
Research Article

Modeling Disease Progression in Acute Stroke Using Clinical Assessment Scales
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Abstract. This article demonstrates techniques for describing and predicting disease progression in acute
stroke by modeling scores measured using clinical assessment scales, accommodating dropout as an
additional source of information. Scores assessed using the National Institutes of Health Stroke Scale and
the Barthel Index in acute stroke patients were used to model the time course of disease progression.
Simultaneous continuous and probabilistic models for describing the nature and magnitude of score
changes were developed, and used to model the trajectory of disease progression using scale scores. The
models described the observed data well, and exhibited good simulation properties. Applications include
longitudinal analysis of stroke scale data, clinical trial simulation, and prognostic forecasting. Based upon
experience in other areas, it is likely that application of this modeling methodology will enable reductions
in the number of patients needed to carry out clinical studies of treatments for acute stroke.
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INTRODUCTION

Annually, 15 million people suffer a stroke where one-
third die and one-third are left permanently disabled (1); still,
at the time of writing, there are no clinically effective drugs
available for shielding the brain from the biochemical and
neurological consequences of acute ischemic stroke, and only
one agent of any class has been shown to be even modestly
effective (2), despite the increasing availability of knowledge
on the subject. Clinical trials of new drugs for the treatment
of stroke in human subjects have been disappointing (3–16).

Potential explanations for these failures have been dis-
cussed at length in the literature, and include differences
between preclinical and clinical models, inappropriate inclusion
criteria for these studies, lack of sufficient dose–response
information prior to study initiation, inappropriate choice of
the therapeutic time window for determining effectiveness, and
others (17–20). Suboptimal study designs (21) and analytical
techniques used in recent trials have been raised as other
potential issues, but whatever the reason, the net result has
largely been the same: expensive trials that fail to demonstrate
any drug effect (22, 23). Assuming that a studied drug is truly

effective, given a design and analysis strategy that focuses on a
single clinical endpoint, as in stroke, the only way to increase
the power of a trial to detect significant differences between
treatment and placebo groups is to increase the number of
individuals enrolled, and by extension, the costs involved in
carrying out the study (24). Conversely, if the drug has no
beneficial treatment effect, it does notmatter how large the trial
is; there will be no treatment effect to detect. Since the sample
size, and to some extent, the design of the trials are conditioned
on the analysis technique, it seems logical to investigate
alternatives to commonly accepted data analysis strategies in
areas such as stroke, in which the problem of finding drugs that
have statistically demonstrable benefits to patients is notorious.

The current regulatory-approved methodology employed
for analyzing the results of Phase III trials in acute ischemic
stroke is, essentially, the contrasting of outcomes between
treatment and control groups: a statistical comparison of scores
on one or more assessment scales for the treatment and placebo
groups at a predefined endpoint (25), typically 90 days after
study commencement. Almost all failed human stroke trials have
relied at least partially or, in most cases, completely on this
method of assessing the success or failure of a pharmacological
intervention. While the consideration of only the total improve-
ment in score at the endpoint is relatively straightforward and
clinically relevant, there are a number of inherent drawbacks in
dealingwith trial outcomes in this way. Themost obvious of these
is that information on the time course of disease progression is
not considered, and patients who recover more rapidly are
indistinguishable from those who do not, since both types of
patient may have the same clinical outcome at day 90. Another is
seen in the case of protocol deviations, when participants fail to
complete follow-up, or ‘drop out’ of the study at some point
before its conclusion. A subset of planned measurements in such
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individuals is therefore missing, representing a challenge to data
analysis that is not often addressed adequately.

Scores are recorded using clinical assessment scales,
which, in acute stroke, are designed to quantify impairment
in neurological and functional disease indicators important for
diagnosis and prognosis (26). They are generally comprised of
a series of items divided into sections, each of which addresses
a different aspect of cerebrovascular disease. The scores from
each section are added together to provide cumulative
categorical scores, which address particular clinical questions.
These questions, in turn, vary from scale to scale.

A model-based analysis addressing the unique charac-
teristics of stroke score data in a small dataset of subjects assessed
using the Scandinavian Stroke Scale (SSS) has previously been
published (27). We have formalized and reformulated this
approach using a larger dataset, comprised of two more
commonly used stroke scores—the National Institutes of Health
Stroke Scale (NIHSS), which focuses primarily on neurological
deficit (28), and is calibrated to have amaximumof 42 points, with
0 representing a state of relative health, and the Barthel activities
of daily living index (BI), which is designed to assess motor
recovery and functional independence, on a scale of 0 (worst) to
100 (best) and calibrated in five-point steps (29).

A number of key aspects of stroke scale score data inform its
analysis. The direction of change in the observed scores may be
either positive or negative during longitudinal time course of
score measurements in the same individual—the data are non-
monotonic, thus preventing their analysis through the use of
continuous functions, as might be intuitively appealing given the
large range in possible scores. Also, dropout may occur—
underlying disease processes may often trigger an event which
causes the exit of a subject from the study before the endpoint is
reached—with the result that one or more data points for that
subject are missing; typically, this is dealt with by using a “last
observation carried forward” (LOCF) approach (30).

The challenge, therefore, is twofold. First, analytical
methods that allow missing data points to be included as a
source of information, based upon the assumption that these
missing data are absent due to unobserved disease progress,
need to be developed. Longitudinal modeling of the time
trajectory of stroke scores as a function of the predicted (but
unobserved) score provides us with a method to accomplish
this (27). Second, although non-monotonic disease progression
has been modeled successfully in cases in which such variation
has been cyclic or rhythmic (31), the mathematical functions
used in such models cannot be used under conditions in which
change in disease state fail to obey such patterns, as is the case
in depression, multiple sclerosis and stroke.

In this article we shall demonstrate a method for modeling
the typically erratic trajectories of stroke scale measurements
while simultaneously addressing the phenomenon of dropout in
a statistically rational manner. These models can later be used
to informmore efficient and potentially more powerful analyses
of these kinds of data in the context of drug development.

METHODS

Patients and Data

Model building was performed using a dataset composed
of scores measured on the NIHSS and BI scales, collected

from 580 acute stroke patients participating in the placebo
arm of a double-blind, multinational, multicenter, placebo-
controlled investigation of the effectiveness of a novel acute
stroke compound (32). Scores were assessed on the NIHSS at
admission, and subsequently at 7, 30, and 90 days. BI
assessments were made at 7, 30, and 90 days, as well as by
telephone at 60 days. Full informed consent was obtained
from each patient before enrolment, and ethical approval for
the study design and consent documentation was granted at
every study site. Patients eligible for enrollment in the study
had stroke onset within 12 h of treatment and the analysis
dataset consisted of patients with an average age of 71.7 years
(range 26–90) and average baseline NIHSS score of 16.8
(range 4–31).

Modeling Approach

Following on from the work of Jonsson and colleagues (27),
score change in each score was described by five submodels, fit
simultaneously. Three submodels described the probabilities of
three of the four possible score change events at each
observation occasion–improvement (I), reaching a maximal
score (recovery, R), and dropout (Dr)–while the last, decline,
was modeled as 1−p(I). The key difference we have introduced
is a hierarchical structure (conditional independence) to model-
ing these probabilities, schematically shown in Fig. 1. In the
event that a score improvement or decline without dropout or
complete recovery took place, the magnitude of score change
was assessed through the use of two additional models for
improvement and decline in score. Probability of failure to
achieve a maximum score was chosen as the basis of the
maximum score submodel because it was better supported by
the data, and therefore provided the model with more stability
overall.

The strategy used to model the process of rehabilitation
in acute stroke is summarized in Fig. 2. Consider a scale
measurement made at baseline, illustrated here as S1. The
second measurement, S2, may be a maximum, may be an
improvement or a decline relative to S1, or may not exist, in
the event of dropout. Each of these four potential events has
a likelihood associated with it, which the modeling approach
must quantify. Equally important, the magnitude of score

Fig. 1. A schematic representation of the hierarchical structure of the
probabilistic models leading to a linear model for either improvement
or decline. Each patient will have records of two probability events
and, possibly, one measurement of a relative improvement or a
relative decline
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change between S1 and S2 must be estimated. To do this,
linear functions describing either increase or decrease in
score are used, conditioned on the observed improvement or
decline event. Similar reasoning applies to subsequent
transitions, such as S2 to S3.

Scores of the kind recorded in acute stroke are non-
monotonic and unpredictable: scores may increase or
decrease (a score change of zero was regarded as a decrease,
except if complete recovery was reached) at any given
measurement occasion, or, in the case of dropout, they may
simply cease. The progression of disease (or recovery) may
therefore be seen as a series of discrete transitions from one
score to another. Each transition has a probability, and in all
but dropout, a score change magnitude, associated with it. It
is therefore appropriate to consider a model for disease
progression using stroke assessment scores to be composed of
five key components: three probabilistic submodels, one each
for full recovery (reaching a maximum score on the assess-
ment scale), improvement or decline, or dropout, and two
continuous, longitudinal submodels, which predict the relative
magnitudes of improvement or decline, respectively (27).

Data Preparation

Score data were transformed in order to constrain model
predictions to the same (logistic) scale. Given an observation
Yi,j in individual i at measurement occasion j, the observation
at the previous occasion (Yi,j−1) was used to inform its
transformation into four input data items, according to the
decision tree in Fig. 1. Three dichotomous variables repre-
senting complete recovery (R), improvement (I), and dropout
(Dr) and a linear variable describing the positive or negative
magnitude of score change (C), were created according to the
scheme in Table I. Response at admission (Y0) was not

regarded as an observation per se, but was used to determine
whether the first observation was an increase or a decline,
and as a covariate for predicting individual parameter values.
While admission scores on the NIHSS were available,
measurements on the BI at admission could not be taken
for practical and ethical reasons. A range of baseline values
between 0 and 20, both static and randomly imputed from
log-normal distributions based on the means and standard

Fig. 2. A flowchart illustrating the concept of the core probabilistic model. S1, S2, S3, and S4 are observed
scores at observations 1, 2, 3, and 4, respectively. Gray circles indicate potential scores after each type of
transition (which, in reality, could be any value between the score minimum and the last observation in the
event of a score decline, between the last observation and one unit below the score maximum in the event
of a score improvement, or the score maximum). Bold lines indicate actual score progression, whereas gray
lines represent events that were possible, but did not take place, at every transition. P(R=1|I=1), P(R=0|I =1),
P(Dr=0|I=0) and P(Dr=1|I=0) are the probabilities of reaching maximum score, improvement in score,
decline in score, and dropout, respectively; subscripts represent occasion

Table I. Data Transformation Scheme

Condition
Recovery
(R)

Improvement
(I)

Dropout
(D)

Linear
magnitude
function (C)

Yi,j−1<Maximum

Yi,j=Ymax 1 1 0 None
Yi,j>Yi,j−1,
Yi,j≠Ymax 0 1 0 Yi;j�Yi;j�1

Ymax�Yi;j�1

a

Yi,j=Yi.j−1 0 0 0 Yi;jþ1

Yi;j�1ð Þ � 1

Yi,j<Yi,j−1 0 0 0 Yi;j�1�Yi;j

Yi;j�1

Yi,j missing None None 1 None
Yi,j−1=Maximum

Yi,j=Ymax None 1 0 None

Yi,j<Yj−1 None 0 0 Ymax�Yi;j

Ymax

Yi,j missingb None None 1 None

Yi,j score at current occasion in individual i, Yi,j−1 score at previous
occasion in individual i, Ymax score representing complete recovery
on modeled scale
a e.g., a change in score from 20 to 25 on the NIHSS scale, for
example, would yield C=(25−20)/(42−20)=0.23

bNo observations of this kind were present in the data

685Acute Stroke Progression Using Clinical Assessment Scales



deviations of NIHSS baseline scores normalized to the same
scale were tested, but these had insufficient predictive power
and ultimately the BI score was modeled from day 7.

To address the informativeness of dropout, an additional
point was imputed in those subjects whose observations
ended before the day-90 endpoint. The point was arbitrarily
set to be halfway between the last measured observation and
the subsequent intended observation appointment. The score
value at this time point was predicted during the fitting
procedure using the linear model for relative decline and was
used to inform the probability of dropout.

Model Development

The general models for relative score change magnitude
and event probabilities were similar in that both model
classes were linear functions based upon logit-transformed
data. Functions describing the effect of Markovian predictors
were employed in both scenarios, including previous score,
baseline score, and time since previous observation, as well as
functions for describing the effect of demographic covariates.

The actual probability (Pi,j) of a given event in individual i at
measurement occasion j is obtained by a simple logit transform:

Pi;j ¼ eli;j

1þ eli;j

where λi,j is a linear function which follows the form

li;j ¼ �C þ �Cov1 � Cov1� Cov1medð Þ þ �Cov2 � Cov2þ :::

where θC is a constant, θCov1 is a model parameter describing
the influence of continuous covariate descriptor Cov1 on λi,j,
and θCov2 is a model parameter describing the influence of
binary categorical covariate or Markovian predictor Cov2
on λi,j. Exponential descriptor terms, as in the example
Cov3� Cov3medð Þ�Cov3 (terms defined similarly) were also
tested, as were proportional constructs similar to �C �
1þ �Cov4 � Cov4þ :::ð Þ (terms defined similarly).

Similarly, relative score change magnitude (Yij,rel) is given
by

Yi;j ¼ eCi;j

1þ eCi;j

with

Ci;j ¼ �C þ �Cov1 � Cov1� Cov1medð Þ þ �Cov2 � Cov2þ :::þ �i þ "i;j

where ηi was an interindividual variability (IIV) term, defined
as having mean 0 and variance wi

2 , and εi,j was a residual
error term, defined as having mean 0 and variance σ2.

The final modeled score on the original scale, based on
the scheme represented in Table I and Fig. 2, is given by

Yi;jjI ¼ 1;R ¼ 0
� � ¼ Yi;j�1 þ Yi;j;rel

Yi;jjI ¼ 0;Dr ¼ 0
� � ¼ Yi;j�1 � Yi;j;rel

or

Yi;jjI ¼ 1;R ¼ 1
� � ¼ Ymax

for improvement, decline and reaching a maximum score,
respectively. Ymax is the score representing normal health, or
full recovery, on the modeled scale. Yi;jjDr ¼ 1

� �
, score at

dropout, is undefined—no further observations are recorded
for this individual.

The models were implemented in the software program
NONMEM 7 (33), and the Laplace method was used to fit
the models. Model goodness-of-fit was assessed by comparing
the objective function value (OFV) provided by NONMEM
between nested models, and by visual predictive check.
Standard goodness-of-fit plots comparing observations to
predictions could not be employed in this scenario, since
probabilistic models of this type cannot be used to predict
observed scores in individuals, only to simulate new popula-
tions. For diagnostic purposes a large sample, of 10,000
individuals, was simulated and the mean and a range of
quantiles from the large sample were compared with the same
indicators in the observed data to provide a graphical
estimate of the appropriateness of each candidate model.

The assessment of potential covariates was made in two
parts; first the Markovian predictors were tested and secondly
the demographic predictors were tested. In both cases, the
criteria for inclusion was based on the OFV (likelihood ratio
test, p<0.05) and the visual predictive check. For a covariate to
be included in the model it had to pass the likelihood ratio test
and also to improve the graphs in the visual predictive check.

Log-likelihood profiling, as implemented by Perl-speaks-
NONMEM (33–35) (PsN), was used to determine confidence
intervals for model parameter estimates. Each parameter in
each model was fixed to a series of values around the mean,
after which the model was re-fit. This procedure generated a
95% confidence interval for the parameter estimates.

RESULTS

The best predictions for the NIHSS score change over
time were provided when the probability of improvement was
described by a logit function incorporating a constant, and a
negative effect of age (the probability of improvement
decreased 0.05 units with 10 years, between ages 64 and 74),
while the logit for the probability of transition to a score not
equal to the maximum score included a baseline term, with a
break point at day 45, and increasing probability with previous
score and to time since this observation. Finally, the probability
of dropout included a baseline term with change points at day
14 and 45, and a proportional effect of predicted NIHSS score
(from the NIHSS score change model) at the imputed time of
dropout. The effect of the NIHSS score was such that the
probability of dropout increased approximately 0.015 units
with an increase of 1 score.

The continuous model for relative improvement, meas-
ured on the NIHSS scale, consisted of a baseline term, with a
break point at day 14, and a negative effect of the baseline
NIHSS observation and terms for interindividual variability
(IIV) and residual variability. The IIV varied with time
elapsed since the initial stroke event; after 14 days, the
variance in score magnitude was allowed to take on a new
value. Relative decline in score was described similarly, with a
positive effect of previous score (i.e. larger decline), however
no other changes over time could be supported.
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Probability of improvement, for the BI scale, was given
by a logit function including a constant term and terms
describing the positive influence of previous BI score and
negative effect of age. As an example of the age effect, there
was a decrease in probability of 0.07 units between two
patients of 64 and 74 years, both with a previous BI score of
50. The logit for the probability of transition to a score that is
not a maximum at a given sampling occasion included a
constant, a positive effect of previous score and a negative
effect of time since stroke event. Finally, the logit describing
probability of dropout included a constant and a proportional
effect of predicted BI score, with the result of a 0.035 unit
decrease in the probability of dropout with a five-point
increase in BI score.

The continuous model for relative improvement on the
BI scale included a constant, a factor describing the positive
influence of previous score, a negative effect of age, a
negative effect of baseline NIHSS score and terms for
interindividual variability and residual variability, respec-
tively. The age effect on the magnitude of improvement was
very small, less than a five-point change over 10 years, and
was over-shadowed by the effect of baseline NIHSS and
previous BI score. The model for relative decline in BI score
included a term describing the negative effect of time since
last observation, but no baseline observation. Interindividual
variability and residual variability terms (the latter shared
with the function for improvement) were also included.

A summary of included predictors for the scale-specific
models appears as Table II, parameter estimates and final
NONMEM control streams are available in supplement A
and B, respectively. The results of the simulations of the two
scales appear as Fig. 3. The predictive power of the models
for the NIHSS scale is good but less good for the BI scale,
with 50th and 90th percentiles of simulated scores matching
the corresponding observed score percentiles for both scales.
Score changes from baseline were similarly well predicted
(Fig. 4), except for the 90th percentile in the BI scale which
was displaying a larger range of values. The reduced precision
at the endpoint for the BI relative to the NIHSS is most likely
due to the insensitivity of the BI scale—there is compara-
tively less information to model, leading to a poorer “fit”.

DISCUSSION

The non-monotonous nature of stroke data offers a
challenge for the modeler. One way to manage this is to use
an approach combining categorical and continuous models
(36), in which non-monotonicity is accounted for by the
former model type in a probabilistic manner. As we have
included all observations, even dropout, we believe we have
made maximal use of the available information. While a
technique for describing recovery in acute stroke has
previously been described using the SSS (27), the richness
of the data available to us in this paper has enabled the
development of a more detailed modeling paradigm with
considerably improved probability functions, and we have
been able to demonstrate the generality of our approach by
applying it to the modeling of two other commonly used
scales, the NIHSS and the BI. These models may provide
significant advantages over current analytical methodology
used in the interpretation of the score data routinely collected

during stroke trials, and may allow the identification of
clinically relevant benefits that are otherwise routinely
neglected.

The models for probability of dropout were based on a
proportional relationship with model-predicted score and
predicated on the assumption that observed dropout events
were informative. A number of different strategies are
typically used to handle dropout, including discarding the
data accumulated from patients failing to complete the study,
analyzing only those observations available at the endpoint,
or imputing the missing data values, by using a LOCF
approach, for example (30). It is not unreasonable to expect
that these approaches are not entirely appropriate for clinical
trials in stroke patients, where there is underlying disease
progression and the where dropout may depend on the
disease state. Patients recovering from an acute ischemic
event may indeed drop out for any number of reasons, but it
is probable that many of these dropout events may be related
to disease progression, and as such, can be explained to a
certain extent and are thus not completely random. The
majority of available inference techniques designed to deal

Table II. Model Components for the Final Prediction Models

Parameter NIHSS BI

Linear model for relative improvement
Constant size of relative score improvement ■ ■
Influence of previous score ▲
Influence of baseline NIHSS score ▼ ▼
Influence of age ▼
Variability in linear improvement
Interindividual variability in relative score change
Time <14 d ■
Time≥14 d ■
Linear model for relative decline
Constant size of relative score decline ■
Influence of previous score ▲
Influence of time since previous observation ▼
Variability in linear decline
Interindividual variability in relative score change ■
Time <14 d ■
Time≥14 d ■
Residual variability on the logit scale ■ ■
Model for probability of improvement
Baseline probability ■ ■
Influence of previous score ▲
Influence of age ▼ ▼
Model for probability of not reaching maximum score
Baseline probability ■ ■
Influence of previous scorea ▲ ▼
Influence of time since previous observation ▲
Influence of time since baseline ▲
Model for probability of dropoutb

Baseline probability ■ ■
Influence of predicted scorea ▼ ▲

filled square included, inverted filled triangle produces decline, upright
filled triangle produces increase
aA low NIHSS score is positive while a low BI score is negative for
the patient, which is the reason for the opposite influence of the
previous observation in the two models

bRelationship is proportional, i.e. �C � 1þ �Cov � Covð Þ , where θC is a
baseline term, and θCov is a term describing the effect of covariate or
Markovian predictor term Cov
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with dropout have been shown to reduce power, or introduce
bias where dropout is not entirely attributable to random
processes (37–40). Our approach integrates the “informative
missingness” provided by dropout based on these principles.

The model developed for the BI scale was harder to
establish than the NIHSS model, and displayed some
imprecision in a few of the structural parameters, and
supported fewer parameters for relative score change (partic-
ularly decline, which was modeled as a linear relationship
with time since the previous BI observation on the logit
scale). This may be a consequence of the BI scale’s limited
range of available scores (20 possible values) as opposed to
the NIHSS (42 possible values). The submodels for transition
probabilities contained similar numbers of parameters, which
supports this hypothesis. However, the model converges, the
covariance step is run and the condition number was
reasonable.

Drug effects may be built into these models very easily. In
the event of a pharmacological intervention being beneficial, it
is reasonable to hypothesize that the frequency of dropout, for
example, may be influenced by a drug effect. The modeling
strategy we suggest will enable investigators to examine this,
while at the same time eliminating the bias that results when
using imputation methods in data of this kind. In addition, the
current regulatory-approved effectiveness endpoint, a discrete
improvement in stroke assessment scale score over the placebo
group, completely neglects a potential drug effect on the risk of
dropout—a drug-related reduction in the dropout rate, for
example, is undeniably a clinical benefit if one assumes that
dropout is associated with death or decline, as are similar
effects on the other probabilistic events we have described in
this article. A drug effect might be equally suited to influencing
relative score change between occasions, or indeed, proba-
bility of improvement or reaching a maximum score, using the
same approach we have used for the other covariates we have
examined. The choice of which or any of these submodels to
target using this approach would probably be suggested by the
drug’s mode of action.

These models may also be applied to clinical trial
simulation. While it is effectively impossible to simulate
non-monotonic categorical data using traditional approaches,
our models may be adapted relatively simply for this purpose.
Given that stroke trials are particularly prone to expensive
failure, performing pre-trial simulation studies using accurate
models of disease progression is all the more appropriate.

The models presented here consider the possibility of
non-monotonic behavior from one observation to the next.
The models cannot, however, account for any unobserved
changes between each observation. The NIHSS and BI
models are therefore design-dependent, the potential con-
sequences of which may need to be explored using future
simulation studies. Use of hidden Markov models (41) may
help address this issue, although most mixed-effects modeling
software implementations cannot handle models of this kind
at the time of writing.

Based upon experience in other areas, it is likely that
application of this modeling methodology for both prospec-
tive simulation of trial designs and analysis of trial data will
enable reductions in the number of volunteers needed to
carry out clinical studies of novel therapies for the treatment
of acute stroke. This is attributable to a likely increase in

statistical power to detect treatment effect (mainly due to the
use of repeated measurements), which may in turn reduce the
uncertainty with respect to trial outcomes (and hence
substantial risk) associated with the development of novel
stroke compounds. To verify this idea, future simulation
studies will be performed investigating the power to detect a
drug effect on top of the disease progression model.

Non-monotonic assessment scales are used in a wide
range of clinical applications, including traumatic brain injury,
psychiatric illness and geriatric medicine, to name only a few.
A combined longitudinal and probabilistic modeling frame-
work is appropriate for any clinical scale in which scores
exhibit apparent variation in both positive and negative
directions with time. The potential exists to extend this
approach still further, by accounting for possible correlations
between the probabilistic models, for example. The applica-
tion of modern methods to the analysis of non-monotonic
clinical assessment data may have great promise in improving
the ability of industry to conduct stroke trials in a more
efficient and cost-effective manner, which can only help
improve the chances that an effective drug in the critical area
of stroke pharmacotherapy will be found.
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