Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2009 Jul 11;65(Pt 8):o1823. doi: 10.1107/S1600536809025951

Bis[4-(3-amino­phen­oxy)phen­yl] ketone

Yang Wang a, Xin-yi Zhu a, Xiao-yan Ma b, Guo-wei Gao a, Jian Men a,*
PMCID: PMC2977108  PMID: 21583525

Abstract

In the mol­ecule of the title compound, C25H20N2O3, the dihedral angles formed by adjacent benzene rings are 66.75 (8), 48.37 (8) and 71.43 (9)°. In the crystal structure, centrosymmetrically related mol­ecules are linked into dimers by inter­molecular N—H⋯O hydrogen bonds.

Related literature

For the properties and synthesis of the title compound, see: Wilson et al. (1990); Mehdipour-Ataei & Saidi (2008). For the applications of the title compound, see: Rao & Prabhakaran (1992).graphic file with name e-65-o1823-scheme1.jpg

Experimental

Crystal data

  • C25H20N2O3

  • M r = 396.43

  • Triclinic, Inline graphic

  • a = 7.370 (3) Å

  • b = 11.856 (3) Å

  • c = 12.319 (3) Å

  • α = 101.79 (4)°

  • β = 95.10 (4)°

  • γ = 107.86 (3)°

  • V = 989.6 (6) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 292 K

  • 0.48 × 0.42 × 0.23 mm

Data collection

  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: none

  • 3693 measured reflections

  • 3682 independent reflections

  • 2206 reflections with I > 2σ(I)

  • R int = 0.006

  • 3 standard reflections every 200 reflections intensity decay: 1.5%

Refinement

  • R[F 2 > 2σ(F 2)] = 0.053

  • wR(F 2) = 0.165

  • S = 1.05

  • 3682 reflections

  • 288 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.23 e Å−3

  • Δρmin = −0.24 e Å−3

Data collection: DIFRAC (Gabe & White, 1993); cell refinement: DIFRAC; data reduction: NRCVAX (Gabe et al., 1989); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809025951/rz2344sup1.cif

e-65-o1823-sup1.cif (21.4KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809025951/rz2344Isup2.hkl

e-65-o1823-Isup2.hkl (180.5KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N1⋯O1i 0.92 (4) 2.32 (4) 3.223 (5) 164 (3)

Symmetry code: (i) Inline graphic.

Acknowledgments

The authors are grateful to the Undergraduates’ Innovative Experiment Project of Sichuan University and thank Mr Zhi-Hua Mao of Sichuan University for the X-Ray data collection.

supplementary crystallographic information

Comment

Aromatic polyimides has found useful applications in aircraft technology, space vehicles, sea transport equipment and other applications due to their excellent thermal stability, good mechanical properties, low dielectric constants and intrinsic purity (Wilson et al., 1990). The title compound is an important raw material for the synthesis of aromatic polyimides, as the presence of ether and ketone groups connected by aromatic rings greatly improves the chain flexibility (Rao & Prabhakaran, 1992; Mehdipour-Ataei & Saidi, 2008). Herein, we report the synthesis and crystal structure of the title compound.

The structure of the title compound (Fig. 1) is not planar. The dihedral angle between the two central benzene rings, ring A (C7–C12) and ring B (C14–C19), is 48.37 (8)°. Ring A forms a dihedral angle of 66.75 (8)° with the C1–C6 benzene ring. The corresponding dihedral angle between ring B and the C20–C25 benzene ring is 71.43 (9)°. The plane formed by atoms C10, C14, O1 and C13, makes a dihedral angle of 22.28 (12)° and 31.23 (8)° with ring A and B, respectively. The crystal structure is stabilized by N—H···O hydrogen bonds (Table 1) linking centrosymmetrically related molecules into dimers.

Experimental

4,4'-Difluorobenzophenone (11.0 g, 0.05 mol), m-aminophenol (22.0 g, 0.20 mol) and anhydrous potassium carbonate (14.0 g, 0.10 mol) were dissolved in a solution of toluene (60 ml) and N,N-dimethylformamide (100 ml) in a three-necked flask. The mixture was heated to reflux and water was removed by azeotropic distillation. After complete dehydration, the mixture was poured to a large excess of ice water. Then, the precipitated solid was collected by filtration and recrystallized from ethanol to obtain a tan solid (16.5 g, 76% yield, m.p.411–413 K). Red single crystals suitable for X-ray diffraction were obtained by slow evaporation at room temperature of a toluene solution.

Refinement

H-atoms bound to nitrogen atoms were located in a difference Fourier map and refined isotropically. The remaining H atoms were positioned geometrically (C—H = 0.93 Å) and refined using a riding model, with Uiso(H) = 1.2Ueq(C).

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound, with displacement ellipsoids drawn at the 30% probability level.

Crystal data

C25H20N2O3 Z = 2
Mr = 396.43 F(000) = 416
Triclinic, P1 Dx = 1.330 Mg m3
Hall symbol: -P 1 Mo Kα radiation, λ = 0.71073 Å
a = 7.370 (3) Å Cell parameters from 23 reflections
b = 11.856 (3) Å θ = 5.4–5.6°
c = 12.319 (3) Å µ = 0.09 mm1
α = 101.79 (4)° T = 292 K
β = 95.10 (4)° Block, red
γ = 107.86 (3)° 0.48 × 0.42 × 0.23 mm
V = 989.6 (6) Å3

Data collection

Enraf–Nonius CAD-4 diffractometer Rint = 0.006
Radiation source: fine-focus sealed tube θmax = 25.5°, θmin = 1.7°
graphite h = −8→8
ω/2θ scans k = −4→14
3693 measured reflections l = −14→14
3682 independent reflections 3 standard reflections every 200 reflections
2206 reflections with I > 2σ(I) intensity decay: 1.5%

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.053 H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.165 w = 1/[σ2(Fo2) + (0.0943P)2] where P = (Fo2 + 2Fc2)/3
S = 1.05 (Δ/σ)max < 0.001
3682 reflections Δρmax = 0.23 e Å3
288 parameters Δρmin = −0.24 e Å3
0 restraints Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methods Extinction coefficient: 0.027 (5)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 0.4068 (2) 0.59493 (16) 0.42259 (15) 0.0665 (5)
O2 1.2554 (2) 0.95837 (18) 0.55618 (15) 0.0746 (6)
O3 0.0557 (2) 0.57862 (15) 0.86702 (15) 0.0623 (5)
N1 1.7663 (5) 1.3024 (3) 0.7708 (4) 0.0988 (11)
H1N1 1.729 (5) 1.346 (3) 0.725 (3) 0.116 (15)*
H2N1 1.840 (5) 1.333 (3) 0.828 (3) 0.109 (15)*
N2 −0.3694 (6) 0.6550 (4) 1.1145 (3) 0.1179 (13)
H1N2 −0.378 (6) 0.581 (4) 1.131 (3) 0.119 (14)*
H2N2 −0.399 (8) 0.712 (5) 1.153 (5) 0.19 (3)*
C1 1.6441 (3) 1.1849 (2) 0.7619 (2) 0.0591 (7)
C2 1.6600 (4) 1.1216 (3) 0.8431 (2) 0.0655 (7)
H2 1.7550 1.1581 0.9064 0.079*
C3 1.5354 (4) 1.0050 (3) 0.8303 (2) 0.0631 (7)
H3 1.5464 0.9638 0.8859 0.076*
C4 1.3949 (3) 0.9477 (2) 0.7371 (2) 0.0544 (6)
H4 1.3115 0.8685 0.7286 0.065*
C5 1.3819 (3) 1.0112 (2) 0.6574 (2) 0.0509 (6)
C6 1.5030 (3) 1.1280 (2) 0.6682 (2) 0.0558 (7)
H6 1.4901 1.1689 0.6126 0.067*
C7 1.0692 (3) 0.8848 (2) 0.5542 (2) 0.0518 (6)
C8 0.9903 (3) 0.7910 (2) 0.4600 (2) 0.0549 (6)
H8 1.0622 0.7789 0.4031 0.066*
C9 0.8035 (3) 0.7150 (2) 0.4507 (2) 0.0517 (6)
H9 0.7494 0.6512 0.3869 0.062*
C10 0.6938 (3) 0.73176 (19) 0.53531 (19) 0.0450 (6)
C11 0.7750 (3) 0.8300 (2) 0.6275 (2) 0.0511 (6)
H11 0.7023 0.8444 0.6834 0.061*
C12 0.9628 (3) 0.9070 (2) 0.6377 (2) 0.0543 (6)
H12 1.0165 0.9728 0.7000 0.065*
C13 0.4904 (3) 0.6501 (2) 0.5182 (2) 0.0505 (6)
C14 0.3844 (3) 0.63592 (19) 0.6137 (2) 0.0451 (6)
C15 0.1849 (3) 0.61103 (19) 0.5934 (2) 0.0475 (6)
H15 0.1256 0.6057 0.5218 0.057*
C16 0.0742 (3) 0.5943 (2) 0.6765 (2) 0.0521 (6)
H16 −0.0585 0.5779 0.6615 0.063*
C17 0.1629 (3) 0.6021 (2) 0.7822 (2) 0.0502 (6)
C18 0.3584 (3) 0.6242 (2) 0.8042 (2) 0.0552 (6)
H18 0.4165 0.6282 0.8757 0.066*
C19 0.4680 (3) 0.6404 (2) 0.7205 (2) 0.0539 (6)
H19 0.6000 0.6546 0.7356 0.065*
C20 −0.0391 (3) 0.6582 (2) 0.9107 (2) 0.0470 (6)
C21 −0.1542 (3) 0.6200 (2) 0.9866 (2) 0.0560 (6)
H21 −0.1692 0.5443 1.0020 0.067*
C22 −0.2484 (4) 0.6946 (3) 1.0405 (2) 0.0665 (7)
C23 −0.2239 (4) 0.8067 (3) 1.0155 (3) 0.0705 (8)
H23 −0.2847 0.8584 1.0514 0.085*
C24 −0.1107 (4) 0.8412 (2) 0.9382 (2) 0.0635 (7)
H24 −0.0982 0.9157 0.9210 0.076*
C25 −0.0142 (3) 0.7687 (2) 0.8849 (2) 0.0550 (6)
H25 0.0647 0.7937 0.8334 0.066*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0462 (10) 0.0733 (12) 0.0579 (12) 0.0017 (9) −0.0019 (9) 0.0004 (9)
O2 0.0424 (10) 0.1008 (14) 0.0539 (12) −0.0116 (9) 0.0015 (8) 0.0184 (10)
O3 0.0645 (11) 0.0627 (10) 0.0744 (13) 0.0286 (9) 0.0262 (10) 0.0307 (9)
N1 0.088 (2) 0.0664 (18) 0.105 (3) −0.0097 (16) −0.007 (2) 0.0029 (18)
N2 0.136 (3) 0.121 (3) 0.142 (3) 0.069 (3) 0.092 (3) 0.059 (3)
C1 0.0427 (13) 0.0545 (15) 0.0680 (18) 0.0079 (12) 0.0060 (13) 0.0026 (13)
C2 0.0490 (15) 0.0799 (19) 0.0562 (17) 0.0168 (14) −0.0056 (13) 0.0050 (14)
C3 0.0568 (16) 0.0775 (18) 0.0614 (18) 0.0285 (14) 0.0051 (14) 0.0232 (15)
C4 0.0461 (13) 0.0527 (14) 0.0602 (16) 0.0117 (11) 0.0058 (12) 0.0129 (12)
C5 0.0317 (11) 0.0637 (15) 0.0497 (15) 0.0084 (11) 0.0058 (11) 0.0092 (12)
C6 0.0421 (13) 0.0581 (15) 0.0662 (17) 0.0109 (12) 0.0091 (12) 0.0217 (13)
C7 0.0373 (12) 0.0609 (15) 0.0496 (15) 0.0040 (11) 0.0012 (11) 0.0184 (12)
C8 0.0405 (13) 0.0699 (16) 0.0527 (16) 0.0158 (12) 0.0086 (11) 0.0151 (13)
C9 0.0449 (13) 0.0532 (14) 0.0467 (15) 0.0110 (11) −0.0030 (11) 0.0025 (11)
C10 0.0368 (12) 0.0481 (13) 0.0460 (14) 0.0111 (10) −0.0010 (10) 0.0101 (11)
C11 0.0395 (13) 0.0554 (14) 0.0544 (16) 0.0122 (11) 0.0072 (11) 0.0107 (12)
C12 0.0446 (14) 0.0606 (15) 0.0450 (14) 0.0052 (11) −0.0002 (11) 0.0075 (11)
C13 0.0394 (13) 0.0462 (13) 0.0580 (17) 0.0100 (11) −0.0019 (12) 0.0062 (12)
C14 0.0324 (11) 0.0424 (12) 0.0548 (15) 0.0075 (9) −0.0002 (10) 0.0100 (11)
C15 0.0379 (12) 0.0471 (13) 0.0491 (14) 0.0094 (10) −0.0064 (11) 0.0066 (11)
C16 0.0331 (12) 0.0540 (14) 0.0647 (17) 0.0119 (10) 0.0018 (12) 0.0109 (12)
C17 0.0476 (14) 0.0433 (12) 0.0589 (16) 0.0128 (10) 0.0094 (12) 0.0140 (11)
C18 0.0460 (14) 0.0611 (15) 0.0527 (16) 0.0105 (11) −0.0043 (12) 0.0176 (12)
C19 0.0336 (12) 0.0553 (14) 0.0661 (17) 0.0072 (10) −0.0026 (12) 0.0167 (12)
C20 0.0384 (12) 0.0478 (13) 0.0482 (14) 0.0095 (10) −0.0022 (11) 0.0089 (11)
C21 0.0472 (13) 0.0560 (15) 0.0651 (17) 0.0156 (12) 0.0063 (12) 0.0189 (13)
C22 0.0605 (17) 0.0778 (19) 0.0654 (19) 0.0269 (15) 0.0164 (14) 0.0179 (15)
C23 0.0716 (19) 0.0689 (18) 0.072 (2) 0.0342 (15) 0.0058 (16) 0.0045 (15)
C24 0.0725 (18) 0.0523 (15) 0.0602 (18) 0.0216 (14) −0.0049 (14) 0.0076 (13)
C25 0.0520 (14) 0.0529 (14) 0.0546 (16) 0.0118 (12) 0.0022 (12) 0.0128 (12)

Geometric parameters (Å, °)

O1—C13 1.226 (3) C10—C11 1.384 (3)
O2—C7 1.377 (3) C10—C13 1.484 (3)
O2—C5 1.390 (3) C11—C12 1.383 (3)
O3—C17 1.387 (3) C11—H11 0.9300
O3—C20 1.390 (3) C12—H12 0.9300
N1—C1 1.384 (4) C13—C14 1.478 (3)
N1—H1N1 0.92 (4) C14—C19 1.386 (3)
N1—H2N1 0.79 (4) C14—C15 1.396 (3)
N2—C22 1.383 (4) C15—C16 1.373 (3)
N2—H1N2 0.93 (4) C15—H15 0.9300
N2—H2N2 0.84 (5) C16—C17 1.377 (3)
C1—C6 1.381 (4) C16—H16 0.9300
C1—C2 1.384 (4) C17—C18 1.374 (3)
C2—C3 1.373 (4) C18—C19 1.374 (3)
C2—H2 0.9300 C18—H18 0.9300
C3—C4 1.375 (4) C19—H19 0.9300
C3—H3 0.9300 C20—C21 1.370 (3)
C4—C5 1.368 (3) C20—C25 1.373 (3)
C4—H4 0.9300 C21—C22 1.387 (4)
C5—C6 1.370 (3) C21—H21 0.9300
C6—H6 0.9300 C22—C23 1.387 (4)
C7—C8 1.371 (3) C23—C24 1.364 (4)
C7—C12 1.379 (3) C23—H23 0.9300
C8—C9 1.374 (3) C24—C25 1.380 (4)
C8—H8 0.9300 C24—H24 0.9300
C9—C10 1.394 (3) C25—H25 0.9300
C9—H9 0.9300
C7—O2—C5 120.22 (19) C7—C12—H12 120.5
C17—O3—C20 119.63 (18) C11—C12—H12 120.5
C1—N1—H1N1 117 (2) O1—C13—C14 119.2 (2)
C1—N1—H2N1 115 (3) O1—C13—C10 119.3 (2)
H1N1—N1—H2N1 124 (4) C14—C13—C10 121.5 (2)
C22—N2—H1N2 118 (2) C19—C14—C15 117.8 (2)
C22—N2—H2N2 112 (4) C19—C14—C13 124.5 (2)
H1N2—N2—H2N2 127 (5) C15—C14—C13 117.6 (2)
C6—C1—N1 119.0 (3) C16—C15—C14 121.7 (2)
C6—C1—C2 118.8 (2) C16—C15—H15 119.2
N1—C1—C2 122.2 (3) C14—C15—H15 119.2
C3—C2—C1 120.1 (3) C15—C16—C17 118.9 (2)
C3—C2—H2 120.0 C15—C16—H16 120.6
C1—C2—H2 120.0 C17—C16—H16 120.6
C2—C3—C4 121.5 (3) C18—C17—C16 120.8 (2)
C2—C3—H3 119.2 C18—C17—O3 118.1 (2)
C4—C3—H3 119.2 C16—C17—O3 121.0 (2)
C5—C4—C3 117.7 (2) C19—C18—C17 119.9 (2)
C5—C4—H4 121.2 C19—C18—H18 120.0
C3—C4—H4 121.2 C17—C18—H18 120.0
C4—C5—C6 122.2 (2) C18—C19—C14 120.9 (2)
C4—C5—O2 122.2 (2) C18—C19—H19 119.6
C6—C5—O2 115.4 (2) C14—C19—H19 119.6
C5—C6—C1 119.8 (2) C21—C20—C25 122.1 (2)
C5—C6—H6 120.1 C21—C20—O3 114.4 (2)
C1—C6—H6 120.1 C25—C20—O3 123.5 (2)
C8—C7—O2 115.7 (2) C20—C21—C22 119.7 (2)
C8—C7—C12 121.3 (2) C20—C21—H21 120.1
O2—C7—C12 122.9 (2) C22—C21—H21 120.1
C7—C8—C9 119.2 (2) N2—C22—C21 120.0 (3)
C7—C8—H8 120.4 N2—C22—C23 121.2 (3)
C9—C8—H8 120.4 C21—C22—C23 118.8 (3)
C8—C9—C10 121.1 (2) C24—C23—C22 120.0 (3)
C8—C9—H9 119.4 C24—C23—H23 120.0
C10—C9—H9 119.4 C22—C23—H23 120.0
C11—C10—C9 118.4 (2) C23—C24—C25 121.9 (2)
C11—C10—C13 122.8 (2) C23—C24—H24 119.0
C9—C10—C13 118.6 (2) C25—C24—H24 119.0
C12—C11—C10 120.9 (2) C20—C25—C24 117.4 (2)
C12—C11—H11 119.5 C20—C25—H25 121.3
C10—C11—H11 119.5 C24—C25—H25 121.3
C7—C12—C11 119.0 (2)
C6—C1—C2—C3 −0.7 (4) O1—C13—C14—C19 147.9 (2)
N1—C1—C2—C3 −179.9 (3) C10—C13—C14—C19 −33.6 (3)
C1—C2—C3—C4 0.9 (4) O1—C13—C14—C15 −29.1 (3)
C2—C3—C4—C5 −0.5 (4) C10—C13—C14—C15 149.3 (2)
C3—C4—C5—C6 −0.1 (4) C19—C14—C15—C16 1.5 (3)
C3—C4—C5—O2 174.8 (2) C13—C14—C15—C16 178.8 (2)
C7—O2—C5—C4 43.0 (3) C14—C15—C16—C17 −0.1 (3)
C7—O2—C5—C6 −141.8 (2) C15—C16—C17—C18 −1.1 (3)
C4—C5—C6—C1 0.2 (4) C15—C16—C17—O3 −176.1 (2)
O2—C5—C6—C1 −174.9 (2) C20—O3—C17—C18 116.9 (2)
N1—C1—C6—C5 179.4 (3) C20—O3—C17—C16 −68.0 (3)
C2—C1—C6—C5 0.1 (4) C16—C17—C18—C19 0.9 (4)
C5—O2—C7—C8 −147.3 (2) O3—C17—C18—C19 176.0 (2)
C5—O2—C7—C12 36.4 (4) C17—C18—C19—C14 0.6 (4)
O2—C7—C8—C9 −178.7 (2) C15—C14—C19—C18 −1.8 (3)
C12—C7—C8—C9 −2.4 (4) C13—C14—C19—C18 −178.8 (2)
C7—C8—C9—C10 0.0 (4) C17—O3—C20—C21 174.4 (2)
C8—C9—C10—C11 2.4 (3) C17—O3—C20—C25 −8.5 (3)
C8—C9—C10—C13 177.4 (2) C25—C20—C21—C22 −0.5 (4)
C9—C10—C11—C12 −2.4 (3) O3—C20—C21—C22 176.6 (2)
C13—C10—C11—C12 −177.1 (2) C20—C21—C22—N2 178.0 (3)
C8—C7—C12—C11 2.4 (4) C20—C21—C22—C23 0.3 (4)
O2—C7—C12—C11 178.4 (2) N2—C22—C23—C24 −177.0 (3)
C10—C11—C12—C7 0.1 (4) C21—C22—C23—C24 0.8 (4)
C11—C10—C13—O1 154.3 (2) C22—C23—C24—C25 −1.6 (4)
C9—C10—C13—O1 −20.4 (3) C21—C20—C25—C24 −0.2 (4)
C11—C10—C13—C14 −24.2 (3) O3—C20—C25—C24 −177.1 (2)
C9—C10—C13—C14 161.1 (2) C23—C24—C25—C20 1.3 (4)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N1—H1N1···O1i 0.92 (4) 2.32 (4) 3.223 (5) 164 (3)

Symmetry codes: (i) −x+2, −y+2, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: RZ2344).

References

  1. Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  2. Gabe, E. J., Le Page, Y., Charland, J.-P., Lee, F. L. & White, P. S. (1989). J. Appl. Cryst.22, 384–387.
  3. Gabe, E. J. & White, P. S. (1993). Am. Crystallogr. Assoc. Pittsburgh Meet. Abstract PA104.
  4. Mehdipour-Ataei, S. & Saidi, S. (2008). Polym. Adv. Technol.19, 889-894.
  5. Rao, V. L. & Prabhakaran, P. V. (1992). Eur. Polym. J.28, 363–366.
  6. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  7. Wilson, D., Stengenberger, H. D. & Hergenrother, P. M. (1990). In Polyimides New York: Chapman and Hall.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809025951/rz2344sup1.cif

e-65-o1823-sup1.cif (21.4KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809025951/rz2344Isup2.hkl

e-65-o1823-Isup2.hkl (180.5KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES