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Abstract
Objective—An automated cognitive neurophysiological test is presented that characterizes how
an individual was affected by a drug or treatment. The test calculates sub-scores for working
memory task performance, cortical activation, and alertness, and combines the sub-scores into an
overall score.

Methods—The test was applied in a double-blind, placebo-controlled study of alcohol, caffeine,
diphenhydramine, and sleep deprivation in 16 healthy adults.

Results—The between- and within-day variability of the sub-scores and overall scores for
placebo were all near zero, suggesting that the scores are stable. All treatments affected the overall
score, while differential effects on sub-scores highlighted the added value of EEG measures.

Conclusions—The test is sensitive to relatively mild alterations in cognitive function. Its
automation makes it suitable for use in large-scale clinical trials.

Significance—By combining task performance with EEG brain function measures, the test may
prove to have better sensitivity and specificity in detecting changes due to drugs or other
treatments than comparable neuropsychological test batteries that do not directly measure brain
function signals.
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1. Introduction
Cognitive brain function is affected by many diseases, by the intended and unintended
effects of treatment medications, and by a variety of stressors such as disturbed sleep. There
are many batteries for assessing cognition based on performance on tests of cognitive
function and rating scales. However, behavior is the end product of many neural systems,
some of which may be recruited or adapted in some way to compensate for deficits. For
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instance, a motivated impaired person may make a greater effort and not show signs of
impairment, and a person who is simply drowsy may have a poor cognitive test score but not
have a disease affecting cognitive brain function per se. Tests that do not directly measure
brain function signals have difficulty accounting for factors such as motivation and
alertness, and therefore have limited sensitivity and specificity.

The lack of a clinical standard for testing cognitive brain function has been cited as a major
confounding factor in the discrepancies between the results of different clinical trials
(Vermeulen and Aldenkamp, 1995). Standardized neurologically based tests of an
individual’s cognitive brain function have the potential to make such evaluations more
sensitive and efficient, and could be helpful to researchers, clinicians, and patients. Towards
this goal, we present an automated cognitive neurophysiological test, the Sustained Working
Memory Test (SWMT) that combines cognitive test performance measures with EEG
measures. The multivariate analysis combines task response accuracy and speed measures
with task-related and resting EEG measures to arrive at an assessment of how an
experimental drug or stressor, or a disease and its treatment, has changed an individual’s
neurocognitive functional status. This paper focuses on the initial version of the SWMT that
assesses treatment-related changes relative to an individual’s placebo or pre-treatment
baseline test.

1.1. Working memory, EEG and the scientific basis of the SWMT
Working memory (WM) is the fundamental cognitive function of controlling attention and
actively sustaining its focus on a particular mental representation (Baddeley, 1992; Engle et
al., 1999). It is essential for reasoning, planning, learning, and other higher cognitive
functions, and is highly correlated with performance on psychometric tests of cognitive
ability such as IQ tests (Carpenter et al., 1990; Gevins and Smith, 2000; Kyllonen and
Christal, 1990).

Research on the neurophysiological signals of WM often employs “n-back” tasks in which
participants respond to simple stimuli presented at different locations on a computer monitor
once every few seconds (Gevins and Cutillo, 1993; Gevins et al., 1990). The load imposed
on WM is varied across easy and more difficult versions, while perceptual and motor
demands are kept constant (Gevins et al., 1979 b; Gevins et al., 1980). A spatial n-back WM
task is used in the SWMT to minimize language-dependent cultural bias in the testing. In the
easier 1-back task, participants have to decide whether the location of the current stimulus (a
dot) is the same as on the previous trial (1-back); in the more difficult 2-back task, the
current location of the dot has to be compared with the remembered position of the dot two
trials ago in a continuous block of 50 trials. This requires constant updating of the
information to be remembered on each trial, as well as focused attention to new stimuli and
maintenance of representations of recently presented stimuli. To be successful when WM
demands are high, as in the 2-back task, participants typically must make a significant and
continuous mental effort. In this regard, the easier version of the task serves as a control
condition.

Functional neuroimaging studies reliably demonstrate that n-back WM tasks activate
circuitry in the frontal lobes critical to the control of attention and the maintenance of
representations in WM (Cohen et al., 1994; Jansma et al., 2000; Jonides et al., 1993;
McCarthy et al., 1994), and that the magnitude and extent of this activation is directly
related to increasing load in n-back tasks (Braver et al., 1997). The discriminant validity of
the n-back task as a measure of concentration is illustrated by the task impairment exhibited
by groups with deficits suggesting impaired frontal lobe function, including patients with
schizophrenia and children with head injury or ADHD (McCallister et al., 2001; Perlstein et
al., 2003; Shallice et al., 2002). Abnormalities in frontal lobe activation during n-back task
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performance in such groups have been noted even in cases where performance measures
were insensitive (Callicott et al., 2003; McCallister et al., 2001). Such findings provide a
strong rationale to use such tasks to gauge executive dysfunction and its neural correlates.

The spectral characteristics of the EEG display regular patterns of difficulty-related
modulation during n-back task performance (Gevins et al., 1997). Fig. 1 illustrates regional
differences in EEG in response to manipulations of WM load on spectral power (left) and
high-resolution topographic maps of spectral peaks (right). At the frontal midline site, power
in a 5–7Hz (theta) band is increased during the high load task. This “frontal-midline theta”
signal is known to increase in difficult, attention demanding tasks requiring a sustained
focus of concentration (Miyata et al., 1990). Topographic analyses and source modeling
(Ishii et al., 1999) point to the anterior cingulate cortex as the likely origin of this signal.
This region plays an important role in attention control (Posner and Rothbart, 1992), and
activation in this region is known to increase with task difficulty (Paus et al., 1998). The
attenuation of signals in the 8–13 Hz (alpha) band in the high relative to the low load n-back
WM task has been observed in numerous studies (e.g. Gundel and Wilson, 1992), suggesting
that the magnitude of alpha activity is inversely proportional to the quantity of cortical
neurons recruited into a transient functional network for purposes of task performance
(Mulholland, 1995; Pfurtscheller and Klimesch, 1992). Convergent evidence is also
provided by observations of a negative correlation between alpha power and regional brain
activation as measured with PET (Larson et al., 1998; Sadato et al., 1998) or fMRI
(Goldman et al., 2002).

The EEG and, to a somewhat lesser extent, the performance measures during n-back tasks
are highly reliable (Salinsky et al., 1991). In one study (McEvoy et al., 2000), average test-
retest reliabilities were greater than .9 for EEG spectral features between two n-back task
sessions one week apart (p<.001), and .86 for response speed (p<.001) and .47 for response
accuracy (p<.05; the relatively low reliability observed for accuracy was due to a ceiling
effect). Multivariate combinations of such EEG variables can identify specific cognitive
states in individual participants accurately and reliably (Gevins et al., 1979 a; Gevins et al.,
1979 c). For instance, multivariate EEG-based functions trained on one set of WM data and
then cross-validated on new data correctly identified high vs. low load conditions with over
95% accuracy (p<.001, Gevins et al., 1998). Such results illustrate that EEG measures can
reliably recognize different levels of task-related attention engagement.

A number of studies have reported how EEG signals during the n-back WM task are
affected by fatigue and sleep loss (Smith et al., 2002), by medications that affect cognition
and alertness (Gevins et al., 2002; McEvoy et al., 2001), and by recreational drugs including
alcohol and marijuana (Ilan and Gevins, 2001; Ilan et al., 2004). Using a variety of analysis
methods, detection of the effect of a drug or sleep loss was consistently most accurate when
EEG measures were combined with task performance measures. For instance, sensitivity
was 96% and specificity 100% in distinguishing the relatively strong neurocognitive effects
of a widely prescribed anti-epileptic drug (carbamazepine) from those of a newer drug
(levetiracetam) with milder side effects using EEG and task performance measures, but
sensitivity and specificity were only 75% and 75%, respectively, using measures from
conventional neuropsychological tests and subjective questionnaires (Meador et al., 2007).

The SWMT therefore combines EEG and n-back task performance measures to quantify
how a treatment has affected cognitive brain function. The reliability of the SWMT scores is
illustrated here by computing between-day and within-day variability in a large sample of
healthy adults who performed the test multiple times without an active drug or other
treatment. As an example of the application of the SWMT, these no-treatment variability
values are then used to assess the significance of the effects of caffeine, alcohol, the
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antihistamine diphenhydramine, and sleep deprivation. Based on the well-known effects of
these drugs and sleep loss on cognition and brain function, the SWMT scores would be
expected to show negative effects of alcohol, diphenhydramine, and sleep deprivation, and
positive effects of caffeine.

2. Methods
2.1. EEG recording

EEG signals were recorded during task and resting conditions with a stretchable nylon cap
with electrodes over bilateral and midline dorsolateral prefrontal locations (F9, F10, Fp1,
Fp2, FpZ, F3, F4, Fz), midline sensorimotor cortex (Cz), lateral superior parietal cortex (P3,
P4) and midline parieto-occipital cortex (POz), referenced to digitally linked mastoids.
These locations were selected for their sensitivity to variations in working memory load on
the basis of cognitive EEG studies with 40 or 100 electrodes (e.g. Gevins et al., 1996;
Gevins et al, 1997). Vertical and horizontal eye movements were monitored by the
electrodes above and at the outer canthus of each eye. Signals were sampled at 256 Hz and
band-pass filtered from 0.1 to 35 Hz.

2.2. Cognitive testing
EEG was recorded during a test battery consisting of easier and more difficult versions of a
spatial n-back WM task. In the WM task a dot stimulus was displayed for 200 ms in one of 6
positions on each trial with a mean inter-stimulus interval of 4 sec (range 3500 – 4500 ms).
In the easier (low-load) version of the task, participants had to decide whether the spatial
location of the dot on each trial matched the location of the dot on the immediately
preceding trial. In the more difficult (high-load) version, each dot was compared to the dot
that appeared two trials before. Participants responded “match” or “no-match” on each trial
with the left and right mouse buttons, respectively. Participants received sufficient practice
to stabilize performance prior to the first testing session (150 trials of the easier and 200
trials of the more difficult WM task). For the actual test, approximately 3.5 minute blocks of
50 trials each (25 match and 25 no-match, randomly ordered) were presented for the low-
load and for the high-load tasks. Resting EEG was then recorded for 90 sec each in eyes-
open and eyes-closed conditions.

2.3 Data analysis
Following each test, data were uploaded over the internet to a central data analysis server.
There, automated algorithms removed artifact contaminated data, computed parameters from
the task performance data and background EEG spectra, computed multivariate functions
combining the parameters, and reported and stored intermediate and final results.

2.3.1. Artifact decontamination—Fourth-generation algorithms detected a variety of
different types of artifacts including eye movements and blinks, scalp muscle activity, head
and body movements and bad electrode contacts. In a formal evaluation of performance on a
database of ~40,000 artifacts, the algorithms detected 98.3% of the artifacts with a false
detection rate of 2.9%, whereas the consensus of 3 expert human judges found 96.5% of the
artifacts with a 1.7% false detection rate. After artifacts were detected, adaptive filters with
and without noise reference signals (Du et al., 1994) were applied to remove the
contaminants when possible. All raw and decontaminated data and EEG spectra were
visually inspected following the automated decontamination.

2.3.2. Combined EEG and cognitive task performance analysis—For
convenience, an overall score that combined task performance and two EEG sub-scores was
computed to indicate how the participant’s state changed from baseline, where baseline
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consisted of one or more tests administered to the participant prior to treatment or during a
placebo condition. Statistical significance was determined by comparing an individual’s
score to the distribution of scores from a population of participants tested on multiple
occasions in the absence of any treatment.

The overall score was computed as the mean of three sub-scores, one based on WM task
performance measures (performance sub-score) and the other two on EEG (cortical
activation and alertness sub-scores). Like the overall score, each of these sub-scores
indicated whether the participant scored lower or higher relative to his or her baseline, using
standard deviation units. The performance sub-score quantified the speed and accuracy of
the responses made in the WM tasks. The cortical activation sub-score measured the neural
workload, and by inference the attentional effort, exerted to produce the observed level of
WM task performance. The alertness sub-score provided a neurophysiological measure of
how alert a participant was when resting and not challenged with a cognitive task. It was
included in the overall score to quantify the influence of drowsiness, a common effect of
many medications and disorders. Consideration of the three sub-scores provided insight into
these different aspects of cognitive performance and brain function.

Combining the sub-scores into a single score provided a convenient overall assessment of
change in a participant’s state from baseline. However, the three sub-scores could not
merely be averaged together since there is no one-to-one relationship between measures of
brain function and task performance and a particular behavior can be produced by the brain
in a variety of different ways. For instance, a person may produce relatively poor
performance on a particular task because of brain disease, or a low level of effort due to
drowsiness, lack of motivation, etc. Therefore, algorithmically combining task performance
and brain function measures into an overall score necessitated use of expert knowledge of
contextual interpretation of changes in both types of measures taken together. For the
SWMT, three simple rules were applied to the signs of the sub-scores so that the overall
score more accurately reflected a positive or negative change in the participant’s
neurocognitive state from baseline. One rule addressed dissociation between performance
and alertness sub-scores and two others addressed dissociation between performance and
cortical activation sub-scores. For the alertness rule, if WM performance decreased from
baseline while alertness increased, the sign of the alertness sub-score was inverted before
being averaged into the overall score, the rationale being that increased alertness was not
helpful to overall neurocognitive status if performance was worse. For cortical activation, if
performance increased from baseline while cortical activation decreased, the sign of the
cortical activation sub-score was inverted before being averaged into the overall score, the
rationale being that less cortical activation in the presence of better performance reflected
less effort required to perform the task better and hence improved overall neurocognitive
status. Conversely, if cortical activation increased from baseline while performance
decreased, then the sign of the cortical activation sub-score was inverted before being
averaged into the overall score. The rationale was that more cortical activation with worse
performance reflected a neurocognitive state in which the patient was trying harder but
performing worse.

Each sub-score itself consisted of a combination of several individual variables. The
difference in each raw variable between the participant’s current test and baseline test was
calculated. The resulting “change score” was then divided by a normative standard deviation
of that change score. These normative standard deviations of change scores were calculated
from a large database of participants who had performed the SWMT multiple times without
a drug or other intervention, and provide an approximation of how much a particular
variable can be expected to vary from baseline to follow-up test in the absence of an active
intervention. Dividing a participant’s change score by a normative standard deviation puts
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all the individual measures on a comparable scale — standard deviation units — before they
are combined with other measures into sub-scores and an Overall score. Although the
individual raw variables are measured in different units (e.g. percent correct, milliseconds,
decibels, etc.) transforming each variable into standard deviation units before combining
them makes the resulting sub-scores and overall score scale-independent.

The performance sub-score indicated how well the participant performed the easier and
more difficult WM tasks relative to that participant’s baseline. It was computed as the
difference between the current test and the baseline test in measures of performance
accuracy (percent correct) and mean and standard deviation of reaction time (milliseconds).
Because the difficult version of the task places higher demands on focused attention and
working memory (Gevins et al., 1997), it was given more emphasis in the sub-score. To
summarize the performance on the WM tasks succinctly, we compacted these key variables
into three measures, one reflecting performance (accuracy and reaction time) in the low load
WM task, and two reflecting performance in the high load WM task (one accuracy, the other
reaction time). When the mean of these three measures was used as the performance sub-
score, the high load WM task thus received twice the weight of the low load WM task.
During test development using a variety of data sets, these measures were reliable and
sensitive to factors known to affect WM; different variables may prove to be more suitable
measures of WM performance in other studies.

The cortical activation sub-score reflected the difference between the current test and the
baseline in the divergence (see below) between EEG power spectral variables, in decibels,
measured during the easier vs. the more difficult WM task, i.e., the difference in EEG
measures in the degree to which large cortical neuronal populations were recruited to
perform the more difficult version of the WM task relative to the easier task (Gevins et al.,
1997; Gevins and Smith, 2008). A positive cortical activation score indicated a larger
neuronal population mediating performance of the more difficult task relative to baseline,
whereas a negative cortical activation score indicated a smaller neuronal population
recruited for difficult task performance relative to baseline. First, within each 2-sec window
over the task performance interval, EEG power was computed across theta, alpha, and beta
frequency bands (Gevins et al., 1997) for three frontal and three parietal channels. Then, for
the frontal and parietal regions separately, a multivariate divergence analysis selected the
subset of four EEG power variables that, in combination, yielded the greatest differentiation
of the easy from the more difficult WM task. Multivariate divergence analysis (Smith et al.,
2001) is a type of discriminant analysis that performs an exhaustive search over all possible
subsets of variables from a set of candidate variables to find the particular subset that
maximizes the multivariate distance between two sets of data, in this case EEG power
spectral measures from the easy vs. the more difficult WM tasks. The specific subset of EEG
variables was chosen in this way for each participant, and the cortical activation sub-score
was the mean of the resulting frontal and parietal divergence measures. Only variables
known a priori to be most sensitive to task-load modulation and less influenced by
drowsiness or drug effects were considered (Fig. 1). For instance, alpha band power was
only selected for an individual participant if power was larger in the easier WM task for that
individual, and frontal theta measures were only selected if power was larger in the more
difficult WM task (Gevins et al., 1997).

The alertness sub-score was a neurophysiological measure that indicated how the
participant’s alertness during the current test session differed from the baseline test session.
It used EEG variables recorded while the participant was resting and not challenged with the
WM tasks because such cognitive tasks are activating, and their concurrently recorded EEG
measures reflect factors other than alertness. The alertness sub-score was computed as the
mean of three well-established neurophysiological markers of alertness (Davis et al., 1937;
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Makeig and Jung, 1995; Matousek and Petersen, 1983; Oken and Salinsky, 1992): a ratio of
alpha band power between eyes closed and eyes open resting tasks, slow horizontal eye
movement activity during the resting task, and resting low frequency EEG power (measured
in decibels).

3. Results
3.1. Normal variability of test scores in the absence of a treatment

The variability of the overall score and the 3 sub-scores in the absence of a drug or other
experimental treatment was computed for 127 healthy adults (mean age 34 years, range 18–
70) who were tested in seven studies with drug and sleep deprivation interventions (Gevins
et al., in preparation; Gevins et al., 2002; Ilan et al., 2005; McEvoy et al., 2001; Meador et
al., 2007; Smith et al., 2002; Smith et al., 2006). The experiments were conducted according
to protocols approved by an NIH-registered Institutional Review Board and were in
compliance with the Helsinki Declaration. All studies with drugs were double-blind,
randomized, crossover experiments. The number of test days varied from 2 to 6 across
studies and the number of times the SWMT was administered on a test day also varied from
2 to 6, providing a representative sample for computing variability of the test in the absence
of a treatment.

Table 1a shows the mean, standard deviation and confidence interval of the overall score
and the 3 sub-scores across test sessions in which no treatment was administered, relative to
each participant’s first test. The between-day variability was computed for 279 tests from
127 participants based on the first test session on subsequent test days relative to the first
test session on a participant’s initial test day. Subsequent test days followed the initial test
day by 1 week to 6 months. (Only the initial test session of each day was used because drugs
were administered during some subsequent sessions.) The within-day variability was
computed for 362 tests from 118 of the 127 healthy adults who participated in the 6 studies
in which the test was performed multiple times throughout a test day without a treatment.
(There were fewer tests for the Alertness sub-score because one of the studies did not have
applicable data.) The within-day variability was based on all follow-up tests relative to the
first test on a participant’s initial testing day. The total variability includes follow-up
sessions with no intervention that occurred on a later day or any time on the same day as the
initial session. Between-day, within-day and total variability of the overall score and three
sub-scores were all close to zero, with standard deviations all below 1.

Table 1b shows the mean, standard deviation and confidence interval of between-day and
within-day variability of the overall score for each of the seven studies comprising the data
shown in Table 1a. The variabilities in each of the studies were also close to zero with
standard deviations below 1. Similar results were found for the three sub-scores in each of
the seven studies.

3.2. Test scores for four treatments that affected attention and alertness
Sixteen healthy adults participated in a randomized, double-blind, placebo-controlled cross-
over study with multiple drug treatments as well as an overnight sleep deprivation session
(Gevins et al., 2002; Smith et al., 2002). Test sessions were separated by at least one week.
Each session involved a baseline recording prior to administration of a study drug and two
placebo drugs. In different sessions, the active study drug was: 1) alcohol, a 500 cc drink
containing 0.88g/kg of 95% ethanol mixed in fruit juice, sufficient to raise blood/breath
alcohol concentration (BBAC) to 0.08; 2) 200 mg of caffeine, equivalent to approximately 2
cups of coffee; or 3) 50mg of diphenhydramine, an antihistamine that commonly induces
drowsiness. Placebo pills were capsules of powdered sugar; the placebo drink contained 495
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cc of fruit juice with 5cc of ethanol floated on top to mimic the taste and smell of the active
alcohol treatment. The sleep deprivation treatment consisted of staying up all night
performing the SWMT and other tasks at regular intervals. Table 2 presents the overall and
sub-scores at the time of peak effect in these four conditions (as well as at equivalent points
in the placebo session), which was 1.5 hrs after drug ingestion in the cases of caffeine and
alcohol, 2.5 hrs after drug ingestion in the case of diphenhydramine, and at 5 a.m. during the
overnight sleep deprivation session (with 11 p.m. for comparison). Post-caffeine, alcohol,
diphenhydramine, and placebo scores were computed relative to the pre-drug baseline test
performed on the same day. The sleep deprivation session scores were computed relative to
an average of four pre-drug afternoon tests that same participant performed on different test
days.

The overall score was sensitive to the effects of all three drugs and sleep loss. Caffeine
increased the overall score (p<.01), whereas diphenhydramine (p<.001), sleep loss (p<.001),
and alcohol (p<.05) decreased it. The performance sub-score was diminished by
diphenhydramine (p<.001; accuracy decreased and reaction time increased in both WM
tasks) and sleep loss (p<.001; accuracy decreased and reaction time increased in both WM
tasks), but was not affected by caffeine (slight increases in accuracy and decreases in
reaction time in both WM tasks were not significant) or alcohol (although there was an
interaction with task difficulty, p<.05, as reaction time decreased in the high load but not the
low load WM task). The cortical activation sub-score was not affected by any of the four
conditions, suggesting that participants continued to make an effort to perform the tasks. The
alertness sub-score was affected by all four conditions, increasing after caffeine (p<.01), and
decreasing after diphenhydramine (p<.001), sleep loss (p<.01), and alcohol (p<.05). The
effects of caffeine and alcohol on EEG power spectra are illustrated in Fig. 2. By contrast,
the overall score and sub-scores were not affected by placebo or during the 11 p.m. interval
that preceded staying up all night.

4. Discussion
An efficient neurological test of mental acuity that directly measures brain signals of
fundamental cognitive functions such as attention and memory could be helpful to
researchers, clinicians, and patients alike. Without such an objective measure, assessing
treatment of disorders that affect thinking is necessarily imprecise, as a physician can only
roughly gauge whether a patient’s cognitive brain function is deteriorating or improving
with treatment. Here we present a test that is a first step towards addressing this need, and
illustrate its use in measuring the effects of several drugs and sleep deprivation.

The Sustained Working Memory Test combines cognitive test performance with
simultaneously recorded EEG measures to provide an overall score and three sub-scores
which characterize how a treatment affected an individual’s cognitive brain function. The
between-day, within-day, and total variabilities of the overall score and sub-scores in the
absence of a treatment (based on 641 tests administered to 127 healthy adults in seven
studies) were all close to zero with standard deviations below one, suggesting that the scores
are stable. The measures that comprise the scores are themselves reliable, with EEG power
spectra retest reliabilities exceeding .9 (McEvoy et al., 2000). The sensitivity of the test to
treatments affecting alertness and working memory was assessed in a study in which 16
healthy adults were tested before and after taking caffeine, diphenhydramine, and alcohol, as
well as before and during an overnight sleep deprivation session. The overall score was
significantly altered by all four treatments, with diphenhydramine and sleep deprivation
having the largest negative impact and caffeine the largest positive effect. By contrast
neither placebo nor being tested at 11 p.m. had an effect on the overall score or sub-scores.
The overall score was more sensitive than the sub-scores by themselves. The sub-scores
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were differentially affected by the treatments: 1) the task performance sub-score was only
affected by diphenhydramine and sleep loss; 2) the EEG-based alertness sub-score was
affected by all four treatments; and 3) the EEG-based cortical activation sub-score was not
affected by any of the treatments, suggesting that participants continued to make about the
same degree of effort to perform the tasks across treatments. In applying the SWMT to a
new study, estimates of the variability of the scores and sub-scores would be based upon the
study particulars and would not necessarily include a heterogeneous mix of experiments and
test intervals. Likewise, in future studies, different task performance measures, EEG
variables or cognitive tasks may be more effective than the ones reported herein.

The SWMT can be administered by an entry level assistant in under an hour. Automated
data analysis is centralized for uniform quality assurance auditing and to facilitate remote
examination of raw and processed data in accordance with the American Academy of
Neurology and the American Clinical Neurophysiology Society’s transparency guidelines
for quantitative EEG analysis (Nuwer, 1997). This automation and uniform centralized
analysis make the SWMT suitable for large scale clinical trials. The largest trial to date to
employ the test is the NIH Apnea Positive Pressure Long-Term Efficacy Study, a
randomized, double-blinded, sham-controlled, multicenter, long-term clinical trial to
determine whether Continuous Positive Airway Pressure therapy for treatment of obstructive
sleep apnea improves neurocognitive function and quality of life (NHLBI --
5U01HL068060, Kushida et al., 2006). The SWMT is the primary outcome measure of
executive frontal-lobe function for the trial.

The SWMT may be among the first of a new generation of tests under development.
Although these new tests will not be a substitute for a comprehensive neuropsychological
examination, the hope is that by combining cognitive task performance with
neurophysiological brain function measures, such tests may detect the effects of diseases and
their treatments efficiently and with high sensitivity and specificity.
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Fig. 1.
As the working memory task gets more difficult, EEG frontal theta power increases and
parietal alpha power decreases. (Left): 4–14Hz EEG power at frontal (Fz) and parietal (Pz)
midline sites measured during an easier (low load -- light line) and more difficult (high load
-- dark line) n-back WM task from 80 participants (adapted from Gevins and Smith, 2000).
(Right): 120-electrode WM task EEG images for a single participant, mapped onto a cortical
model derived from the participant’s MRI (adapted from Gevins et al., 1996). Although such
dense electrode arrays improve topographic mapping, practical cognitive neuromonitoring
can be accomplished with far fewer electrodes.
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Fig. 2.
EEG power spectra from the midline parietal-occipital electrode recorded from 16 healthy
adults in resting eyes closed (left) and eyes open (right) conditions, 1.5 hours after
administration of alcohol (dotted line), placebo (dark solid line), or caffeine (light solid
line). Across both resting conditions, low frequency EEG power in the delta-theta band was
larger after alcohol but smaller after caffeine. The ratio of alpha power in the eyes-closed to
eyes-open conditions was smaller after alcohol but larger after caffeine. Such changes
contributed to the alertness sub-score decreasing after alcohol (p<.05) but increasing after
caffeine (p<.01).
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