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Abstract
The least squares solution of a complex linear equation is in general a complex vector with
independent real and imaginary parts. In certain applications in magnetic resonance imaging, a
solution is desired such that each element has the same phase. A direct method for obtaining the
least squares solution to the phase constrained problem is described.
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I Introduction
Consider the linear equation given in Eq 1

(1)

where A is a complex m × n matrix, b is a complex m-vector and x is a complex n-vector.
The minimum norm least squares solution to Eq 1 has 2n independent variables: the real and
imaginary parts of x, which may also be represented in polar form as the amplitude and
phase. However in certain applications in magnetic resonance imaging, it is reasonable to
expect the phase of all elements of x to be the same and thus a phase constrained solution is
desired.

This is a nonlinear optimization problem that has been approached previously using iterative
Gauss-Newton search [1]. The present study derives an alternate, direct method for solving
the phase constrained problem in which the minimum norm least squares solution is
obtained such that the phase of every element of x is identical.

II Direct Method
A solution of the desired form is assumed, xrealeiϕ, which comprises a real n-vector xreal and
a real scalar ϕ. Eq 1 is then re-written as in Eq 2.
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(2)

The goal is to minimize the sum of squares of the residual r = b − Axrealeiϕ over xreal and ϕ.
Using separable least squares [2] to isolate the linear terms, the optimal xreal can be obtained
for any ϕ by equating d (rHr)/dxreal to zero. This leads to the expression M xreal =
Re(A Hbe−iϕ), where M ≡ Re(A HA). Taking the pseudoinverse M† yields the minimum
norm least squares solution,

(3)

Note that the rank and condition number of M are not necessarily the same as those of AHA.

The residual may now be expressed as function of ϕ only and it remains to minimize rHr
over ϕ.

(4)

Making use of the identities AHA = M+ i Im(AHA) and M†MM † = M† and dropping
imaginary terms (since rHr is real),

(5)

Equating d(rHr)/dϕ to zero yields the necessary condition for obtaining a minimum.

(6)

Eq 6 can be seen to be the imaginary part of (A Hb)TM†(A Hb)e−2iϕ. For the imaginary part
to be zero, the phase must also be zero which requires

(7)

Thus the least squares solution to the phase constrained problem is x̂realeiϕ̂ with the phase
given by Eq 7 and the real vector given by Eq 3.

III Application to Magnetic Resonance Imaging
In magnetic resonance imaging, methods for separating water and fat signals commonly
exploit the characteristic resonant frequencies of the protons in water and fat molecules
[3-5]. Differences in frequency come about because electron shielding around the functional
groups (-OH, -CH2, -CH3, etc.) causes the protons to experience slightly different magnetic
fields and thus precess at different speeds, typically of a few parts per million of the main
field.
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In an imaging experiment data is typically sampled at three time points to detect changes in
signal. The relevant matrix for this situation is given by Eq 8, taking the sampling times
from Ref [3] and the fat spectrum from Ref [5].

(8)

Simulated data were generated for range of water and fat combinations with water + fat = 1
and phase 0. Gaussian random noise with standard deviation 0.1 was added to the real and
imaginary parts. Estimates were calculated using unconstrained linear least squares and by
phase constrained least squares (Eq 3 and Eq 7). The means and standard deviations were
computed from 106 trials. Table I indicates mean values are identical for both methods but
the standard deviations are up to 41% higher when using the unconstrained method.

IV Conclusion
A direct method has been derived for solving a complex least squares problem with
constrained phase. In application to water/fat separation in magnetic resonance imaging, the
advantage over unconstrained linear least squares is reduced standard deviation in the
estimated variables.
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