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Abstract

The purpose of this study was to examine the interplay between basic numerical cognition and
domain-general abilities (such as working memory) in explaining school mathematics learning. First
graders (n=280; 5.77 years) were assessed on 2 types of basic numerical cognition, 8 domain-general
abilities, procedural calculations (PCs), and word problems (WPs) in fall and then reassessed on PCs
and WPs in spring. Development was indexed via latent change scores, and the interplay between
numerical and domain-general abilities was analyzed via multiple regression. Results suggest that
the development of different types of formal school mathematics depends on different constellations
of numerical versus general cognitive abilities. When controlling for 8 domain-general abilities, both
aspects of basic numerical cognition were uniquely predictive of PC and WP development. Yet, for
PC development, the additional amount of variance explained by the set of domain-general abilities
was not significant, and only counting span was uniquely predictive. By contrast, for WP
development, the set of domain- general abilities did provide additional explanatory value,
accounting for about the same amount of variance as the basic numerical cognition variables.
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Language, attentive behavior, nonverbal problem solving, and listening span were uniquely
predictive.
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mathematics development; procedural calculations; word problems; basic numerical cognition;
domain-general abilities

Achieving mathematics competence in its many forms during the elementary school years
provides the foundation for learning algebra and other higher forms of mathematics and
eventually for success in the labor market and a society that increasingly depends on
quantitative skills (National Mathematics Advisory Panel, 2008). Yet, the cognitive
mechanisms that support learning of formal mathematics during elementary school are not well
understood: specifically, the relative contributions of children’s basic numerical cognition that
emerges without formal schooling (e.g., competence in number, counting, and simple
arithmetic) as contrasted with their general cognitive abilities, such as working memory (Geary,
2006; Halberda, Mazzocco, & Feigenson, 2008; Spelke, 2000; Swanson, 1993). We examined
the relative contributions of two forms of basic numerical cognition tasks, which rely at least
in part on children’s informal quantitative competencies, versus eight domain-general abilities
to support first graders’ learning of two aspects of formal school mathematics: procedural
calculations and word problems.

Theoretical Context

It has been widely documented that individual differences in children’s academic performance
can be predicted by mechanisms that influence the rate and depth of learning across many
domains. These domain-general mechanisms include, for example, working memory, general
fluid intelligence, and speed of information processing (e.g., Ackerman, 1988; Lubinski,
2000; Walberg, 1984). Behavioral genetic studies also identify a core of genes that contributes
to learning in both reading and mathematics (Plomin & Kovas, 2005). At the same time,
cognitive and behavioral genetics studies reveal important domain-specific competencies that
facilitate reading and mathematics learning above and beyond the influence of domain-general
mechanisms. For example, young children’s basic pre-reading competencies, such as phonemic
awareness and letter naming, predict later reading achievement (Gutman, Sameroff, & Cole,
2003; Stevenson, Parker, Wilkinson, Hegion, & Fish, 1976). Typically achieving children’s
general cognitive abilities and domain-specific ones interact in the construction of complex
academic competencies, such as fluent reading (Ferrer, Shaywitz, Holahan, Marchione, &
Shaywitz, 2010).

Although much is now known about the basic pre-reading competencies that influence ease of
learning to read in school, considerably less is known about the informal quantitative
competencies that influence ease of learning mathematics in school. Prominent among the
proposed informal quantitative competencies are potentially inherent number and magnitude
systems that enable the exact representation of quantities of 3 to 4 items and the approximate
representation of larger numerical values (Butterworth, 1999; Butterworth, 2005; Dehaene,
1997; Feigenson, Dehaene, & Spelke, 2004; Geary, 2007). von Aster and Shalev (2007)
proposed that these number representational systems are the foundation for early aspects of
school mathematics learning. Children are hypothesized to map counting words and Arabic
numerals onto these representations, and the combination supports the later learning of more
complex mathematical competencies, including the base-10 number system and the
mathematical number line. The process of moving from inherent representational systems to
the mathematical number is dependent on domain-general abilities, such as fluid intelligence
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and working memory (Geary, Hoard, Nugent, & Byrd-Craven, 2008). As von Aster and Shalev
note, however, the developmental course and the contribution of these factors are yet to be
clarified.

Interplay between Basic Numerical Cognition, Domain-General Abilities, and
Mathematics Learning

Studies on the interplay between children’s basic numerical cognition and domain-general
abilities in determining formal school mathematics learning incorporate different types of basic
numerical competence tasks, domain-general ability measures, and mathematics achievement
outcomes, with varying results. They do not allow for firm conclusions about the relative
importance of each domain of competence or determination of whether their relative
contributions vary for different forms of formal mathematics learning.

Evidence for the importance of a domain-specific numerical ability for mathematics learning
is found in Halberda et al. (2008). They retrospectively examined whether ninth graders’
approximate number system acuity (amount of error in the underlying mental representation
of numerosities) was correlated with third-grade performance on a broad mathematics
achievement test, while controlling for 16 measures of domain-general abilities also measured
at third grade. None of the domain-general abilities were uniquely associated with concurrent
third-grade skill whereas ninth-grade numerosity was a uniquely significant correlate of earlier
mathematics achievement. This is in keeping with von Aster and Shalev’s (2007) hypothesis
regarding the importance of this fundamental representational system. The retrospective
design, however, does not eliminate the possibility that poor mathematics achievement helped
produce ninth graders’ approximate number system difficulties. Moreover, use of a broad
mathematics test does not allow for determination of whether such numerical systems
contribute in different ways to learning in different areas of mathematics. Booth and Siegler
(2008), by contrast, examined prospective relations over one month of first grade with a highly
specified type of mathematics learning: estimating answers to procedural calculations
problems. Their measure of basic numerical cognition was a number line task that is thought
to be dependent on the approximate magnitude representational system (Siegler & Oper, 2003;
von Aster & Shalev). Accuracy in placing numbers on the number line — suggesting a strong
mapping between Arabic numerals and the underlying magnitude representations — predicted
learning, whereas the domain-general ability (short-term memory) did not. Yet, both the
number line predictor and the type of mathematics learning had an estimation component, and
short-term memory was the only domain-general ability considered.

By contrast, other studies suggest both informal, basic quantitative competencies and domain-
general abilities contribute to formal mathematics learning (Bull, Espy, & Wiebe, 2008).
Kroesbergen et al. (2009) assessed whether subitizing, the fast apprehension of up to three or
four items, as well as domain-general abilities (fluid intelligence, phonological processing, and
executive functions of shifting, updating, and inhibition) account for concurrent counting skill
in 5- and 7-year olds. Executive functions and subitizing were uniquely associated with
counting skill. Concurrent data collection, however, makes the causal relation from subitizing
and executive functions to counting skill unclear; moreover, counting skill, which develops
before 5 to 7 years of age, has important connections to the subitizing task. With a prospective
design and a broad mathematics achievement test outcome, Krajewski and Schneider (2009)
found that quantity-number competencies, assessed 2—6 months before school entry, predicted
the mathematics outcome 4 years later, as did preschool number naming speed and nonverbal
intelligence. These studies do not, however, lend insight into whether the type of school
mathematics learning depends on different constellations of numerical versus general cognitive
abilities. To address this issue, Fuchs et al. (in press) found that one basic numerical cognition
task, a number sets measure that assesses fluency of accessing and manipulating small
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quantities, accounted for unique variance in fluency with number combinations (1-digit
addition and subtraction), after controlling for domain-general abilities. The combination of
this task and the number line task, by contrast, were uniquely associated with word-problem
skill. This suggests that learning different aspects of the formal school mathematics curriculum
may depend on different constellations of numerical versus general cognitive abilities.
However, in this study, the number sets measure was more transparently connected to fluency
with number combinations than with word-problem skill, and performance was measured
concurrently. There is a need for a prospective study that can speak to the direction of effects,
with measures of different types of school learning, basic numerical cognition tasks that do not
connect to one form of school learning more transparently than the other, as well as a broad
set of domain-general abilities.

Contribution of Present Study

We extended prior work by prospectively examining the interplay between basic numerical
cognition and domain-general abilities for two types of mathematics learning that comprise a
major portion of the primary-grade school program: procedural calculations (2-digit adding or
subtracting, with or without regrouping) and word problems (that involve combine, compare,
and difference relationships among numbers). Although these domains of the formal
mathematics curriculum both require simple arithmetic (1-digit adding/subtracting), they pose
substantially different challenges. A procedural calculations problem is already set up for
solution, whereas a word problem requires students to use linguistic information to construct
a problem model, identify missing information, and set up a calculation problem for finding
the missing information. Further, we relied on two basic numerical cognition tasks, each
similarly distal from the two mathematics outcomes, and included a comprehensive battery of
eight domain-general abilities in an attempt to define the overlapping and unique contributions
of these different cognitive competencies to skill development in formal school learning, while
examining development over the course of first grade. In the following sections, we explain
the basis for the basic numerical cognition tasks and domain-general mechanisms, and we state
our hypotheses.

Domain-Specific Mechanisms

Butterworth (2005) and von Aster and Shalev (2007) proposed that the systems that enable the
representation of small, exact quantities and the approximate magnitude of larger ones are core
systems for the formal learning of mathematics (also see Geary, 1995; Spelke, 2000). The exact
system allows children, and even infants (e.g., Xu & Spelke, 2000; Spelke, 2003), to quickly
apprehend the quantity of one to three objects without counting, a process called subitizing.
Preschool children easily map Arabic numerals onto these quantities. The approximate
representation system represents magnitudes beyond the subitizing range, but not as precisely.
The learning of the counting sequence and properties of the sequence (e.g., that each successive
count represents an increase of one) contributes to children’s learning the magnitudes of larger
numbers and for representing these on a mental number line (Feigenson, Dehaene, & Spelke,
2004). Developmental and neuropsychological studies suggest that individual differences in
the precision (e.g., some children may have a subitizing range of only one or two) of these two
systems may contribute to individual differences in ease of learning some aspects of
mathematics (Geary et al., 2008; Koontz & Berch, 1996).

We chose two basic numerical cognition tasks that are dependent, in part, on the functioning
of these systems. Geary, Bailey, and Hoard (2009) developed the Number Sets Test to assess
the speed and accuracy with which children understand and manipulate small, exact
numerosities within the subitizing range and just beyond this range (<10) while transcoding
between quantities and their Arabic numerals. Children combine pairs or triplets of Arabic
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numerals (e.g., 3 4) or sets of objects (e.g., & ¢ @ @) and quickly determine if they match
a target numeral (e.g., 5). Subitizing can contribute to fluency if the quantity of small sets of
objects is apprehended and then combined (e.g., #& ¢ @€ =5; Geary & Lin, 1998); while
it is likely that the task also requires implicit or explicit understanding of addition, fluent
performance is aided by subitizing and an understanding of the quantities associated with
numerals just beyond this range. First-grade performance predicts mathematics achievement
in third grade (Geary et al., 2009).

In terms of approximate representations of large quantities, a systematic program of research
relies on Siegler and Booth’s (2004) Number Line Estimation task, in which children locate
Arabic numerals on a number line marked only at 0 and 100. The pattern of placements on the
number line is thought to reflect the underlying system for representing larger quantities.
Placements that conform to the natural logarithm of the numbers suggest dependence on the
inherent magnitude representational system, whereas linear placements suggest use of the
school-taught system (Feigenson et al., 2004; Siegler & Oper, 2003). The absolute error of the
placements correlates with numerical comparison, numerosity estimation, numerical
categorization, the linearity of measurement, and broad mathematics achievement test scores
and predicts improvement in procedural calculations estimation (Booth & Siegler, 2006,
2008; Laski & Siegler, 2007; Siegler & Booth, 2004).

Although these tasks are not pure measures of precise representation of small number or
approximate representation of large quantities, they do map loosely onto these two core systems
and are frequently used to tap these forms of numerosity. Moreover, in the present study, they
provide a relatively strong test of whether the role of basic competence with numbers and
number magnitude differs as a function of type of school learning because procedural
calculations and word problems each demands mathematics learning well beyond the
transparent demands of either basic numerical cognition task: subtraction for procedural
calculations and word problems, columnar addition and subtraction for procedural calculations,
and linguistically embedded reasoning about relations between numbers for word problems.
Although the Number Sets Test requires combining small quantities and both measures
incorporate Arabic numerals, these demands are common across most forms of school learning.

Basis for Domain-General Mechanisms Considered

A body of research also examines domain-general mechanisms that support mathematics
learning in school — without considering the role of basic domain-specific numerical
competencies. Much of this work has focused on working memory and, as in the present study,
most of these studies are based on Baddeley and Hitch’s (1974) multicomponent model (as
opposed to a unitary system of working memory primarily involved in attentional control, e.g.,
Cowan, 1999; Engle, Cantor, & Carullo, 1992). The multicomponent model comprises three
systems. The central executive allocates attentional resources and is responsible for planning,
sequencing, and maintaining information in the phonological loop and visuospatial sketch pad.
The former is specialized for auditory information; the latter for visual and spatial information.

Procedural calculations and the solving of word problems may depend, in part, on one or several
of these working memory systems (e.g., Geary & Widaman, 1992; Hitch, 1978; Swanson,
1993). For instance, the central executive may be engaged during translation of word-problem
sentences into equations and in executing the sequence of steps (e.g., trading across columns)
needed to solve procedural calculations problems. The process of counting, as in the use of
counting to solve arithmetic problems, may engage the phonological loop (Logie & Baddeley,
1987), and representing the relation between quantitative sentences in word problems may be
aided by visuospatial representations (Johnson, 1984).
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The several subcomponents of the central executive that contribute to mathematical
competence are not, however, well understood: specifically, those involved in maintaining
information in working memory, inhibiting intrusions of irrelevant information into working
memory, and switching from one subtask to the next (Bull et al., 2008; DeStefano & LeFevre,
2004). The search for mechanisms underlying mathematics development is further complicated
by the relation between working memory and processing speed. Debate exists about whether
individual differences in working memory are driven by more fundamental differences in
processing speed (Kail, 1991) or whether the attentional focus associated with the central
executive speeds information processing (Engle et al., 1999). To further complicate the goal
of untangling which domain-general abilities are associated with competence in different
mathematics domains, working memory correlates with general fluid intelligence (Embretson,
1995), and with respect to word problems, it is important to consider the role oral language
comprehension may play (Jordan, Levine, & Huttenlocher, 1995).

For these reasons, gaining insight into whether and if so which domain-general abilities
uniquely contribute to individual differences in procedural calculation versus word-problem
development requires simultaneously consideration or control of these many domain-general
constructs. Three previous large-scale investigations considered the role of a large battery of
domain-general abilities for more than one mathematics outcome but without considering the
role of basic numerical cognition. Assessing 353 first through third graders on these dimensions
concurrently, Swanson and Beebe-Frankenberger (2004) found that working memory
contributed to strong performance across word-problem and number combination skill, but
also identified unique abilities: phonological processing for number combinations; fluid
intelligence and short-term memory for word problems. Swanson (2006) then followed
development of number combination and word-problem skill over one year, identifying
controlled attention, vocabulary knowledge, and visuospatial working memory as predictors
of number combinations, but the executive control component of working memory for word
problems. With 312 third graders, Fuchs et al. (2006) examined the concurrent cognitive
correlates of number combinations versus word problems, this time controlling for the role of
number combination skill in word problems. Teacher ratings of inattentive behavior correlated
with both mathematics domains, but the remaining abilities differed: for number combinations,
phonological decoding and processing speed; for word problems, nonverbal problem solving,
concept formation, and language. Across studies, some findings recur; others are idiosyncratic.
But together, results suggest that different combinations of domain-general abilities underlie
the development of different mathematical competencies. This body of research does not,
however, consider the role of basic numerical cognition, which may alter understanding about
the contribution of domain-general abilities.

Hypotheses

In light of (a) the theoretical model of von Aster and Shalev (2007), (b) empirical work on the
interplay between basic numerical cognition and domain-general abilities, (c) evidence on the
fundamental role informal, basic numerical cognition may play in development, and (d)
findings from large-scale investigation of the relation of domain-general abilities (without
consideration of basic numerical cognition), we formulated three hypotheses. (1) Basic
numerical cognition contributes substantially to the development of procedural calculations
and word-problem skill, even after domain-general abilities have been controlled. (2) For both
forms of mathematical development, domain-general abilities contribute a significant amount
of variance to the development of procedural calculations and word-problem skill, even after
basic numerical cognition is controlled. (3) The domain-general abilities underlying procedural
calculations and word-problem development differ, with central executive, attentive behavior,
phonological processing, and processing speed predicting procedural calculations and word-
problem development; with the visuospatial sketchpad predicting procedural calculations
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development; and with language and nonverbal reasoning predicting word-problem
development. Findings should help advance understanding about the mechanisms that
contribute to mathematics development and help inform the identification and treatment of
students with risk for mathematics difficulty.

Study Overview

Participants

The present data are derived from a larger study with two goals. The first, consistent with the
focus of the present paper, is to investigate the contributions of basic numerical cognition and
domain-general abilities to mathematics development. The second goal is to assess the efficacy
of preventative tutoring for at-risk students where risk is defined as poor mathematics and
reading performance at the start of first grade, which is associated with increased odds for
developing mathematical learning disabilities. The present data involved students in the first-
and second-year samples of this 4-cohort study and centered on only the first goal. Each year,
to identify children to enter the study, we screen a large number of students, with the goal of
entering only a small subset into the study. (The screening measures are the only data collected
on students who do not enter the study.) To assess the efficacy of preventative tutoring, we
consider all at-risk students who enter the study (i.e., including the two-thirds randomly
assigned to receive tutoring and the one-third randomly assigned to not receive tutoring).
However, to examine contributions of basic numerical cognition and domain-general abilities
to mathematics development (as in the present paper), we only include students who receive
no special mathematics intervention beyond their normal school program: the not-at-risk
students who enter the study as well as the one-third of at-risk students who enter the study
and are randomly assigned not to receive tutoring. We exclude the tutored at-risk students
because we expected tutoring to disrupt the relations between predictors and mathematics
development. Also, by excluding two-thirds of the at-risk (i.e., tutored) students, the sample
represents the expected distribution of academic development.

To examine the contributions of basic numerical cognition and domain-general abilities on
math development, the study design called for the 312 students who entered the study and
received no tutoring. Among these 312 students, 32 students moved to non-study schools
during first grade and therefore were lost to the study. So 90% of the 312 students who entered
the study (and received no tutoring) were included in this research report.

Toselect 312 students, we screened students for study entry in 116 classrooms in a southeastern
metropolitan school district. Of the 2025 children in these classrooms, parents provided consent
on 1416 (70%), 1281 of whom were present for screening on mathematics and reading
performance (see Appendix for description of screeners). Because no true cut-point for
academic risk has been established, we relied on a latent class approach to identify groups,
which combined the four screening scores into a single latent factor. The fit of a single factor
model was acceptable (x2 (2) = 35.47, p < .001, CFIl = .95, SRMR = .035; Hu & Bentler,
1999).1 A three-class solution was specified yielding high, average, and at-risk strata.We
combined the high and average strata into a “not-at-risk” group.

To select 312 students to enter the study, we excluded (a) 332 students whose mathematics
performance was inconsistent with their overall risk status as indexed on the latent variable
(this ensured that at-risk students experienced poor incoming performance in both mathematics
and reading performance and that not-at-risk students experienced at least average experience

1| o-Mendell-Rubin likelihood ratio test suggested a 3- over 4-class solution (LMR LRT =138.14, p =.1513).
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in both mathematics and reading); (b) 147 students whose teachers identified them as not
speaking English; and (c) 26 students with standard scores below 80 on both subtests of the
Wechsler Abbreviated Intelligence Scale (WASI; Wechsler, 1999). (WASI was administered
first in the assessment battery to avoid collecting additional data on students who failed this
entry criterion.) We then randomly sampled 536 of the remaining 776 students, stratifying by
risk status and ensuring that no more than eight students were in the same classroom.

Of these 536 students who entered the study, 190 were not at risk and 346 were at risk. We
randomly assigned the at-risk students to three conditions, two of which (n = 232) involved
tutoring. These 232 students were not appropriate for the present study because we expected
tutoring to disrupt the relations between predictors and mathematics development. This left (a)
190 not-at-risk students, 11 of whom moved during first grade (n = 179), and (b) 114 at-risk
students, 13 of whom moved during first grade (n = 101). Mean age for these 280 students was
6.58 (SD=0.37; range 5.77-8.19) at pretest and 7.11 (SD=0.37; range 6.27-8.72) at posttest.
See Table 1 for screening and demographic information by risk status. Not-at-risk and at-risk
groups were statistically significantly different on all screeners (Fs = 28.87 to 239.12, all ps
<.001; effect sizes [not-at-risk mean minus at-risk mean divided by not-at-risk SD] = 1.59-
1.89 on math screeners and 0.65-1.02 on reading screeners).

Domain-General Abilities Predictors (Also see Table 2 for summary of measures.)

Language—Woodcock Diagnostic Reading Battery (WDRB) - Listening Comprehension
(Woodcock, 1997) measures the ability to understand sentences or passages. With 38 items,
students supply the word missing at the end of sentences or passages that progress from simple
verbal analogies and associations to discerning implications. Reliability is .80 at ages 5-18;
the correlation with the WJ-R is .73.

Nonverbal problem solving—WASI Matrix Reasoning (Wechsler, 1999) measures
nonverbal reasoning with pattern completion, classification, analogy, and serial reasoning
tasks. Students complete a matrix, from which a section is missing, from five response options.
Reliability is .94; the correlation with the WISC-111 Full Scale 1Q is .66.

Working memory—The Working Memory Test Battery for Children (WMTB-C; Pickering
& Gathercole, 2001) comprises nine subtests that assess the central executive, phonological
loop, and visuospatial sketchpad. Each subtest has six items at span levels from 1-6 to 1-9.
Passing four items at a level moves the child to the next level. At each span level, the number
of items to be remembered increases by one. Failing three items terminates the subtest. Subtest
order is designed to avoid overtaxing any component area and is generally arranged from easiest
to hardest. We used the trials correct score. Because the sample of 280 students in this study
is considerably larger than the standardization sample at this age, we used z-scores based on
our sample, as has been done elsewhere (e.g., Geary et al., 2007).

Central executive comprises three dual-task items. For Listening Recall, the child determines
if a sentence is true; then recalls the last word in a series of sentences. For Counting Recall,
the child counts a set of 4, 5, 6, or 7 dots on a card and then recalls the number of counted dots
at the end of a series. Backward Digit Recall is a standard format backward digit span.

Phonological loop comprises Digit Recall, Word List Recall, and Nonword List Recall, in
which the child repeats stimuli spoken by the tester in the same order. In Word List
Matching, the tester speaks two words, adding one word at each level. The same words are
presented again, and the child determines if the second list is in the same order as the first.
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Visuospatial sketchpad comprises two tasks. Block Recall uses a board with nine raised blocks,
each with a number on one side, which only the tester sees. The tester taps a block (or series
of blocks); the child duplicates the tapping. For Mazes Memory, the tester presents a maze with
more than one solution and a picture of an identical maze with a path showing one solution.
The picture is removed, and the child duplicates the path.

Attentive behavior—The SWAN (Swanson et al., 2004) samples items from the Diagnostic
and Statistical Manual of Mental Disorders-1V criteria for Attention Deficit Hyperactivity
Disorder for inattention (9 items) and hyperactivity-impulsivity (9 items). Teachers rate items
on a 1-7 scale. We report data for the inattentive subscale as the average rating across the nine
items. The SWAN correlates well with other dimensional assessments of behavior related to
attention (www.adhd.net). Coefficient alpha in the present study was .97.

Processing speed—With WJ-111 Visual Matching (Woodcock, McGrew, & Mather,
2001), children locate and circle two identical numbers in rows of six numbers; they have 3
min to complete 60 rows. As per the test developer, reliability is .91.

Basic Numerical Cognition Predictors

The Number Sets Test (Geary et al., 2009) assesses the speed and accuracy with which children
understand and manipulate small, exact numerosities within the subitizing range and quantities
just beyond this range (< 10) while transcoding between those quantities and their Arabic
numerals. Two types of stimuli are used: objects (e.g., squares) in a 1/2” square and an Arabic
numeral (18 pt font) ina 1/2” square. Stimuli are joined in domino-like rectangles with different
combinations of objects and numerals. Dominos are presented in lines of 5 across a page, the
last two lines of which show three 3-square dominos. Target sums (5 or 9) are shown in larger
font at the top the page. On each page, 18 items match the target; 12 are larger; 6 are smaller;
and 6 contain 0 or an empty square.

The tester begins by explaining two items matching a target sum of 4; then, uses the target sum
of 3 for practice. The measure is then administered. The child is told to move across each line
from left to right without skipping any; to “circle any groups that can be put together to make
the top number, 5 (9)”; and to “work as fast as you can without making many mistakes.” The
child has 60 sec per page for the target 5; 90 sec per page for the target 9. Time limits were
chosen to avoid ceiling effects and to assess fluent recognition and manipulation of quantities.
Geary et al. (2007) found that first graders’ performance was consistent across target number
and item content (i.e., whether the rectangle included Arabic numerals or shapes) and could
thus be combined to create an overall frequency of hits (alpha, o = .88), correct rejections (o
=.85), misses (o = .70), and false alarms (a = .90). These data are then converted to the d-
prime score, which is derived from ROC analyses to represent the child’s sensitivity to
quantities and has been shown to capture variance unigue to mathematics achievement (e.g.,
Geary et al., 2009).

With Number Line Estimation (Siegler & Booth, 2004), 24 number lines containing a blank
line with two endpoints (0 and 100) are presented, one at a time, with a target number (e.g.,
45) in a large font printed above the line. The child places the target number on the line. As in
Siegler and Booth (Experiment 2), the tester shows a number line containing only the endpoints
0 and 100, and the child points to where 50 goes. As per Geary et al. (2007), to explain the
task, we permit children to compare their response to a model as the tester says, “the number
50 is half of 100, so we put it halfway in between 0 and 100 on the number line.” Note that
these directions produce findings that are comparable (e.g., Geary et al., 2007; Booth & Siegler,
2004) to other work by Siegler and colleagues. After the directions, the measure is administered
with numbers lines containing only the endpoints 0 and 100.
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Siegler and Opfer (2003) used group-level median placements fitted to linear and log models
to make inferences about the modal representation children used to make placements, and they
used an accuracy measure for individual difference analyses. Accuracy is defined as the
absolute difference between the child’s placement and the correct position of the number.2 For
45, placements of 35 and 55 produce difference scores of 10. Other potential individual
differences measures include the frequency with which children make placements consistent
with a linear representation of the line or placements that conform to the natural log of the
numbers, suggesting use of the approximate magnitude representational system. To determine
the best measure of children’s understanding of the linear number line, we correlated the
following ways of indexing performance, each with procedural calculations (PC) and word
problem (WP): absolute number line error, percentage of trials consistent with use of a linear
representation and percentage of error for these trials, and percentage of trials consistent with
use of a log representation and percentage of error for these trials (i.e., the degree to which the
placement differed from the predicted log placement; see Geary et al., 2007,2008). For PC and
WP, the best predictor was absolute number line error, r(280) = .46 to .59, as per Geary, Hoard,
and Bailey (2010). Cronbach’s alpha on this sample was .91. In analyses, we multiplied the
accuracy scores by —1 so the scores represent accuracy instead of inaccuracy.

Mathematics Outcomes

Procedural calculations—With the Double-Digit Addition Test and the Double-Digit
Subtraction Test (Fuchs, Hamlett, & Powell, 2003), students have 5 min to complete 20 2-digit
addition problems with and without regrouping and 5 min to complete 20 2-digit subtraction
problems with and without regrouping. (Each problem also requires students to answer number
combinations for solution.) The score on each test is number of correct answers. Agreement
on 100% of protocols by two independent scorers was 99.3% and 99.1%; alpha on this sample
was .93 and .95. With Addition Strategy Assessment (Geary et al., 2007), addition problems
are presented horizontally at the center of a computer screen. In the present study, we report
number correct for complex stimuli (16+7, 3+18, 9+15, 17+4, 6+19, and 14+8, the entire set
of complex stimuli).

Word problems—Word Problems (Jordan & Hanich, 2000) comprises 14 word problems
requiring simple number combinations for solution, which represent the predominant word-
problem types in the primary grades: combine (two quantities are combined to form a total),
compare (two quantities are compared to find a difference), or change (an action that triggers
an increase or decrease).3 The tester reads each item aloud; students have 30 sec to write an
answer and can ask for re-reading(s). The scores are the number of correct answers for each
of the three types of relationships. A second scorer independently scored 20% of protocols,
with agreement of 99%. Coefficient alpha on this sample for the three scores, respectively,
was .60, .66, and .60.

2Siegler and colleagues use correct location minus estimated location divided by the scale of estimates (i.e., percentage of absolute error).
In the present study, the divisor would be 100, producing the same values but not expressed as a percentage.

Word problems in the primary-grade curriculum are classified to reflect three problem types (Riley, Greeno, & Heller, 1983). In
combine problems, the unknown is the total of two parts (e.g., Jill has 3 marbles. Tom has 5 marbles. How many marbles do they have
altogether?) or one of the parts totaled (e.g., Jill and Tom have 8 marbles altogether. Jill has 3 marbles. How many marbles does Tom
have?). Compare problems contrast two sets to produce a difference set, any of which can be unknown: the difference set (e.g., Jill has
5 marbles. Tom has 8 marbles. How many more marbles does Tom have than Jill?); the compared set (e.g., Jill has 3 marbles. Tom has
5 more marbles than Jill. How many marbles does Tom have?); or the referent set (e.g., Jill has 8 marbles. She has 5 more marbles than
Tom. How many marbles does Tom have?). In change problems, one set increases or decreases over time, with the unknown the end
(e.g., Jill had 3 marbles. Then Tom gave her 5 marbles. How many marbles does Jill have now?), changed (e.g., Jill had 3 marbles. Then
Tom gave her some marbles. Now Jill has 8 marbles. How many marbles did Tom give her?), or start set (e.g., Jill had some marbles.
Then Tom gave her 5 marbles. Now Jill has 8 marbles. How many marbles did Jill have in the beginning?).
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Estimating Development: Latent Change Scores

Procedure

Results

Latent variable approaches to modeling difference scores successfully address measurement
error and restrictive assumptions associated with simple 2-wave difference scores (Little,
Bovaird, & Slegers, 2006; McArdle, 2001, 2009; McArdle & Prindle, 2008). In latent change
analyses, structural equation models are used to estimate two common factors (i.e., a pretest
and a posttest latent factor) and a latent change factor between the two common factor scores.
To interpret the latent change factor, equivalent factor structure and loading invariance are
required across time (i.e., pretest to posttest). In these models, the common factors do not
include error of measurement so individual differences in the latent change score are not
confounded by measurement error, eliminating reliability problems.

We calculated a latent change score for each mathematics achievement construct (PCs and
WPs) across the measurement occasions (fall to spring of first grade). For each construct, we
had three manifest variables at each assessment wave: for PCs, Double-Digit Addition Test,
Double-Digit Subtraction Test, and Addition Strategy Assessment; for WPs, Combine WPs,
Compare WPs, and Change WPs. Basic measurement models at pretest and posttest confirmed
a 1-factor solution for PC and for WPs at each testing occasion, indicating equivalent factor
structure across time in the two mathematics domains. Given the sample size, we used
bootstrapping procedures (with 1000 draws) to estimate standard errors of the model
parameters. For WPs, the overall fit of the latent change model was adequate (see Hu & Bentler,
1999), ¥2(13) = 33.56, p=.0014; CFI=.98; TLI=.97; SRMR=.045. For PC, the initial model fit
was not adequate, y2(10) = 113.74, p<.0001; CFI=.89; TLI=.78; SRMR=.100. Suggested
modification, allowing the residual variance terms to correlate between posttest Addition
Strategy Assessment and Double-Digit Addition Test, pretest Double-Digit Subtraction Test
and Double-Digit Addition Test, and posttest Addition Strategy Assessment and Double-Digit
Subtraction Test, improved model fit, ¥2(7) = 25.00, p=.001; CFI=.97; TLI=.95; SRMR-=.
06.4 The correlation between factors scores generated by the initial PC model and the modified
model (e.g., the correlation of f[1] from the initial model with f[1] from the modified model)
exceeded .98. See Figure 1, with caption, for the model by which latent change scores are
created. These analyses, conducted in MPlus 5.21 (Muthen & Muthen, 1998-2009), were
imported into SPSS, where the multiple regression analyses were conducted.

In September of first grade, we screened students for study entry. In September and October,
the domain-general ability measures, Number Line Estimation, and Addition Strategy
Assessment were administered in three individual sessions, and Number Sets Test and the
remaining PC and WP tests were administered in one small-group session. In March, we
administered the PC and WP tests in one individual and one small-group session. All individual
sessions were audiotaped; 15% of tapes were selected randomly, stratifying by tester, for
accuracy checks by an independent scorer, with agreement exceeding 99%. In October,
teachers completed the SWAN Rating Scale.

See Table 3 for means, SDs, and correlations among the basic numerical cognition variables,
the domain-general ability variables, the PC and WP measures, and the latent change scores.
In preliminary analyses, central executive working memory (but not phonological loop or

visuospatial sketchpad) uniquely predicted PC and WP development. Because the correlation

4The correlation of the latent change scores with and without modification exceeds .98. Latent fall, latent spring, and latent change scores
span negative to positive values; they are not standard scores. Improvement from the fall latent change score to the spring latent change
score was significant for procedural calculations, F(279) = 18.40, p < .001, and for word problems, F(279) = 31.71, p < .001.
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between Number Sets Test and executive control was relatively high and because two of three
executive control subtests involved numerals, we ran correlations among the three executive
control subtests. Listening Recall was more highly correlated with Backward Digit Span and
Counting Recall than the two subtests involving numbers were correlated with each other
(Listening Recall with Counting Recall .46; Listening Recall with Backward Digit Span .34;
Counting Recall with Backward Digit Span .22), suggesting that numerical content does not
drive results. We then entered the three executive control subtests, without other predictors,
into regressions. Listening Recall and Counting Recall, but not Backward Digit Span, were
uniquely predictive of PC and WP development. Based on these preliminary analyses, we
selected Listening Recall and Counting Recall to represent the central executive. So we entered
two basic numerical cognition variables (Number Sets and Number Line Estimation) and eight
domain-general abilities (Listening Recall, Counting Recall, language, attentive behavior,
nonverbal problem solving, phonological loop, visuospatial sketchpad, and processing speed)
into the multiple regression to assess the overall incremental validity of the basic numerical
cognition variables when controlling for the domain-general abilities.

In the series of regression analyses to assess the predictors of PC development, we first entered
the basic numerical cognition variables (R2=.294, SEE = 3.13, F Change [2,277] = 57.64, p
<.001) and then added the domain-general ability variables (R2=.332, SEE = 3.09, R2Change
=.038, F Change [8,269] = 1.91, p = .06). Next, we reversed the order of entry, with domain-
general abilities entered first (R2=.244, SEE = 3.28, F Change (8,271) = 10.94, p < .001) and
basic numerical cognition then added (R2 = .332, SEE = 3.09, R2Change = .088, F Change
(2,269) = 17.61, p < .001). Together, these variables accounted for 33% of the variance in PC
development, F(10,269) = 13.35, p < .001. Partitioning this variance revealed that 62.0% of
explained variance was shared between basic numerical cognition and domain-general
abilities, 26.5% was unique to basic numerical cognition, and 11.4% was unique to domain-
general abilities. In Table 4, we show B, SE, Beta, t-value, and p-value for the constant and
each predictor. Both basic numerical cognition variables and Counting Span contributed unique
variance.

We then conducted a parallel set of analyses, this time predicting WP development. We first
entered the basic numerical cognition variables (R2=.541, SEE = 0.32, F Change [2,277] =
163.37, p < .001), then adding the domain-general ability variables (R?=.637, SEE = 0.29,
R2Change = .096, F Change [8,269] = 8.85, p < .001). Next, we reversed the order of entry,
with domain-general abilities entered first (R2=.545, SEE = 0.32, F Change (8,271) = 40.61,
p <.001) and basic numerical cognition then added (R2 = .637, SEE = 0.29, R2Change = .092,
F Change (2,269) = 33.93, p < .001). Together, these variables accounted for 64.7% of the
variance in WP development, F(10,269) = 47.17, p <.001. Partitioning this variance revealed
that 70.5% of explained variance was shared between basic numerical cognition and domain-
general abilities, 14.4% was unique to basic numerical cognition, and 15.1% was unique to
domain-general abilities. As shown in Table 4, both basic numerical cognition variables,
Listening Span, language, nonverbal problem solving, and attentive behavior contributed
unique variance.

Discussion

Findings, which reveal that the development of competence in solving procedural calculation
problems and word problems from the beginning to the end of first grade are dependent on a
combination of numerical and domain-general abilities, contribute to debate on the relative
importance of these classes of ability for formal mathematics learning in school. They
demonstrate that different mathematical outcomes may require different constellations of
precursor abilities.
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We found that the basic numerical abilities tapped by the number line estimation and number
sets tasks at the beginning of first grade contributed more to academic-year growth in solving
procedural calculation problems than did any of the domain-general abilities assessed in this
study. The two basic numerical cognition tasks accounted for 8.8% of the variance in growth
or 26.5% of the explained variance, retaining statistical significance after eight domain-general
abilities were controlled. By contrast, eight domain-general abilities accounted for only 3.8%
of the variance in growth or 11.4% of the explained variance, and this was not a statistically
significant contribution after the basic numerical cognition variables were considered.
Empirically, this provides evidence for the central role basic numerical cognition plays in the
development of procedural calculation skill. However, because the number sets and number
line estimation tasks are not pure measures of subitizing or fidelity of approximate magnitude
systems, we cannot be certain that these systems are the central foundation for learning in this
area of mathematics. Nonetheless, performance on the tasks is very likely dependent to some
degree on these inherent numerical systems and thus our results provide support for the
predictions of Butterworth (2005) and von Aster and Shalev (2007) and for the empirical
findings of Halberda et al. (2008) who retrospectively looked at broad mathematics
achievement and Booth and Siegler (2008) who focused on children’s estimation of procedural
calculations over several weeks of first grade.

Even so, the relative contribution of these basic numerical abilities and domain-general abilities
was notably different for the development of word-problem skill. In this case, the amount of
explained variance specifically attributable to the basic numerical cognition and domain-
general variables was comparable (32% of the variance in growth for each; 14.14% and 15.1%
of the explained variance for basic numerical cognition and domain-general abilities,
respectively), with each type of predictor retaining statistical significance in the presence of
the other type of predictor. This bolsters the proposition that domain-general abilities are
required to help children construct formal mathematical knowledge from their informal
foundation (e.g., Geary, 2007), as in Kroesbergen et al. (2009) who focused concurrently on
counting skill in 5- and 7-year olds and in Krajewski and Schneider (2009) who found that
quantity-number competencies as well as number naming speed and nonverbal intelligence
predicted broad mathematics achievement test scores.

The pattern of findings across the procedural calculation and word-problem measures
complicates our theoretical understanding of what underlies development of formal
mathematics in school. It suggests that such development cannot be conceptualized as a unitary
phenomenon; that not all aspects of formal mathematics school learning tap the same
underlying abilities. von Aster and Shalev’s (2007) framework, which proposes shared roles
for number sense and domain-general abilities, addresses development of early, basic
mathematical competencies. It specifies a role for language, working memory, and visual
imagery in mastering the verbal number system that links number concepts with words in
preschool, in forming associations with the Arabic number system, and in building a
representation of the mental number line in elementary school. As demonstrated in the present
study, however, this framework needs to be extended to address further development of formal
mathematics learning in the primary grades. Toward this end, it is helpful to consider which
basic numerical competencies and which domain-general abilities were uniquely predictive of
development in the present study.

First, across procedural calculations and word problems, both basic numerical cognition tasks,
children’s fluency at processing small numbers and their skill at estimating numerical
magnitude, predicted development. The foundational role of the basic numerical competencies
assessed by these tasks for school mathematics learning is underscored by the fact that our two
measures/conceptualizations of basic numerical competence, which loosely map precise
representations of small quantities and approximate spatial representations of large quantities,
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each uniquely predicted mathematics development, each with a substantial beta weight when
competing against each other for variance (Number Line Estimation, .22 for procedural
calculations and .15 for word problems; Number Sets, .29 for procedural calculations and .36
for word problems). Moreover, the contributions were similarly large for two transparently
different aspects of formal school learning: for procedural calculations that involve multistep
addition and subtraction that span ones and tens units of the number system and for word
problems that involve linguistically contextualized relations between numbers, requiring
students to build problem models and set up calculations problems to derive solutions. In
addition, two study features create a stringent test of a domain-specific perspective. First, three
measures of domain-general abilities (central executive, phonological loop, and processing
speed) involved numerals. As per Landerl et al. (2004), this creates the potential for these
domain-general abilities to compete for variance with numerical processing. Second, excluding
students whose mathematics performance was inconsistent with reading skill may also bias
results toward a domain-general perspective. For these reasons, in an extended model of
mathematical development, basic numerical competencies must continue to play the
foundational role in formal mathematics learning in school.

Yet, present findings do provide the basis for differentiating which domain-general abilities
enable children to construct formal mathematical knowledge from their basic numerical
foundations. Procedural calculations seems to require strong executive control for accessing
number combination solutions (through retrieval from long-term memory, counting
procedures, or decomposition) while executing a series of steps across numerical categories
(i.e., ones and tens units), with or without regrouping those units (beta for counting recall = .
14). This is in keeping with Hitch’s (1978) findings for adults. However, as DeStefano and
LeFevre (2004) noted in their comprehensive review, most research on working memory has
focused on number combination solutions (for which the role of the phonological loop and the
central executive have been established). A much smaller literature has specifically focused
on the solution of multidigit problems (e.g., Fuchs et al., 2006; Geary & Widaman, 1992;
Widaman, Geary, Cormier, & Little, 1989), as in the present study. This is unfortunate because,
compared to number combinations, procedural calculations may depend more on formal school
learning. Based on our results, it appears that although procedural calculations is largely
dependent on basic numerical competencies, the one domain-general ability that uniquely
accounted for development was a form of executive control that relies on Arabic numerals and
their corresponding numbers. We discuss this later. In a general sense, however, this
corroborates a role for working memory in procedural calculations.

For word problems, by contrast, a broader range of domain-general abilities, well beyond the
fundamental role of basic numerical competencies, appears necessary. First, the central
executive component of working memory, this time in the form of listening recall (beta = .14),
was uniquely predictive, even when two basic numerical cognition tasks and seven other
domain-general abilities competed for variance. Theoretical frameworks posit that word
problems involve construction of a problem model, in which individuals sequentially test
model features, rejecting some and incorporating new hypotheses along the way. This appears
to require working memory (e.g., Kintsch & Greeno, 1985), which is supported by much of
the relevant literature (e.g., Fuchs et al., 2005; Swanson & Beebe-Frankenberger, 2004;
Swanson & Sachse-Lee, 2001), including present results.

A second potentially important domain-general ability in determining word-problem skill is
nonverbal problem solving, which in the present study was uniquely predictive (beta = .15)
even when two basic numerical cognition tasks and seven other domain-general abilities were
in the statistical model. Nonverbal problem solving requires pattern completion, classification,
analogy, and serial reasoning tasks, thereby reflecting the general reasoning transparently
required in word problems. Some prior research similarly documents the importance of
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nonverbal problem solving — but without controlling for basic numerical cognition (Swanson
& Sachse-Lee, 2001) as in the present study.

Our findings also suggest the importance of a third domain-general ability: language (beta =.
14). Previous studies, which did not simultaneously control for basic numerical cognition
variables and only examined concurrent relations, have indicated a role for language. Jordan
et al. (1995) showed that kindergarten and first-grade language-impaired children performed
lower than unimpaired peers on word problems. Fuchs et al. (2006) showed the relation of
language to word-problem skill among third graders, and profile analysis (Fuchs, Fuchs,
Stuebing et al., 2008) revealed that poor language ability was the domain-general ability that
reliably distinguished third graders with word-problem deficits from those with specific
calculation deficits. It makes sense that language supports word-problem learning given the
obvious need to process linguistic information when building word-problem models.

A fourth domain-general ability also proved uniquely predictive of word-problem
development: teachers’ ratings of attentive behavior (beta = .21). Attention, broadly defined,
has been identified as a predictor of mathematics development in previous work. Barnes et al.
(2002) showed that children with hydrocephalus (with math difficulties) attempted more
problems than they could reasonably solve. Russell and Ginsburg (1984) found that although
students with a mathematical learning disability committed algorithm bugs that were similar
to those of normal peers, these bugs more closely resembled younger normal children.
Although our results provide corroborating evidence for attention as a determining mechanism,
the meaning of these teacher ratings is not clear. On the one hand, classroom attention may
create the opportunity to persevere with academic tasks and profit from instruction.
Alternatively, classroom instruction may fail to address the needs of children with poor
mathematical potential, determined by other deficits, and this mismatch creates poor attention.
Another possibility is that teacher ratings of attention are clouded by academic performance
and therefore serve as a proxy for achievement rather than indexing attention. Our data do not
permit us to distinguish among these explanations. Further, the relation between working
memory’s attentional control and teacher ratings of attention is unclear. Present findings do,
however, provide the basis for hypothesizing that attention plays a critical role in word-problem
development and for designing studies to reveal the underlying nature of this relation with
varying measures of attention.

In these ways, the present study supports von Aster and Shalev’s (2007) perspective, in which
informal number sense provides the foundation for school mathematics learning, but in which
domain-general mechanisms are required to help children construct formal mathematical
knowledge from that informal foundation. In thinking beyond the earliest forms of school
mathematical learning that von Aster and Shalev addressed, we offer the following extensions.
First and most generally, the degree and nature of individuals’ reliance on domain-general
abilities differs as a function of the type of formal school mathematics learning considered.
Second and more specifically, for mathematics learning more closely connected to the whole
number representations in the core number systems (such as procedural calculations), basic
numerical cognition plays a larger role than for aspects of the school curriculum that are more
distal from the core systems of number sense. This is the case for word problems, as revealed
in the present study. It may also be true for other components of the school curriculum. For
example, fractional arithmetic, which in contrast to whole number arithmetic is a relatively
recent cultural artifact that depends on mastering a constructed symbolic notation (Ifrah, 2000),
is associated with individual differences in language whereas whole number calculation skill
is not (Seethaler, Star, Fuchs, & Bryant, 2010).

Beyond extending understanding of mathematics development, findings have implications for
identifying and treating mathematics difficulty. Results suggest the potential for domain-
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general abilities to serve as predictors of specific types of mathematics difficulty. Future
research should explore how screening batteries that incorporate measures of salient domain-
general abilities might enhance the accuracy of predicting risk for development of mathematics
difficulty, above and beyond what is possible with basic numerical cognition tasks (e.g., Geary
et al., 2009). Additionally, the specificity of domain-general deficits for different aspects of
the school curriculum provides insights into treatment design. For example, to address the
domain-general deficits implicated in word-problem learning, interventions might use
motivational strategies to reduce behavioral inattention; explicitly teach students to understand
word problems within categories that share similar solution strategies, which is thought to
reduce working memory load (Cooper & Sweller, 1987); or teach strategies by which students
can decipher the meaning of critical concepts within word problems to address language
deficits.

Before closing, we return to the topic of executive control. Although the counting recall subtest
predicted procedural calculations, listening recall predicted word problems. This indicates that
listening recall taps the verbal demands of word problems whereas procedural calculations
derive strength from the specific ability to handle numbers within working memory. It suggests
individual differences in working memory for numbers versus words, as had been shown
previously (Siegel & Ryan, 1989; Dark & Benbow, 1991). On the other hand, the two tasks
involving numerals (backward digit span and counting recall) correlated with each other less
well than the listening recall and counting recall tasks correlated with each other (perhaps due
to parallel assessment methods). These correlations, which suggest a common working
memory mechanism that is not distinct systems for numbers and words, reduce the tenability
of a separate working memory system for numbers. It is nevertheless possible that some
individuals’ word or number representations are more highly active in working memory. Strong
activation of Arabic numerals and corresponding magnitudes in working memory may
facilitate execution of procedural calculations, whereas strong activation of verbal information
may aid in one or several component processes (e.g., building problem models) involved in
solving word problems. Future work examining these possibilities seems warranted.
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Screening Measures to Constitute the Sample

First-Grade Test of Computational Fluency (Fuchs etal., 1990) is a 25-item test that samples
the typical first-grade computation curriculum: adding two single-digit numbers (9 items),
subtracting two single-digit numbers (10 items), adding three single-digit numbers (2 items),
adding two 2-digit numbers without regrouping (2 items), and subtracting a 1-digit number
from a 2-digit number (2 items). Students have 2 min to complete as many items as possible.
The score is the number of problems correct. Staff entered responses into a computerized
program on an item-by-item basis, with 15% of tests re-entered by an independent scorer. Data-
entry agreement was 99.8. Coefficient alpha was .97.

First-Grade Test of Mathematics Concepts and Applications (Fuchs et al., 1990) is a 25-
item test sampling the typical first-grade concepts/applications curriculum (i.e., numeration,
concepts, geometry, measurement, applied computation, money, charts/graphs, WPs). The
tester reads the words in each item aloud. For 20 items, students have 15 sec to respond; for 5
items, 30 sec. The score is the number of correct answers. Staff entered responses into a
computerized program on an item-by-item basis, with 15% re-entered by an independent
scorer. Data-entry agreement was 98.8%. Coefficient alpha was .93.

Rapid Letter Naming (Fuchs et al., 2001) displays 52 letters (26 letters in upper and
lowercase) in random order; students have 1 min to say letter names. The score is the number
of correct letters. If the child finishes before 1 min, the score is prorated. Two-week stability
is .94.

Word Identification Fluency (Fuchs et al., 2004) provides students with 1 min to read a list
of 50 words randomly sampled from 100 high-frequency pre-primer, primer, and first-grade
words. If a student finishes before 1 min, the score is prorated. We administered two alternate
forms and averaged scores. Alternate-form reliability/stability is .97; correlations with
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Woodcock Reading Mastery Test-Word Identification (Woodcock, 1998) are .77-.82.
WASI (Wechsler, 1999) measures generalized cognitive ability with Vocabulary and Matrix
Reasoning (see description below). Subtest scores are combined to yield an Estimated Full
Scale 1Q score. Reliability exceeds .92.
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Figure 1.

Latent change model. Each of the three observed measures of the construct (procedural
calculations or word problems) collected at fall of first grade is entered to create a latent pretest
score (f [1]), as is the case at spring of first grade for creating a latent posttest score (f [2]). A
third latent score is estimated (4f) to represent the latent change between the two factor scores
(f[1] and f [2]). In SEM, factor scores are not typically estimated, and therefore Af cannot be
calculated directly. Instead, McArdle (2009) described how a fixed unit-valued coefficients
(=1) can be included in the model so that the second latent factor (f [2]) is defined as a simple
sum of the other two (f [1] + Af). Because the latent change score (4f) now is part of the model,
the model parameters include the variation in latent changes across individuals (¢4 2) as well
as covariation of change with the initial common factor (¢14). This allows an estimate of the
three factors scores f [1], f [2] and 4f for each individual from the SEM model. This multivariate
SEM approach avoids the problems of using unreliable difference scores and the random errors
cannot create regression to the mean (McArdle & Nesselroade 1994, Nesselroade et al. 1980).
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Table 2

Constructs, Measures, and Timing of Administration

Administered

Construct Measure Fall  Spring
Domain-General Ability
Language Woodcock Diagnostic Reading Battery-Listening Comprehension X
Nonverbal Problem Solving  Wechsler Abbreviated Scale of Intelligence-Matrix Reasoning X
Working Memory Working Memory Test Battery for Children
Central Executive Listening Recall X
Counting Recall X
Backward Digit Recall X
Phonological Loop Digit Recall X
Word List Recall X
Nonword List Recall X
Word List Matching X
Visuospatial Sketchpad Block Recall X
Mazes Memory X
Attentive Behavior SWAN X
Processing Speed Woodcock-Johnson 111 Visual Matching X
Basic Numerical Cognition Number Sets X
Number Line Estimation X
Mathematics Outcomes
Calculations Double-Digit Addition Test X X
Double-Digit Subtraction Test X X
Addition Strategy Assessment X X
Word Problems Word Problems Test
Combine Problems X X
Compare Problems X X
Change Problems X X

Dev Psychol. Author manuscript; available in PMC 2011 November 1.

Page 24



Page 25

Fuchs et al.

SWwa[qold pJom

vw 05 9 L& 6 8T L& ¥ 8 G 9 - - (tzre)  80v (0do) 8bueyD jusreT
0S5 ¥9 & G 98 92 v o G 9 € - - (009) 1OV (0d11S) suone[nafed [enpadoid usreT
¢S 65 8 vy 62 92 Or Ir € 8 ¥ - - (e82) gre (SVS) ABerens uonippy
8 8 € € 0€ 0C ¥e 08 98 €€ €2 - - (cev) sLv (sas) uonsenans ubia-ajgnoq
le 95 9¢ 9¢ ¢& Tz S S L& & ¢CE - - (es9) erL (was) uonppy ub1@-s|gnoq
Buids
S v, vy 8 Oy 2€ ¥ 9y 8y 9y O - = (022 100-  (Dd14) suone|noed [eINPed0Id JusleT]
v /9 8 & 98 ¢& 6 e & 6V ¥ - - (012) 291 (Sv4) ABarens uonippy
6 ¥ 9¢ 6 € Tz 9 1€ 6 G 6C - - (8927) 06C (sa4) uonsenans ubia-sjgnoq
v ¢9 € 8 I€ 62 ¢€ S€ L& 9y g€ - - (ege)  vee (vad) uomppy ub1a-s|gnoq
Ire4

suonenaje)d |jeinpasdold

G ey L€ vE 8 € 6 68 v Ly - - (68) 8z (7IN) uonewns3 sur JsquINN

¢ €5 8y Or ¥ 05 S& 95 8v - - (tz1)  svo (SN) s18S JaquinN

9suag JaquinN

6 € € oy 8 v 8y Ty (8zLT) /896 (TT'8)  v9WLY (Sd) paads Buisssooid

Ge Oy S 05 8y 8¢ 8 - - (852T)  v9'OV (W) Joineyag annuany
€ e 9¢ o5 e 1€ (00T) 100 (2§ lee€2 (SA) pedyoes [enedsonsin
oc e € e ov (00T) TOO  (09°9T) Y969 (71d) doo feadtfojouoyd
o oL 1w s8¢ (00T) TOO0 (26%) 69T (40) I1e08y Bununod
L v ey (00T) 100  (98%)  98'G (47) 1reoay Buussi
05 sy (00T) 100  (evOT) GLTv (43) uonoung sAnNdax3

(N Atowsin Bupiop

ev  (086) TL6v (69°'ST) GC'6 (dN) Buiajos wid|qold [ed1aAuoN

(Lzst) see8 (e8v)  99¥T (1) afenbue

'V [eJsusD-ulewod

AN SN Sd V SA 1d ¥0 d1 43 dN 1 (@s) uesn (as) uesiN s9|celien

RusorswinN KI0WSIN DUDJIOM 581005 pIEpPUEIS S8100S Mey
Suone|alI0D
SUOIIR|31I0D pue ‘suoneIAag pJepuels ‘suesin
€9lqel

NIH-PA Author Manuscript

NIH-PA Author Manuscript

NIH-PA Author Manuscript

Dev Psychol. Author manuscript; available in PMC 2011 November 1.



Page 26

Fuchs et al.

LE 9v 6€ €€ LE €9 19 544 6
LE 14 6€ 6¢ LE 67 4 9€ 44

S6 1L 1L ¥8 74 €€ 6¢ 1172
€L 9. 06 16 €9 ey €9

8¢ 114 59 4] 8¢ 114

69 ¢l or ey PAS]

G8 4] ey PAS]

€L §S LL

LE €9

19

(dwod4) swajqold aredwod
(quiod) swijqoid aulquiod - |Je
Swajqold p4op
(0d07) 8BueyD Juage
(Dd1S) suone|nafed |ednpadoid usle]
(Svs) Aberens uomppy
(sas) uondengns nbia-signoq
(was) uomppy ub1@-s|qnoq - bunds
(0d14) suone|nojed [eINpadoid Juske

(Sw4) ABerens uonippy
(sa4) uondengns ubia-signog
(vad) uomppy nbig-s|gnoq - 1fe4

suole|No[eD [eINpadold

O0dO1 Od1S SvS SAS Vvdas Odld Svd sdd vad

punds 1red

SsuoIe|Nde) [eINpPadoid

SUOIR|2110D

so|qeLIeA

6§ 0. S 09 Ty L& 8 95 ¥S 95 GS - - (Zv'0) 680 (dm12) abueyo Jusye]
65 L. 05 09 9y Ty 9y 19 19 29 29 - - (zg1) 680 (dM1S) swajgoud PIOM JuaJe]
¢ TL W 29 v ¢y 8 85 LS G 1§ - - (181) g8¢ (sbueyds) swajgoud abueyd
6§ 99 & 6y 8 06 8 IS 05 ¥S GS - - (L6'1)  vee (dwoDs) swajqoid aredwod
6€ S5 6¢ 8y TE 06 S v € 05 ¥ - - (00) 160 (quods) swajgoid suquod
Bunds
8 9. 05 8 9y Oy Ly TI9 19 29 09 - - (60T) 000 (dA14) swagoud pIoAA JudzeT]
o 8 6 vy € 06 €€ 8 05 8¢ Ly - - (ws'T)  00¢ (eBueyD4) stwaygold abueyd
Ly 1S 88 L& L€ 0g ZE 8 S Ly 6 - - (8v'1)  GET (dwoD4) swajgoid aredwod
e ¥5 6 68 ¥ Te 8 L& & Ly OF - - (590) 990 (quod4) swajgoid suiquod
e
IN SN Sd V SA T1d ¥0 d1 43 dN 1 (@s) uesn (as) uesy s9|qelien
AnsozewinN KIOWBSIN BUBJIOM $81005 pJIepuels S5100S MeY

SUoIe[21I0D

NIH-PA Author Manuscript

NIH-PA Author Manuscript

NIH-PA Author Manuscript

Dev Psychol. Author manuscript; available in PMC 2011 November 1.



Page 27

Fuchs et al.

'$8100S pJepuels Jou aJe Aay} ‘sanfea aAnisod 0} aAleBau uni ueds sainseaw wajgold

PIOAA 10 SUOITRINI[ED [eINPAJ0Id UO $8100s abueyd Juale] pue ‘Burids Jusye| ‘|je) Jusye 1S3 SWaJGoId PIOAA U} W0} aJe swiajqoid abuey) pue ‘swiajqoid aredwo) ‘swia|qoid aulquio) ‘swajqoid xajdwo)
-Juswssassy ABsrens uonippy si ABarens uonippy 1se L uonaengns 1big-sjgnog st uonoengns 161g-e|qnoq “1se 1 uonippy 161a-s|qnoq st uonippy 161a-s1gnod “BUIYOTRIA [BNSIA |11 UOSULOL YO0IPOOA
s1 paads BuIssadold "NWMS SI JoIABYSq SARUSNY "UaIp|IyD—Alaned 1sa | Alows|y Buiiopn st Alows|n Buriopn ‘Buiuosesy xiure|-80usbi||siu] 40 8[edS parelnsIqqy Ja|sydan si Buinjos wajqoid [eqisAuoN
‘uoisuayaidwo) Buiuaisi1-Aleneg Buipeay onsoubeiq %200poopn st abenbue] "o Ag suolie|a1i09 AldnniAl (0T=as) og=ueaw aiaym ‘Buinjos wajqo.d jeganuou 1daoxa (ST=AS) 00T=UraW dJe $a103S pJepuels

€6 18 68 08 98 4] LS 9 (dM12) sbueyd Juage]
18 68 LL 66 €L 9L G9 (dA\TS) SWwaqoid pIOAN JudzeT]
99 29 €8 65 LS €5 (sbueyDs) swajgold abueyd
19 a8 6§ 19 Ly (dwoos) swajqoud sredwo)d
€L 6v oy Ly (qu0Ds) swajgoid auiquiod - Bunds
6L 8 1L (dMT14) swisjqoid pJo JusreT
a§ S (eBueyD4) swajgoud abueyd
(4 (dwop4) swajqo.d aredwo)

(quod4) swa|qoid suiquio) - [[ed
sws|gqold pIopM

dM1d  8bueydd  dwodd qwodd  dM4  8bueydd  dwodd  qwodd se|qelIeA

Bunds e

SWia1qoid PAOM

SUOIR[2110D)

14 19 1S T Ly 9 65 8¢ 15 (dM10) sbueyd Jusie]
56 99 09  G¥ 1§ 0L 9 9y 85 (dM1S) swijqoud pIo JusreT
15 09 1S o 14 29 95 9 0S (eBueyds) swajgoid abueyd
6v 85 15 o Ly €9 09 144 s (dwoos) swajqoud sredwo)d
oy Ly S 1€ € 8y o gg o (quioDs) swajqoid sulquiod - Bunids
S 59 86 S 1S 0L v9 8y 6§ (dM14) swisjqoad pIopn Juske]
17 0 24 e 6€ €5 Gy L€ 14 (sBueyod) swejqoid ebueyd
2dOT Od1S SVS SAS vadS Odld4 Svd Sad  vad s3|gelIeA
Burds red

suoie|NdeD [eINPadold

SUOIR[3110D)

NIH-PA Author Manuscript NIH-PA Author Manuscript NIH-PA Author Manuscript

Dev Psychol. Author manuscript; available in PMC 2011 November 1.



Page 28

Fuchs et al.

1S9 SW.a|qoid PIOAA BY) Woly swisjgold abuey) pue
'SWa|qoid asedwo) ‘swajgold aulquio) uo apeld st 4o Burids o1 [e) woly 8103s abueyo Jusie| s1 swajqoid pIoAA “SWwa|qold Xa]dwoD-1uswssassy ABajens uonippy pue ‘1se] uonaenqns 1big-sjgnoq ‘1sa1

uonIppY 1B1Q-21anoq uo apesd 15T 4o Buiids 0} |Jey Wwou 81005 aBueY Juse] I suoreInoled “BUILOIRIN [BNSIA [1] UOSUYOL 5000POOA SI Paads Buissaoo.d “Buluosesy XLIeIA-80usBIII2)ul JO 9[edS PaIRIAGIGAY

181SY29\ St Buiajos wajqoud jequanuoN “pedyoiays [erredsonsiA-g1LINM SI pedydiays [enedsonsiA ‘doo [eaibojouoyd-g.1 INM St dooT [eatbojouoyd ‘|[easy Bununod-gLNM SI 4D-9A1INI8XT [eUaD
"[1e9ay BuluslsiT-(gLINM) UaIpliyD—Aianeg 1591 AIOWSIA BUBIOAA SI dT-9A1IN29XT [e1IU8D ‘NS SI JoIARYSq aAnUaNY "uoisuayaldwo) Bulusisi-Aieneg Buipeay onsoubeiq %209poon st abenbue]

JATA T€0—- TO0—- 000 000 paads Buisseooid
<00’ 90'¢ ST° 000 100 BuInjoS Wa|qoid [egIaAUON
088" ST0 T0° 000 000 pedyo1sys [enedsonsiA
314 G/'0—- €0— 000 000 doo- [eatfojouoyd
69¢ IT'7T- S0— 000 10°0- HO-8AINd8X T [eJusD
S00° ¥8'¢ ¥T° 100 ¢00 H71-9AINJI8X3 [eljus)
T00 > [4°h4 T 000 100 J0INeYag AUy
[44%% S0°¢ 0T" 000 000 abenbue]
T00" > 899 9" <00 10 1S9 S18S JequinN
T00 Lge— ST° 000 000 uolyewns3 aulT JaqunN
Y98’ 850 9T €L0 JUBISUOD
SWIAJqoId PAOM
S0¢ LT 80" €00 00 paads Buisseooid
8T ¥€1- 60— ¥00 90'0- BuInjoS Wa|qoid [egI3AUON
086" €00 00" T00 000 pedyo1eys [enedsonsiA
ST 84'T- 60— TOO 00— doo [eatbojouoyd
120 [444 y1°  S00 01’0 HO-8AINd9X T [eusD
€6€° 980 90" 900 500 H71-9AINJI8X3 [eljuUsD
60T 197 oT 200 €00 J0INeYag AUy
8L 8¢’0- <¢0— S00 T0°0- abenbue]
T00" > 00y 6¢° €20 06°0 1S9 S18S JequinN
T00 6v'€E— ¢¢— €00 01’0 uolyewns3 aulT JaqunN
TLE 06'0— €9€T  €T¢I- JUBISUOD

suone|nojeD [eInpadoid

anfea-d ] elpg IS q 3WooNO

Wwawdojans@ solewayIeIN apeID-1Si4 Ul S80UaIaLLIQ [enpIAIpU| Bunoipaid S|opoIN uoissaifioy

v alqel

NIH-PA Author Manuscript NIH-PA Author Manuscript NIH-PA Author Manuscript

Dev Psychol. Author manuscript; available in PMC 2011 November 1.



