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Abstract

DNA methylation plays an important role in biological processes in human health and disease. Recent technological
advances allow unbiased whole-genome DNA methylation (methylome) analysis to be carried out on human cells. Using
whole-genome bisulfite sequencing at 24.7-fold coverage (12.3-fold per strand), we report a comprehensive (92.62%)
methylome and analysis of the unique sequences in human peripheral blood mononuclear cells (PBMC) from the same
Asian individual whose genome was deciphered in the YH project. PBMC constitute an important source for clinical blood
tests world-wide. We found that 68.4% of CpG sites and ,0.2% of non-CpG sites were methylated, demonstrating that non-
CpG cytosine methylation is minor in human PBMC. Analysis of the PBMC methylome revealed a rich epigenomic landscape
for 20 distinct genomic features, including regulatory, protein-coding, non-coding, RNA-coding, and repeat sequences.
Integration of our methylome data with the YH genome sequence enabled a first comprehensive assessment of allele-
specific methylation (ASM) between the two haploid methylomes of any individual and allowed the identification of 599
haploid differentially methylated regions (hDMRs) covering 287 genes. Of these, 76 genes had hDMRs within 2 kb of their
transcriptional start sites of which .80% displayed allele-specific expression (ASE). These data demonstrate that ASM is a
recurrent phenomenon and is highly correlated with ASE in human PBMCs. Together with recently reported similar studies,
our study provides a comprehensive resource for future epigenomic research and confirms new sequencing technology as a
paradigm for large-scale epigenomics studies.
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Introduction

DNA methylation plays a vital role in genome dynamics. In the

human genome, it predominantly occurs at cytosine guanine

dinucleotide (CpG) sites in somatic cells [1] and at non-CpG

cytosines in embryonic stem cells [2] and perhaps other cells as well.

DNA methylation at any of these sites can vary and thus affect many

biological processes that impact on human health and disease [3].

Therefore, detailed knowledge of the of DNA methylation status of

all cytosines (the methylome) is paramount for understanding the

mechanisms and functions underlying DNA methylation.

The emergence of the next-generation sequencing of bisulfite

converted DNA represents an important advance in the field of

DNA methylation analysis [4–6]. This technology has enabled
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human methylome analysis to advance from single chromosomes

[7] to low (100 bp) resolution whole genomes [8] to single-base

resolution whole genomes using bisulfite sequencing [2,9]. For a

comprehensive description of methylome analysis methods, please

refer to the recent review by P. Laird [10].

Using whole-genome bisulfite sequencing, we here report the

methylome analysis of peripheral blood mononuclear cells

(PBMC) from an anonymous male Han Chinese individual

(YanHuang) whose genome was determined in the first Asian

genome project, henceforth referred to as YH [11]. This approach

allowed us to analyse approximately 20 million CpG sites of this

clinically important human methylome for genomic landscape,

allele-specific methylation (ASM), and allele-specific expression

(ASE) in primary cells in a single individual.

Results

Data Generation and Quality Assessment
The methylome reported and analyzed here was generated

from the same sample of peripheral blood mononuclear cells

(PBMCs) from a consented donor whose genome was deciphered

in the YH project [11]. The nuclear DNA was extracted and

subjected to unbiased, whole-genome bisulfite sequencing (BS-seq)

using the Illumina Genome Analyzer (Table S1a) [5,12]. In total,

we generated 103.5 Gbp of paired-end sequence data. Of these,

70.4 Gbp (68%) were successfully aligned to either strand of the

YH genome [11] with an average mismatch rate of 1.3% (Table

S1b), resulting in an average sequencing depth of 12.3-fold per

DNA strand or a 24.7-fold overall depth. Of the 18,962,679 CpGs

present in the unique haploid part (2.21 Gb) of the YH reference

genome sequence, approximately 99.86% were covered by at least

one unambiguously mapped read of quality score .14 on either

strand, and 92.62% were unambiguously covered on both strands

(Figure S1 shows the cumulative distribution of sequencing depth;

see Methods for details). Based on the 24.7-fold overall coverage,

we estimated that about 88.1% of CpGs were covered on both

alleles, but only 6.2% of CpGs could be definitively defined due to

the limited number of nearby SNPs. We therefore only used these

6.2% (or 1.17 million) CpG sites for our allele-specific methylation

analysis. Based on alignment to in silico converted non-CpG

cytosines, the bisulfite conversion rate was determined to be at

least 99.8% even assuming all non-CpG methylcytosines are due

to conversion failure, ensuring reliable ascertainment of CpG

methylcytosines at a false positive rate of ,0.5%. All five libraries

(Table S1a) showed similar conversion rates (99.7% to 99.9%),

and a linear correlation was observed in methylation levels

estimated from different libraries (Figure S2). This demonstrates

high consistency between technical replicates. We also performed

conventional bisulfite Sanger sequencing in randomly selected

regions and found that 100% (50 of 50 tested CpG sites) showed a

consistent methylation level (p.0.01 in chi-square test; Table S8).

The rate of unconverted non-CpG cytosines is a combination of

incomplete conversion and authentic non-CpG methylation,

which indicates very low methylation levels (,0.2%) of non-

CpG cytosines in PBMC. We also used the methylation

ascertainment method based on binomial test and false discovery

rate constraint that was applied by Lister et al. [2] to distinguish

putative non-CpG methylation sites from incomplete bisulfite

conversion and found a comparable (,0.2%) rate of non-CpG

methylation in human PBMC. Non-CpG methylation roughly

followed an exponential distribution where only a few (,1e25)

cytosines had methylation levels of .80% (Figure S3). We used

these findings to exclude non-CpG methylation from subsequent

analyses and estimate the overall specificity of identified

methylcytosines in the PBMC methylome presented here to be

99.5%. We also used computing simulation to estimate the false

negative rate of methylation site discovery. Assuming the

methylation levels of CpG cytosines are similar between hESC

[2] and PBMC, we estimate that about 13% of methylated CpG

sites would be missed, of which a majority would be hypomethyla-

tion (,20%) sites. This indicates the PBMC methylome has a

sensitivity to detect most methylated CpG sites.

Landscape of PBMC Methylome
We carried out a global analysis of the PBMC methylome and

found the overall CpG methylation level to be 68.4%, which is

lower than in H1 human embryonic stem cells (ESC) [2] but is still

considered to be relatively high. Next, we determined the

methylation distribution (Figure 1a) and showed it was less

bimodal (9.27% hypo (,20%) methylated, 28.81% hyper (.80%)

methylated) than has been previously observed (27.4% and 42.4%,

respectively) [7], reflecting less bias of the whole-genome approach

used here. Chromosome-specific effects could be excluded based

on a separate analysis (Figure S4) of the three chromosomes

analysed in the previous study [7]. Most notable was that the

methylation distribution was not significantly affected by our depth

threshold (where 4-fold was the lowest depth; Figure S10). In

support of the conclusions drawn here, these data were consistent

with the previous observation showing the CpG methylation level

to peak at .70% in the human ESC methylome using the same

bisulfite sequencing technology [2]. The whole genome CpG

density showed a negative correlation with previously observed

methylation levels [2,6], while a major decrease was observed

when CpG density rose from 10 to 15 per 200 bp windows.

We next performed a comprehensive analysis of the PBMC

methylome for an additional 20 distinct genomic features

(Figure 1b–u). Although some of these features have been analysed

before [2,6,7,13] (reviewed in [13]), our analyses provided

additional information as well as a more global assessment of

Author Summary

Epigenetic modifications such as addition of methyl
groups to cytosine in DNA play a role in regulating gene
expression. To better understand these processes, knowl-
edge of the methylation status of all cytosine bases in the
genome (the methylome) is required. DNA methylation
can differ between the two gene copies (alleles) in each
cell. Such allele-specific methylation (ASM) can be due to
parental origin of the alleles (imprinting), X chromosome
inactivation in females, and other as yet unknown
mechanisms. This may significantly alter the expression
profile arising from different allele combinations in
different individuals. Using advanced sequencing technol-
ogy, we have determined the methylome of human
peripheral blood mononuclear cells (PBMC). Importantly,
the PBMC were obtained from the same male Han Chinese
individual whose complete genome had previously been
determined. This allowed us, for the first time, to study
genome-wide differences in ASM. Our analysis shows that
ASM in PBMC is higher than can be accounted for by
regions known to undergo parent-of-origin imprinting and
frequently (.80%) correlates with allele-specific expres-
sion (ASE) of the corresponding gene. In addition, our data
reveal a rich landscape of epigenomic variation for 20
genomic features, including regulatory, coding, and non-
coding sequences, and provide a valuable resource for
future studies. Our work further establishes whole-genome
sequencing as an efficient method for methylome analysis.

Human PBMC Methylome
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Figure 1. Landscape of the PBMC methylome. Heat maps show distinct methylation and CpG density patterns for different genomic features.
Each panel represents a separate feature, and n refers to the number of analyzed CpGs (per-strand depth $10) within that feature. CpG density (x-
axis) is defined as the number of CpG dinucleotides in 200 bp windows. Methylation level (y-axis) is defined as the mean methylation level of
cytosines in CpGs. The thin black lines within each heat map denote the median methylation level of CpGs at the given local density. The red gradient
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some of these components. For example, with respect to protein-

coding genes, our data enabled the integration of multiple features

into higher-order structures, such as canonical DNA methylation

profiles across the entire transcriptional units of expressed and

silent genes (Figure 2). Up to 13% difference (p,1e242) in

methylation between highly expressed and silent genes (as

determined by digital gene expression profiling (DGEP) of the

same sample) are clearly visible, as are two discrete switchover

zones, one upstream of the TSS and one in intron 1 that

demarcates the transition from hypo- to hypermethylation in the

inverse relationship between promoter and gene-body methylation

and expression. Also evident is a distinct elevation in methylation

level at internal exons with clear demarcation of intron/exon

boundaries.

To define genes as expressed or silent, we grouped them

according to their DGEP tags, allowing correlation to be assessed

between averaged levels of DNA methylation and gene expression.

However, other factors than DNA methylation can of course affect

expression levels, and future analysis of samples from different

tissues should help to address this issue. Within these limitations,

we observed a clear trend for DNA methylation levels of expressed

genes to decrease at TSS and to increase at gene bodies. This is

consistent with results reported from bisulfite sequencing of human

ESC [2].

For non-coding RNA genes, we found that different gene

families had very different methylation profiles (Figure 1h–j). For

instance, tRNA genes had a significantly (p,1e2343) lower

methylation level than rRNA genes and the genome average. We

further conducted a comprehensive analysis of repeat elements,

which is a particular strength of our unbiased whole-genome BS-

seq approach (Figure 1k–t). Here we found elements that were still

active, such as long terminal repeats (LTRs), LINE/L1, and

SINE/Alu, and had significantly higher methylation levels than

genome average (p,1e2100), displaying hypermethylation even

at high CpG density (.12 CpGs in 200 bp). For instance, we

found that methylation levels in Alu elements negatively correlated

with evolutionary sequence divergence (Figure S5) and thus

negatively correlated with retrotransposon mobility [14]. Loss of

methylation in such transposable elements is known to be

associated with tumorigenesis [15,16], and the above observations

are consistent with DNA methylation playing a role in controlling

retrotransposon mobility by lowering their activities and thereby

stabilizing the genome.

In methylome studies, CpG islands are a special genomic

feature of great interest (Figure 1u). To investigate these, we

performed a canonical analysis of CpG islands and found CpG

density and methylation levels displayed a mirrored pattern

(Figure S11). CpG islands are CpG-rich and generally hypo-

indicates the abundance of CpGs that fall into bins of given methylation levels and CpG densities. The blue bar charts above each heat map show the
distribution of CpG densities, projected onto the x-axis of the heat maps. The green bar charts to the right of the heat maps show the distribution of
methylation levels, projected onto the y-axis of the heat maps.
doi:10.1371/journal.pbio.1000533.g001
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Figure 2. Canonical DNA methylation profiles of expressed and silent genes in PBMC. Expression status was determined by digital gene
expression profiling (DGEP). Genes with $5 DGEP tags were defined as expressed (n = 5,251, color-coded red). Genes with no DGEP tag were defined
as silent (n = 3,912, color-coded blue). The canonical gene structure is defined by 7 different features, denoted by the x-axis. The length of each
feature was normalized and divided into equal numbers of bins. Each dot denotes the mean methylation level per bin and the respective lines denote
the 5-bin moving average. Each feature was analyzed separately for the numbers listed in the table below the figure. The green vertical line indicates
the mean location of the transcription start sites (TSS).
doi:10.1371/journal.pbio.1000533.g002
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methylated, and the shores [17] showed gradual transition of CpG

density and methylation levels between the CpG islands and

genome average.

Co-Methylation
Next, we examined the correlation of methylation level of any

two nearby CpGs and the relationship between spatial distance

(from one CpG to another) and strength of this correlation.

Gaining knowledge of genomic regions or features that are highly

correlated in methylation status is advantageous for developing

efficient designs for genome-wide association studies by enabling

the selection of tag CpGs, analogous to tag SNPs [18]. As has been

previously observed [7], co-methylation deteriorates over distance

and becomes nearly undetectable at distances .1,000 bp (Figure

S6a). The co-methylation observed here was not affected by the

underlying CpG density (Figure S12).

Analysis of CpG cytosines that had the same distance between

them showed that higher methylation levels correlate when they

were located on the same strand than on opposite strands

(p,6e27; Figure S6a). This is presumably due to temporary hemi-

methylation as a result of post-replication lag in methylation

maintenance in proliferating cells. Co-methylation is also mark-

edly different between different genomic features (Figure S6b–t).

For example, the correlation was significantly (p,1e230) higher in

gene- than in repeat-associated features. Using Fourier transfor-

mation, we also tested the methylation correlation for patterns and

found a significant (p,1e24) peak in periodicity of approximately

170 bp (Figure S7). A similar (CHG) methylation pattern was

observed in Arabidopsis [4], which the researchers suggested was

due to a nucleosome positioning effect on co-methylation.

However, no significant periodicity of smaller motifs was observed

in our data.

Tissue-Specific Differentially Methylated Regions
We compared the PBMC methylome to that of fetal lung

fibroblast cells (IMR90) [2,8] to assess potential tissue-specific

differentially methylated regions (tDMR). In total, 240,856.200 bp

independent regions (range 200–3.5 kbp; median size 500 kbp; see

Methods for more details) that had significant differences in

methylation level (.2-fold change, at least in one tissue is not

hypomethylated (,20%) and Fisher test p value ,1e22) were

identified as candidate tDMRs. Of these, 6,197 were located in the

2 kb flanking sequences of transcription start sites (TSSs) of 6,415

genes. GO classification showed that genes associated with PBMC-

specific, hypomethylated tDMR candidates (and confirmed to be

expressed according to DGEP analysis and/or the GEO database

[19]) were significantly (p,1e24) overrepresented in categories that

related to DNA damage checkpoint (Tables S2, S3).

Allele-Specific Methylation
We examined the PBMC methylome to assess allele-specific

methylation (ASM) in the context of genomic imprinting [20] and

allele-specific expression (ASE) [21]. Integration of our methylome

data with the YH haploid genome sequences [11] enabled us to

determine ASM for 1.17 million CpG sites (see above), providing

an unprecedented opportunity to identify a first and comprehen-

sive set of haploid differentially methylated regions (hDMR) in any

human cell type. Using a conservative threshold ($5 CpGs with at

least 2-fold methylation difference and p value ,0.001 in Fisher

test), we identified 599 hDMRs (mean size of 312 bp), which

accounted for 0.61% of all CpGs with biallelic methylation

information or 0.33% of 181,599 regions with bi-allelic sequence

information and $5 CpGs in their 300 bp flanking sequences

(Table S4, see Methods for details). For each of the hDMRs, we

randomly selected genomic CpGs with same sequencing depths to

that of the hDMRs and subjected them to 10,000 bootstrap

iterations to determine how many times the randomly selected

CpGs would show differential methylation as defined above. The

simulation indicated that 4.17% of these hDMRs were stochastic

(showing hDMR signals in .5% of the simulations). As there are

approximately 28 million CpG sites in the human genome and

ASM could be ascertained for 1.14 million sites, we extrapolated

the total number of hDMRs in the YH methylome to be

approximately 10,000. This rate, however, is likely to be an

overestimation because: (1) 300 bp windows with ,5 CpGs may

not have enough statistical power to distinguish ASM and (2)

CpGs in such lower-CpG-density regions are generally hyper-

methylated and statistically less likely (likelihood ratio ,0.133

compared to regions with $5 CpGs in 300 bp windows based on

100,000 simulations on the PBMC methylome) to qualify as ASM

according to the conservative threshold described above (p,0.001,

2-fold methylation level change). Nonetheless, if none of the

300 bp windows with ,5 CpGs were to display ASM, and those

with $5 CpGs were to have the same rate of displaying ASM as

observed in flanking regions with bi-allelic sequence information,

the lower limit of the total number of hDMRs in the YH

methylome would still be expected to be 5,000. Thus, we estimate

that 0.3%–0.6% of the YH genome are subject to ASM.

Annotation analysis revealed that some of these hDMRs were

associated with 287 genes (see Table S5 for full list). Figure 3 shows

an example of such an association (with the gene FANK1), which

displays ASM. FANK1 is a testis-specific gene and has been

proposed to play a role in the transition from the diploid to the

haploid phase during spermatogenesis [22]. In addition, we

investigated the distribution of hDMRs within the YH genome.

This analysis revealed a significant (p,1e2343) tendency for the

hDMRs to cluster, particularly when in proximity to telomeres or

centromeres, which are both hallmarks of imprinting.

To assess the potential of the hDMRs to denote known or

novel imprinted loci, we tested the 599 identified hDMRs for

correlation with known imprinted loci [23]. First, we analysed

the known genomic imprinted space (defined by 40 loci in 15

chromosomal regions [23]) and identified 17 overlaps (Figure 4),

including with well-known imprinted loci such as IGF2, H19,

KCNQ1, GNAS, and others (Figure S8). Reciprocal analysis of

known imprinted loci for which bi-allelic information was

available showed 87.8% ASM, indicating that most of the ASM

regions can be identified by bisulfite sequencing and that the

major limiting factor is a lack of SNPs to differentiate the two

alleles. We therefore estimate that most of the hDMRs are not

attributable to imprinting but to other mechanisms such as

sequence-dependent ASM [24].

Finally, we analysed the possible involvement of ASM (defined

by presence of hDMRs) in epigenetically driven allele-specific

expression (ASE) (reviewed in [21]). For this, we randomly selected

6 of the 76 genes that had one or more hDMR(s) within 2 kb of

their TSS and measured their expression by TA clone sequencing.

Five of the six genes (83%) showed a .1.5-fold difference in

expression level between the two alleles (Table S6), confirming the

inverse relationship between promoter ASM and ASE. As ASM is

definitive for 6.2% of the genome and 76 genes had hDMRs

within 2 kb flanking sequence, we estimated that 600 to 1,200

genes (3%–6%) display ASM, which indicates that up to a quarter

of the 20% of human genes that have been reported to display

ASE [25] may be driven by ASM.

To determine possible biological functions of the 76 genes

displaying ASM, we carried out gene ontology (GO) analysis. Our

results showed that these hDMR-containing genes are significantly
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(p,1e24) overrepresented in function categories related to cell

division and differentiation (see Table S7 for full list of significant

GO categories), such as ‘‘negative regulation of S phase of mitotic

cell cycle,’’ ‘‘mitotic metaphase/anaphase transition,’’ and ‘‘neg-

ative regulation of lymphocyte proliferation.’’ This functional

enrichment pattern was also supported by hDMR-containing non-

coding RNA genes hY3 and hY5 that were reported to be essential

in DNA replication [26], which is an integral part of cell division.

Discussion

In this study, we have generated and analysed the two haploid

methylomes of human peripheral blood mononuclear cells

(PBMC) from an individual whose genome was previously

sequenced. This allowed, for the first time, for assessment of the

level of ASM within a human methylome and extends recent

studies analysing variation between different human methylomes

W
C
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C

’

127573 127574 127575 127576 127577 127578 127579 (Kb)

FANK1
CpG Island

DMRh W
C

W

C ’

’
’

Figure 3. Example of a gene (FANK1) newly identified to display allele-specific methylation (ASM). Tracks 1 and 2 show the position of
exon 1 and the associated CpG island, respectively. Track 3 shows the position of the identified haploid differentially methylated region (hDMR), W
and C denote the forward (Watson) and reverse (Crick) strands of allele 1, and W’ and C’ denote the corresponding strands of allele 2. The DNA
methylation status is color-coded: hypomethylated (yellow) and hypermethylated (blue). The bottom track shows the underlying bisulfite sequencing
data for each CpG in the hDMR. The color code is as above, except for unfilled boxes, which denote the absence of data. The actual methylation level
(shown as yellow:blue ratio) was derived from an average of 14.7 reads per CpG site.
doi:10.1371/journal.pbio.1000533.g003

17:1223 587

Known imprinted genes Haploid DMRs

Figure 4. Venn diagram showing the relationship between haploid differentially methylated regions (hDMRs, red), known
imprinted genes (blue), and their intersections (green). In the intersection, 17 known imprinted genes overlapped with 12 hDMRs in their
genomic space.
doi:10.1371/journal.pbio.1000533.g004
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[2,9]. Compared to what was observed in embryonic stem cells in

these studies, non-CpG methylation in human PBMC was

negligible.

Our results show that ASM is more frequent than can be

accounted for by known imprinted loci [23] and correlates very

well with ASE for genes displaying ASM in their promoter regions.

To further quantify this observation, additional methylomes will

be required to increase the number of parental polymorphisms at

imprinted regions. Nonetheless, our work provides a first proof-of-

concept for the importance of including ASM in methylome

analyses.

In addition, our data revealed a rich landscape of distinct

epigenomic features for regulatory, coding, and non-coding

sequences. Exons, for instance, were clearly discernable from

introns by elevated methylation levels, demarcated by sharp

intron-exon boundaries. This finding confirms and extends a

recent observation that exons can be defined by epigenetic marks

such as nucleosome positioning [13,27]. The nature of our whole-

genome approach enabled us to also analyse features that have

previously been difficult to assess [28] such as repeat elements that

constitute about 50% of the human genome [29]. Mobility of Alu

repeat elements, for instance, was found to negatively correlate

with their methylation levels, emphasizing the critical role of DNA

methylation in genome stability.

In conclusion, we have reported the first comprehensive

methylome analysis at single base-pair resolution for human blood

cells with relevance to basic and clinical research. Our results

demonstrate this methylome to be rich in biological information,

compatible for integration with functional data, and we expected it

to form a lasting resource as part of the International Human

Epigenome Project [30].

Materials and Methods

Data Availability
The PBMC methylome data have been deposited into the

NCBI Gene Expression Omnibus (http://www.ncbi.nlm.nih.gov/

geo/query/acc.cgi?acc = GSE17972). In addition, the PBMC

methylome and other data are available at the YH genome

database (http://yh.genomics.org.cn).

Public Data Used
The YH genome was downloaded from YH database (http://

yh.genomics.org.cn). Gene and repeat annotations were down-

loaded from the UCSC database (http://genome.ucsc.edu/). The

NCBI reference genes with prefix ‘‘NM’’ were mapped to the

reference genome using BLAT by UCSC. Hits with .90%

identity were retained for further analysis and only one transcript

was retained for each gene. Known imprinted genes were

extracted from the content of [23], respectively.

Sample Preparation and Bisulfite Sequencing
Peripheral blood was obtained from the same individual as in

the YH project, and mononuclear cells were separated through

Ficoll-Paque (GE Heatlthcare) gradient centrifugation. The total

DNA was prepared by proteinase K/phenol extraction, and RNA

was extracted from mononuclear cells with RNeasy Mini Kit

(Qiagen) following the manufacturer’s instructions. The DNA was

fragmented by sonication using a Bioruptor (Diagenode, Belgium)

to a mean size of approximately 250 bp, followed by the blunt-

ending, dA addition to 39-end and, finally, adaptor addition (in this

case of methylated adaptors to protect from bisulfite conversion),

essentially according to the manufacturer’s instructions. The

bisulfite conversion of the adaptor-added DNA was carried out

as previously described [31]. Raw GA sequencing data were

processed by Illumina Pipeline v1.3.1.

Validation of the methylated state of selected candidate loci was

performed by sequencing of multiple T-cloned PCR fragments

from the bisulfite converted DNA. The bisulfite treated DNA was

amplified by 18 PCR cycles and used for Solexa sequencing.

Sequence Alignment and Identification of
Methylcytosines

The reads generated by Illumina sequencing were aligned to the

YH genome [11]. As DNA methylation has strand specificity,

separate alignments of 6 Gbp in combined length were generated

for the Watson and Crick strands of the YH genome. All cytosines

in the 6 Gbp target sequence (‘‘original form’’) were replaced in

silico by thymines (‘‘alignment form’’) to allow alignment after

bisulfite conversion. In addition, the original forms of the reads

were also transformed to cope with BS-treatment nucleotide

conversion in the alignment process using the following criteria: (1)

observed cytosines on the forward read of each read pair were in

silico replaced by thymines, and (2) observed guanines on the

reverse read of each read pair were in silico replaced by

adenosines. We then mapped the ‘‘alignment form’’ reads to the

‘‘alignment form’’ target sequence using SOAPaligner [32]. Every

hit with a single placement with minimum number of mismatches

and a clear strand assignment was defined as an unambiguous

alignment and was used in methylcytosine ascertainment.

Ambiguously aligned reads were only used to estimate the

approximate copy number of the local region. Local copy number

of a genomic location was calculated by averaging the hit counts of

all reads that cover a certain genomic location. Genomic bases

with a copy number larger than 1.5 were not used to call

methylcytosines and not used in any subsequent analysis to avoid

errors caused by misalignment. In total, 2.21 Gbp (77.5% of the

whole genome excluding N’s) were of local copy number ,1.5,

which we defined as the ‘‘unique’’ part of genome that contained

all cytosines analyzed in this study.

For methylcytosine identification, we transformed each aligned

read and the two strands of the YH genome back to their original

forms to build an alignment between the original forms. In the

unique part of genome, cytosines that were covered by cytosines

from reads on the same strand or guanines from those on the

opposite strand (hereafter, referred to as ascertainment bases) were

called as potentially methylated sites. To exclude spurious

ascertainment bases that were caused by sequencing errors, we

filtered out all bases with quality scores lower than 14. Increasing

the quality threshold further did not change the non-CpG

methylation rate. The false positive rate of methylcytosine

identification was calculated as:

FP% ~ 1{rð Þ �NCpG=NmCpG � 100%

where r is the conversion rate (proportion of non-CpG cytosines

with Q14 ascertainment bases), NCpG is the total number of CpG

cytosines, and NmCpG is the total number of ascertained

methylated CpG cytosines. As non-CpG methylation may occur,

though at a very low level, the false positive rate is an

overestimation.

Estimation of Methylation Level
Sequencing errors could affect the ascertainment of methylation;

therefore, we used the non-CpG methylation level as an indicator of

errors. Overall methylation level of non-CpG sites becomes stable

when quality .14 (Figure S9), which means the estimate is reliable
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above such a threshold. To eliminate the effect of low quality bases

when estimating the methylation level of a specific genomic CpG

cytosine, we divided the number of ascertainment bases by the

number of total Q14-covering bases of that genomic location. To

estimate the methylation level of a single base accurately, we only

used CpG cytosines with a per-strand depth of more than 4 in the

analysis of distribution of single CpG methylation levels, as for

Figure 1 in the main text. Distribution of methylation level on CpG

sites with 46 to 106 coverage, between which there was at

minimum a consistent 106 coverage, indicated that the depth

requirement was reasonable at even 46coverage and could provide

5 different results (Figure S10).

For estimating the methylation level in a specific region, we

divided the number of all ascertaining bases in the region by the

number of all Q14 bases covering CpG cytosines in that region.

Identification of Potential Tissue-Specific Differentially
Methylated Regions (tDMR)

Putative tDMRs were identified by comparison of the PBMC

and fetal lung fibroblast cell (IMR90) [2] methylomes using

windows that contained at least 5 CpG sites with a 2-fold change

in methylation level and Fisher test p value ,1e220. In addition,

we require that both tissues should not be hypomethylated in

tDMR discovery. Two nearby tDMRs would be considered

interdependent and joined into one continuous tDMR if the

genomic region from the start of an upstream tDMR to the end of

a downstream tDMR also had 2-fold methylation level differences

between sperm and PBMC with a p value ,1e220. Otherwise,

the two tDMRs were viewed as independent. After iteratively

merging interdependent tDMRs, the final dataset of tDMRs was

made up of those that were independent from each other.

Identification of Haploid Differentially Methylated
Regions (hDMR)

We checked single-end and paired-end reads that were aligned

across heterozygotes identified from the YH genome [11] to assign

them to specific alleles. We calculated the methylation level of

CpGs in SNP-allele containing reads that were assigned to an

allele, and the number of methylcytosines and cytosines in the

reads from each allele were subjected to Fisher test. Regions with

at least 5 genomic CpGs, 2-fold change in methylation level, and a

p value ,0.001 were defined as hDMRs. Two hDMRs were

joined if the phasing relationship could be validated by haplotype

analysis of the corresponding YH sequence data or by reads

spanning two heterozygotes.
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Figure S10 Methylation level distribution at CpG sites
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Figure S12 Co-methylation pattern of CpGs with local
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lome study.
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methylated genes.
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Table S5 Genes with hDMRs.
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Table S6 Validation of expression level of both alleles
for genes displaying allele-specific methylation.
Found at: doi:10.1371/journal.pbio.1000533.s018 (0.01 MB PDF)

Table S7 GO classification of allele-specific methylated
genes.
Found at: doi:10.1371/journal.pbio.1000533.s019 (0.06 MB PDF)

Table S8 Validation of methylation level of CpG by
Sanger sequencing.
Found at: doi:10.1371/journal.pbio.1000533.s020 (0.03 MB PDF)
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