading xylan during the incubation at
90°C, and loss of activity after longer incubation periods may
be due to the depletion of the stabilizing substrate. Certain
other xylanases are known to be stabilized by substrate or by
immobilization on glass beads at high temperature (24, 27),
and in some cases, carbohydrate-binding domains were shown
to contribute to thermostability (2, 11, 33, 36). Xyn10A lacks
predicted carbohydrate-binding domains, and therefore how
Xyn10A interacts with xylans for stabilization is unknown.

The closest structurally characterized GH10 homolog of
Xyn10A is from Clostridium thermocellum, whose homolog
shares only 39% identity over 86% of the length of Xyn10A.
Therefore, structural deductions for understanding intrinsic

and substrate-associated thermostability of Xyn10A are diffi-
cult and warrant the structural characterization of the enzyme.
With its thermoacidic range for enzyme activity, the A. cellu-
lolyticus Xyn10A xylanase should be highly suitable for use in
the hydrolysis of acid- and heat-pretreated lignocellulose in
bioenergy applications (10, 35) and would be particularly com-
patible for use in combination with thermoacidic cellulases
such as the highly thermostable endoglucanase E1 from A.
cellulolyticus (3, 23). In addition, the broad effective tempera-
ture and pH ranges make it attractive for other emerging
biotechnological processes.
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