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Abstract
In this paper we propose an upward correction to the standard error (SE) estimation of θ̂ML, the
maximum likelihood (ML) estimate of the latent trait in item response theory (IRT). More
specifically, the upward correction is provided for the SE of θ̂ML when item parameter estimates
obtained from an independent pretest sample are used in IRT scoring. When item parameter estimates
are employed, the resulting latent trait estimate is called pseudo maximum likelihood (PML) estimate.
Traditionally the SE of θ ̂ML is obtained on the basis of test information only, as if the item parameters
are known. The upward correction takes into account the error that is carried over from the estimation
of item parameters, in addition to the error in latent trait recovery itself. Our simulation study shows
that both types of SE estimates are very good when θ is in the middle range of the latent trait
distribution, but the upward-corrected SEs are more accurate than the traditional ones when θ takes
more extreme values.
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Introduction
Item response theory (IRT) scoring offers various advantages. For example, the examinees can
be placed on the same scale as the items. IRT also offers conditional standard errors (SE) of
latent trait estimates. In IRT scoring, usually the item parameter values are considered known
(see Baker & Kim, 2004; Embretson & Reise, 2000), unless the joint maximum likelihood
(JML) method (Birnbaum, 1968) is used, which can produce estimates of the item and latent
trait parameters simultaneously. JML estimation used to be a standard practice for item
parameter estimation as implemented in LOGIST (Wingersky, Barton, & Lord, 1982).
However, using JML estimation for tests of finite length may result in estimates that are not
statistically consistent (Harwell & Baker, 1991).

Nowadays, it is a common practice in psychological and educational testing to first estimate
item parameters from a pretest sample, and then treat the item parameter estimates as true
values when estimating the latent trait in the scoring sample. However, the item parameter
estimates are “fallible” in the sense that they do not equal the true parameter values, and they
have their own standard errors. When item parameter estimates are treated as true values in
scoring, the errors will affect the precision of resulting latent trait estimates.
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It is important to obtain good estimates of the standard errors (SE) for the latent trait estimates.
For instance, the SE can serve as the termination criterion in variable-length computerized
adaptive testing. The test stops for an examinee when his or her ability estimate is sufficiently
precise, i.e., when the SE of the final latent trait estimate is small enough. If the SE is
underestimated, the test may end prematurely.

Researchers have long been aware of the issue that, when item parameter estimates are used
instead of the true values, the standard error of final ability estimates can be underestimated.
In the context of Bayes estimation with the three-parameter logistic (3PL) model (Hambleton
& Swaminathan, 1985), Tsutakawa & Johnson (1990) discussed two sources of error in latent
trait estimation, one being the scoring process itself, and the other being the error carried over
from item calibration. They proposed approximations of the posterior mean and variance of
latent trait and found that the uncertainty in latent trait estimation may be seriously
underestimated when the pretest sample is small or moderately large. A remedy is to use
posterior standard deviations from the Markov chain Monte Carlo (MCMC) output as standard
errors. Specifically, one can obtain the latent trait estimates along with the standard errors by
marginalizing over other dimensions of the joint posterior of item and person parameters (Patz
& Junker, 1999).

Instead of adopting the Bayes framework, we will study the effect of fallible item parameter
estimates on the precision of latent trait estimates in the context of maximum likehood (ML)
estimation, which is widely used in IRT applications (see chapter 3 of Baker & Kim, 2004;
chapter 7 of Embretson & Reise, 2000). In the ML approach with known item parameters, the
SE of the estimated latent trait is obtained from the test information. When the item parameters
are estimated rather than known, the true SE of the estimated latent trait will be inflated.
Therefore the theory of ML has to take into account the extra errors. The procedure is called
pseudo ML (PML) (Gong & Samaniego, 1981; Parke, 1986) estimation, which leads to an
asymptotic quantification of how the errors in item parameter estimates affect the estimation
of latent trait. The development allows us to obtain a correction to the information-based SE.
It can also be shown that, as long as the item parameter estimates are consistent, the ML
estimates (MLE) of latent traits are also consistent. We will use Monte Carlo methods to
compare the corrected SE and the original SE against the empirical SE, with calibration sample
of different sizes. The simulation study shows that the commonly used formula for SE
underestimates the amount of variability in the final latent trait estimates for examinees with
high or low latent trait levels.

Methodology
Dichotomous IRT models relate the probability of correct responses to the person parameter,
θ. A widely used IRT model is the two-parameter logistic model (2PL, Birnbaum, 1968), which
includes two item parameters, item discrimination α and item difficulty β:

(1)

where Uij = 1 represents a correct answer of subject i to item j, and Uij = 0 otherwise.

Without loss of generality, the 2PL model can be re-parameterized as follows:

(2)

Naturally, γj0 = −αjβj and γj1 = αj.

Cheng and Yuan Page 2

Psychometrika. Author manuscript; available in PMC 2011 June 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



The Fisher information measures the amount of information that an observable random variable
X carries about an unknown parameter θ (Cover & Thomas, 1991), given a model. In the context
of 2PL, the Fisher information of item j can be expressed as:

(3)

where P (θ, γj0, γj1) is a shorthand expression of P(Uj = 1|θ, γj0, γj1), and γj = (γj0, γj1)′. Assuming
local independence, the test information is the sum of item information:

(4)

where m is test length, and γ is a 2m × 1 vector containing all the γj0 and γj1, j = 1, 2,…, m.

The square root of the inverse of test information evaluated at θ′,

(5)

provides a consistent estimate of the SE of θ̂. In reality, however, γ is never known with
certainty. They are often replaced with estimates from a pretest sample. In other words, the
standard error of θ̂ is usually approximated by (see Embretson & Reise, 2000):

(6)

However, Eq. 6 may underestimate the standard error of θ̂. Let’s denote the realization of Uij
as uij. The log likelihood function, under the assumption of local independence, is given by:

where n is the size of the scoring sample, Q(θi, γj0, γj1) = 1 − P(θi, γj0, γj1), θ = (θ1, θ2, …,

θn)′,  with γj = (γj0, γj1)′.

Suppose that a consistent estimator γ̂ is available and we treat it as known when using the ML
procedure to estimate θ, our objective function is:

When the IRT model defined in Eq. 2 is correct, such an approach to estimation is the
aforementioned pseudo maximum likelihood (PML) estimation in the statistics literature
(Gong & Samaniego, 1981;Parke, 1986). Under standard regularity conditions the pseudo MLE
of θi, θ ̂i, satisfies the following estimating equation:
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(7)

where

When gi(θi, γ) is unbiased, i.e. when E[gi(θi, γ)] = 0, θ̂i is consistent (e.g., Godambe &
Thompson, 1974).

We can use the Taylor expansion to see how the distribution of θ̂i is affected by treating γ̂ as
non-stochastic. Let ġiθ(θi, γ) and ġiγ(θi, γ) denote the partial derivatives of gi(θi, γ̂) with respect
to θi and γ, respectively. Then

with

and

Suppose γ ̂ is obtained by another sample that is independent from the current sample, with

(8)

where  denotes convergence in distribution, and N the size of the calibration sample.
Assuming m ≤ N, the first-order Taylor expansion of gi(θ ̂i, γ̂) leads to

(9)

where  denotes a random term rm such that  converges to 0 in probability when
m → ∞ and N → ∞. Notice that
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(10)

Because

converges to a normal distribution according to the central limit theorem, it follows from Eqs.
8 and 10 that

(11)

Let

It follows from Eqs. 9 and 11 that

(12)

where

Because aiγ ≠ 0, the distribution and standard error of γ̂ do affect those of θ̂i. Since aj0 and E
(aj1) are nonstochastic, the two terms in the braces of Eq. 12 are independent. From Eq. 8 we
get

where
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It follows from Eq. 12 that

(13)

where

and

Consistent estimates of aiθ, υi11 and τ2 are obtained using

 with âiγ being obtained by

and

In summary, the standard error of θ̂i is given by:

(14)
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A consistent estimate of Ω̂ depends on the method and sample that are used when estimating
γ. When the model is correct (i.e. when Eq. 1 is the true distribution of Uij) and the local
independence assumption holds,  is just the inverse of test information.
Eq. 14 therefore implies that, when γ̂ instead of γ is used, the standard error of θ̂i will be

positively affected by that of γ̂. The effect depends on the magnitude of  and N.

In the following section, we will give a detailed description of a simulation study, which shows
how the upward-corrected SE offered by Eq. 14 better reflects the reality.

Simulation and Results
The simulation study consists of three parts: item calibration, subject scoring, and the
computation of Ω̂:

1. A calibration sample of size N is first generated following a certain distribution (in
this study (0, 1)), and their responses to m items are simulated following Eq. 1.
Calibration samples of two different sizes are simulated: N = 2, 000 and N = 200. The
m items are 40 retired items from a national math test, whose parameter estimates are
available from previous large-scale calibration. These estimates are used as true
parameter values. Descriptive statistics for these item parameters are summarized in
Table 3. In the end, an N × m matrix of 0’s and 1’s is generated.

BILOG-MG 3 (Zimowski, Muraki, Mislevy, & Bock, 2003) is used for item
calibration. The output from this step is the calibrated item parameters for the m = 40
items. Note that the 2PL model is used, so in total we have 80 item parameter
estimates.

2. A scoring sample of size n = 1, 800 is generated by having 200 subjects at each of the
nine, equally-spaced θ points (step-size = 0.5) from −2.0 to 2.0. Their responses to
the m = 40 items are simulated following Eq. 1 as well. The item parameter estimates
from Step 1 are adopted to score the 1,800 subjects using maximum likelihood
estimation. The ceiling and floor cases (those whose response sequence is either all
1 or all 0’s) are assigned scores of +4.0 or −4.0, respectively. Empirical conditional
SEs are obtained within each local θ group of 200 subjects. Note that the empirical
SEs are based on θ̂is that are “contaminated” by the imprecise item parameter
estimates from Step 1.

3. It is clear from the derivation that the corrective procedure requires the estimate of
Ω, where Ω/N is the asymptotic covariance matrix associated with the maximum
marginal likelihood estimation (MMLE) of item parameters. To obtain Ω̂, we use
Ω = A−1BA−1, where A is the negative expected second derivative of the MMLE for
a single case, and B is the expected cross-product of the first derivative of the MMLE
for a single case. Note that when the model is correct, A = B, and consequently, Ω =
B−1. In practice, A is estimated by the negative average second derivative of the
MMLE, and B by the average cross-product of the first derivative of the MMLE.

In our simulation study, the numerical differences between the two estimates, Â and B̂, only
appear at the second decimal places. Therefore B̂−1 is used in subsequent computation in place
of Ω̂ for easier implementation. Cai (2008) discussed a supplemented expectation-
maximization (EM) algorithm to compute the information matrix of the item parameter
estimates, which could be used as well. Another possibility to come up with Ω̂ is to use a
parametric bootstrap.

Table 1 contains the conditional SE of θ ̂is when the calibration sample size is N = 2, 000. The
second column represents the empirical SE obtained in Step 2. The third column gives the
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average SE computed using test information among the 2,000 subjects in the same local θ
group. The test information is calculated by plugging the item parameter estimates from Step
1 and θ ̂is in Step 2 into Eq. 4. The fourth column provides the average upward corrected SE in
each local θ group, following Eq. 14. The fifth column is the ratio of the information-based SE
estimates over the empirical ones. The last column is the ratio of the upward corrected SE
estimates over the empirical ones. Clearly, the information-based SE estimates are quite precise
when θ ∈ [−1.5, 0.5], where their ratios to the empirical SE estimates are around 1. There are
some cases showing overestimation of the SE, but the magnitude is very small (in second
decimal places). However, there is serious underestimation of SE when θ is not in the middle
range of the ability continuum. For example, when θ = −2, SEuncorrected/SEempirical = 0.79,
suggesting an error of about 21%; when θ = 2, SEuncorrected/SEempirical = 0.64, suggesting an
error of about 36%. By contrast, the upward-corrected SE estimates fare much better at these
extreme locales: the errors in the corresponding cases are 13% and 6%, respectively. When θ
∈ [−1.5, 0:5], the upward correction also tends to overestimate the SE, but also just slightly (in
second decimal places).

Figure 1 shows how |SEuncorrected − SEempirical| and |SEcorrected − SEempirical| change with θ
when θ ∈ [−2, 2]. Again, it is clear that the SE estimates are more accurate in the middle range
of latent trait distribution, regardless of whether the SE estimates are corrected or not. Second,
the advantage of using the upward-corrected SE estimate, i.e., the one based on ω, diminishes
when θ gets in the vicinity of 0, and is larger when θ deviates from the middle range of the
ability distribution.

Table 2 is a replica of Table 1, except that the calibration sample size is N = 200. We expect
to see a larger SE associated with item parameter estimates when the calibration sample size
gets smaller, and consequently the SE estimates of θ̂ML will be further inflated compared to
what is shown in Table 1. This is confirmed by our data. Across all θ levels, the empirical SEs
in Table 2 are larger than, or at least equal to, those in Table 1. On the other hand, the inflation
in SE estimates of θ is rather small, which suggests that θ recovery in a sense is fairly robust
to the size of the calibration sample. This may be due to the fact that we are looking at the 2PL
model, which is known to have less stringent requirement on calibration sample size than the
3PL model. Another possible reason is that the simulation study adopts a 40-item test, which
is fairly long. The resulting SEs are therefore small.

Again, our focus is on comparing the uncorrected SE estimates with the corrected SE estimates.
The last two columns of Table 2 demonstrate the same pattern as Table 1: the ω-based SE more
closely matches the empirical SE. In the middle range of θ, both the pure information-based
SE estimates and the upward-corrected ones are quite precise. In fact, they both tend to
overestimate the SEs when θ is close to 0, but only very slightly. The advantage of upward
correction is pronounced when θ moves away from the middle range. Therefore, when the goal
is to identify remedial or advanced students, it is important to recognize that the traditional,
purely information-based SE estimates are too liberal.

Figure 2 also shows a similar pattern to Figure 1: upward-corrected SE estimates are more
accurate when the θ is not in the middle range of the ability distribution. In addition, no matter
which SE estimate is adopted, it is safer to use it when θ are in the middle range, where most
of the items measure the best. This, again, resonates with what has been shown repeatedly in
the literature, i.e., the floor and ceiling effect.

In Figure 1 and Figure 2, one may notice a “dip” at θ = 2.0. The “dip” represents an increase
in , the value added to the test information (see Eq. 14). As a matter of fact, moving
towards extreme θ levels, the  keeps increasing, as reflected by the difference between
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the 2nd and 3rd columns in Table 1 and Table 2. The “dip” therefore shows actually the
pronounced effect of correction at these θ levels.

It may be worth mentioning that both Table 1 and Table 2 indicate that the empirical SE
estimates are not symmetric around 0: they are clearly lower with examinees from lower ability
groups (i.e., θ < 0), which suggests that the test measures these examinees better than the higher-
achieving students. This phenomenon can be explained by the particular test used in our
simulation study. Table 3 presents the summary statistics of the test. The average item difficulty
is −0.25. The boxplot and histogram (Figure 3 and Figure 4) for the difficulty parameter further
reveal that the test is in general on the easy side for the scoring sample, whose average θ is 0.
The maximum item difficulty level is merely 0.8, while the minimum reaches down to −2.0.
Therefore it is not surprising that the test measures low-ability groups better.

Summary and Discussion
In this study we propose an upward correction to the standard error estimate of θ̂, the latent
trait estimate in item response theory. More specifically, the upward correction is provided for
θ ̂ML, and it takes into account the error that is carried over from the estimation of item
parameters. Our simulation study shows that the upward correction leads to better SE estimates
towards the two ends of the latent trait distribution.

It is not uncommon to use item parameter estimates from pretest in scoring, and SE estimates
of the final θ̂ML are used for high-stakes decisions such as terminating a variable-length
computerized adaptive test. Hence it is important to understand that the SE estimate based on
test information alone might be too small. Findings from this study suggest using the upward-
corrected SE estimate for θ ̂ML, especially when the item parameter estimates are obtained from
a small sample.

On the other hand, to use the corrective procedure, not only the item parameter estimates, but
also their variances and covariances need to be available. Therefore we would encourage
reporting variances and covariances terms along with the item parameter estimates themselves,
unless the calibration sample size is very large. Intra-item variance and covariance terms are
available from BILOG-MG, but not inter-item ones. We would like to investigate further if the
corrective procedure still works with a reduced covariance structure, i.e., using only the intra-
item terms.

In addition, we feel that the study can be extended in at least the following aspects. In this
paper, we have focused on the 2PL model, an extensively used model in psychological and
educational measurement. The development can be easily extended to other IRT models, such
as the 3PL model or the normal ogive models. Moreover, we have assumed that the probability
density function in Eq. 1 or 2 is correctly specified in this study. In case this assumption is
violated, consistent SEs for θ ̂ML can still be obtained by replacing the inverse of the information
in Eq. 14 by the sandwich-type variance (see Yuan & Jennrich, 2000). In addition, the
derivation and simulation study in this paper assume that the calibration sample and the scoring
sample are independent. When the same sample is used for calibration first and then the item
parameter estimates are employed to score the sample, the rationale of the corrective procedure
offered in this paper is still valid. Only one change needs to be made to Eq. 14, which consists
of only two components right now: test information, and the error from γ. When the same
sample is used for both calibration and scoring, a third term, which represents the covariance
of the gi(θi, γ) and γ̂ − γ (see Eq. 12), needs to be incorporated into Eq. 13. Finally, as pointed
out by one referee, Bayesian latent trait estimates such as expected a posteriori (EAP) or modal
a posterior (MAP) are also used frequently in IRT applications. The technique presented in
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this paper can be applied in the same fashion to Bayesian posterior probabilities, and can offer
similar adjustment to, for example, the SE estimate of θ̂MAP with a (0, 1) prior.
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FIGURE 1.
|SEempirical − SEuncorrected| vs. |SEempirical − SEcorrected|, N = 2000
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FIGURE 2.
|SEempirical − SEuncorrected| vs. |SEempirical − SEcorrected|, N = 200
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FIGURE 3.
The Boxplot of the Difficulty Parameters of the 40 Items
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FIGURE 4.
The Histogram of the Difficulty Parameters of the 40 Items
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TABLE 3

Summary Statistics of Item Parameters

α β

Mean 0.952 −0.252

SD 0.243 0.646
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