Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2009 Jul 22;65(Pt 8):m970. doi: 10.1107/S1600536809027044

Bis[μ2-1,2-bis­(imidazol-1-ylmeth­yl)benzene-κ2 N 3:N 3′]bis­[dichloridozinc(II)]

Meihong Hu a,*, Shishen Zhang b
PMCID: PMC2977457  PMID: 21583414

Abstract

In the crystal structure of the centrosymmetric title compound, [Zn2Cl4(C14H14N4)2], the ZnII atom is coordinated by two N atoms from two 1,2-bis­(imidazol-1-ylmeth­yl)benzene ligands and two Cl atoms to confer a distorted tetra­hedral geometry at the metal center.

Related literature

For conformationally flexible ligands and their metal complexes, see: Carlucci et al. (2004); Fan et al. (2005); Hennigar et al. (1997). For metal complexes of similar ligands, see: Liu et al. (2007); Moulton & Zaworotko (2001); Tan et al. (2004).graphic file with name e-65-0m970-scheme1.jpg

Experimental

Crystal data

  • [Zn2Cl4(C14H14N4)2]

  • M r = 749.12

  • Triclinic, Inline graphic

  • a = 8.5502 (12) Å

  • b = 8.7267 (13) Å

  • c = 11.5726 (17) Å

  • α = 102.824 (2)°

  • β = 105.720 (2)°

  • γ = 91.763 (2)°

  • V = 806.6 (2) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 1.85 mm−1

  • T = 291 K

  • 0.20 × 0.15 × 0.12 mm

Data collection

  • Bruker SMART APEX CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2000) T min = 0.709, T max = 0.809

  • 6327 measured reflections

  • 3130 independent reflections

  • 2912 reflections with I > 2σ(I)

  • R int = 0.019

Refinement

  • R[F 2 > 2σ(F 2)] = 0.035

  • wR(F 2) = 0.084

  • S = 1.09

  • 3130 reflections

  • 190 parameters

  • H-atom parameters constrained

  • Δρmax = 0.42 e Å−3

  • Δρmin = −0.27 e Å−3

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809027044/ng2598sup1.cif

e-65-0m970-sup1.cif (16.3KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809027044/ng2598Isup2.hkl

e-65-0m970-Isup2.hkl (153.5KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Selected geometric parameters (Å, °).

Zn1—N1 2.000 (2)
Zn1—N2i 2.017 (2)
Zn1—Cl1 2.2309 (8)
Zn1—Cl2 2.2428 (8)
N1—Zn1—N2i 108.85 (9)
Cl1—Zn1—Cl2 116.46 (3)

Symmetry code: (i) Inline graphic.

Acknowledgments

This work was supported by the Foundation of Young Researchers of the Key Laboratory of Advanced Textile Materials and Manufacturing Technology, Ministry of Education (grant No. 2007QN05).

supplementary crystallographic information

Comment

Conformationally non-rigid ligands, showing varied geometries that often lead to supramolecular isomers, (Moulton et al., 2001; Hennigar et al., 1997) can more easily produce new classes of compounds. 1,2-bis-(imidazol-1-ylmethyl)benzene, as one kind of those ligands, has usually been used to construct a great variety of structurally interesting entities, such as 1-D chain, 2-D and 3-D nets (Liu et al., 2007; Fan et al., 2005; Tan et al., 2004).

The coordination environment of the title compound(I) is illustrated in Fig.1. Single-crystal X-ray diffraction shows that the asymmetric unit contains one Zn crystallographically nonequivalent atom. The Zn atom is coordinated by two N atoms from 1,2-bis-(imidazol-1-ylmethyl)benzene and two Cl atom to give a slightly distorted tetrahedral geometry, forming a 0-D structrue. The crystal packing is stabilized by intermolecular π-π stacking interaction (Fig. 2).

Experimental

To a test tube (f= 2 cm) containing 3 ml aqueous solution of ZnCl2 (0.006 g, 0.05 mmol) was added carefully a layer of THF as a buffer and then 5 ml of methanol solution of 1,2-bis-(imidazol-1-ylmethyl)benzene(0.027 g, 0.1 mmol). The system was allowed to stand for days, during which white crystals were formed in yield of ca 45%.

Refinement

H atoms were positioned geometrically and refined using a riding model, with C—H = 0.93 Å(aromatic) or 0.97 Å(aliphatic) and N—H = 0.86 Å, and with Uiso(H) = 1.2Ueq(C,N)

Figures

Fig. 1.

Fig. 1.

Ellipsoid plot.

Fig. 2.

Fig. 2.

Packing diagram.

Crystal data

[Zn2Cl4(C14H14N4)2] Z = 1
Mr = 749.12 F(000) = 380
Triclinic, P1 Dx = 1.542 Mg m3
Hall symbol: -P 1 Mo Kα radiation, λ = 0.71073 Å
a = 8.5502 (12) Å Cell parameters from 3130 reflections
b = 8.7267 (13) Å θ = 1.9–26.0°
c = 11.5726 (17) Å µ = 1.85 mm1
α = 102.824 (2)° T = 291 K
β = 105.720 (2)° Block, white
γ = 91.763 (2)° 0.20 × 0.15 × 0.12 mm
V = 806.6 (2) Å3

Data collection

Bruker SMART APEX CCD diffractometer 3130 independent reflections
Radiation source: fine-focus sealed tube 2912 reflections with I > 2σ(I)
graphite Rint = 0.019
φ and ω scans θmax = 26.0°, θmin = 1.9°
Absorption correction: multi-scan (SADABS; Bruker, 2000) h = −10→10
Tmin = 0.709, Tmax = 0.809 k = −10→10
6327 measured reflections l = −13→14

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.084 H-atom parameters constrained
S = 1.09 w = 1/[σ2(Fo2) + (0.0401P)2 + 0.3649P] where P = (Fo2 + 2Fc2)/3
3130 reflections (Δ/σ)max = 0.001
190 parameters Δρmax = 0.42 e Å3
0 restraints Δρmin = −0.27 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Zn1 0.77170 (3) 0.60926 (3) 0.29452 (3) 0.03231 (11)
Cl1 0.67332 (9) 0.68391 (9) 0.11848 (6) 0.04696 (19)
Cl2 1.02202 (9) 0.52603 (9) 0.32757 (7) 0.04806 (19)
N1 0.6030 (3) 0.4485 (3) 0.2991 (2) 0.0369 (5)
N2 0.2055 (3) 0.2012 (2) 0.56368 (19) 0.0345 (5)
N3 0.3737 (3) 0.2956 (2) 0.2378 (2) 0.0348 (5)
N4 0.1141 (3) 0.0502 (3) 0.37642 (19) 0.0355 (5)
C1 0.1171 (3) −0.0585 (3) 0.1590 (2) 0.0354 (6)
C2 0.2061 (3) 0.0452 (3) 0.1196 (2) 0.0340 (6)
C3 0.1073 (3) 0.1879 (3) 0.4517 (2) 0.0360 (6)
H3 0.0415 0.2650 0.4282 0.043*
C4 0.2099 (3) 0.2226 (3) 0.1610 (3) 0.0397 (6)
H4A 0.1774 0.2663 0.0890 0.048*
H4B 0.1321 0.2479 0.2081 0.048*
C5 0.4628 (3) 0.4045 (3) 0.2123 (2) 0.0372 (6)
H5 0.4303 0.4445 0.1423 0.045*
C6 0.0157 (3) −0.0051 (4) 0.2462 (2) 0.0444 (7)
H6A −0.0454 0.0798 0.2214 0.053*
H6B −0.0623 −0.0921 0.2393 0.053*
C7 0.2892 (3) −0.0154 (4) 0.0350 (3) 0.0430 (7)
H7 0.3476 0.0535 0.0076 0.052*
C8 0.1177 (4) −0.2205 (3) 0.1138 (3) 0.0466 (7)
H8 0.0601 −0.2909 0.1407 0.056*
C9 0.4618 (4) 0.2681 (4) 0.3476 (3) 0.0526 (8)
H9 0.4305 0.1979 0.3888 0.063*
C10 0.2212 (4) −0.0315 (3) 0.4443 (3) 0.0493 (7)
H10 0.2497 −0.1322 0.4167 0.059*
C11 0.2777 (4) 0.0627 (3) 0.5594 (3) 0.0465 (7)
H11 0.3536 0.0377 0.6253 0.056*
C12 0.2873 (4) −0.1759 (4) −0.0095 (3) 0.0529 (8)
H12 0.3440 −0.2143 −0.0663 0.063*
C13 0.2020 (4) −0.2781 (4) 0.0301 (3) 0.0536 (8)
H13 0.2008 −0.3864 0.0006 0.064*
C14 0.6028 (4) 0.3625 (4) 0.3844 (3) 0.0503 (8)
H14 0.6865 0.3682 0.4564 0.060*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Zn1 0.03700 (18) 0.02838 (17) 0.02722 (17) −0.00505 (12) 0.00577 (12) 0.00311 (12)
Cl1 0.0514 (4) 0.0511 (4) 0.0332 (4) −0.0078 (3) 0.0000 (3) 0.0161 (3)
Cl2 0.0478 (4) 0.0450 (4) 0.0513 (4) 0.0128 (3) 0.0123 (3) 0.0126 (3)
N1 0.0403 (12) 0.0338 (12) 0.0311 (11) −0.0096 (9) 0.0042 (9) 0.0056 (9)
N2 0.0405 (12) 0.0316 (11) 0.0282 (11) 0.0006 (9) 0.0081 (9) 0.0028 (9)
N3 0.0337 (11) 0.0323 (11) 0.0355 (12) −0.0045 (9) 0.0059 (9) 0.0078 (9)
N4 0.0420 (12) 0.0327 (12) 0.0289 (11) −0.0066 (9) 0.0111 (9) 0.0012 (9)
C1 0.0353 (13) 0.0378 (14) 0.0267 (12) −0.0059 (11) 0.0060 (11) −0.0004 (10)
C2 0.0315 (12) 0.0367 (14) 0.0289 (13) 0.0000 (11) 0.0036 (10) 0.0044 (11)
C3 0.0409 (14) 0.0315 (13) 0.0331 (14) 0.0015 (11) 0.0096 (11) 0.0041 (11)
C4 0.0315 (13) 0.0351 (14) 0.0472 (16) −0.0006 (11) 0.0063 (12) 0.0057 (12)
C5 0.0425 (15) 0.0348 (14) 0.0312 (14) −0.0041 (11) 0.0059 (11) 0.0079 (11)
C6 0.0414 (15) 0.0506 (17) 0.0320 (14) −0.0166 (13) 0.0093 (12) −0.0048 (12)
C7 0.0387 (14) 0.0509 (17) 0.0423 (16) 0.0027 (13) 0.0159 (12) 0.0119 (13)
C8 0.0583 (18) 0.0347 (15) 0.0396 (16) −0.0110 (13) 0.0089 (14) 0.0028 (12)
C9 0.0502 (17) 0.0552 (19) 0.0521 (18) −0.0132 (14) 0.0030 (14) 0.0290 (15)
C10 0.072 (2) 0.0315 (15) 0.0442 (17) 0.0105 (14) 0.0202 (15) 0.0037 (12)
C11 0.0595 (18) 0.0429 (16) 0.0372 (15) 0.0118 (14) 0.0102 (14) 0.0133 (13)
C12 0.0480 (17) 0.061 (2) 0.0457 (18) 0.0137 (15) 0.0163 (14) 0.0000 (15)
C13 0.065 (2) 0.0349 (16) 0.0481 (18) 0.0098 (14) 0.0053 (15) −0.0028 (13)
C14 0.0486 (17) 0.0542 (19) 0.0399 (16) −0.0125 (14) −0.0049 (13) 0.0187 (14)

Geometric parameters (Å, °)

Zn1—N1 2.000 (2) C3—H3 0.9300
Zn1—N2i 2.017 (2) C4—H4A 0.9700
Zn1—Cl1 2.2309 (8) C4—H4B 0.9700
Zn1—Cl2 2.2428 (8) C5—H5 0.9300
N1—C5 1.320 (3) C6—H6A 0.9700
N1—C14 1.366 (4) C6—H6B 0.9700
N2—C3 1.317 (3) C7—C12 1.379 (4)
N2—C11 1.371 (4) C7—H7 0.9300
N2—Zn1i 2.017 (2) C8—C13 1.377 (5)
N3—C5 1.330 (3) C8—H8 0.9300
N3—C9 1.366 (4) C9—C14 1.348 (4)
N3—C4 1.475 (3) C9—H9 0.9300
N4—C3 1.332 (3) C10—C11 1.350 (4)
N4—C10 1.365 (4) C10—H10 0.9300
N4—C6 1.476 (3) C11—H11 0.9300
C1—C2 1.392 (4) C12—C13 1.363 (5)
C1—C8 1.395 (4) C12—H12 0.9300
C1—C6 1.509 (4) C13—H13 0.9300
C2—C7 1.383 (4) C14—H14 0.9300
C2—C4 1.512 (4)
N1—Zn1—N2i 108.85 (9) N1—C5—N3 111.4 (2)
N1—Zn1—Cl1 106.18 (7) N1—C5—H5 124.3
N2i—Zn1—Cl1 108.10 (7) N3—C5—H5 124.3
N1—Zn1—Cl2 112.82 (7) N4—C6—C1 113.2 (2)
N2i—Zn1—Cl2 104.18 (7) N4—C6—H6A 108.9
Cl1—Zn1—Cl2 116.46 (3) C1—C6—H6A 108.9
C5—N1—C14 105.8 (2) N4—C6—H6B 108.9
C5—N1—Zn1 123.62 (18) C1—C6—H6B 108.9
C14—N1—Zn1 130.57 (18) H6A—C6—H6B 107.7
C3—N2—C11 105.6 (2) C12—C7—C2 121.4 (3)
C3—N2—Zn1i 123.80 (18) C12—C7—H7 119.3
C11—N2—Zn1i 130.53 (19) C2—C7—H7 119.3
C5—N3—C9 107.0 (2) C13—C8—C1 121.1 (3)
C5—N3—C4 125.4 (2) C13—C8—H8 119.4
C9—N3—C4 127.6 (2) C1—C8—H8 119.4
C3—N4—C10 107.1 (2) C14—C9—N3 106.7 (2)
C3—N4—C6 125.6 (2) C14—C9—H9 126.6
C10—N4—C6 127.2 (2) N3—C9—H9 126.6
C2—C1—C8 118.8 (2) C11—C10—N4 106.5 (2)
C2—C1—C6 123.4 (2) C11—C10—H10 126.7
C8—C1—C6 117.8 (3) N4—C10—H10 126.7
C7—C2—C1 119.0 (2) C10—C11—N2 109.2 (3)
C7—C2—C4 118.3 (2) C10—C11—H11 125.4
C1—C2—C4 122.7 (2) N2—C11—H11 125.4
N2—C3—N4 111.5 (2) C13—C12—C7 119.8 (3)
N2—C3—H3 124.3 C13—C12—H12 120.1
N4—C3—H3 124.3 C7—C12—H12 120.1
N3—C4—C2 111.8 (2) C12—C13—C8 119.9 (3)
N3—C4—H4A 109.3 C12—C13—H13 120.1
C2—C4—H4A 109.3 C8—C13—H13 120.1
N3—C4—H4B 109.3 C9—C14—N1 109.1 (3)
C2—C4—H4B 109.3 C9—C14—H14 125.4
H4A—C4—H4B 107.9 N1—C14—H14 125.4

Symmetry codes: (i) −x+1, −y+1, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: NG2598).

References

  1. Bruker (2000). SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Bruker (2005). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Carlucci, L., Ciani, G. & Proserpio, D. M. (2004). Chem. Commun pp. 380–381. [DOI] [PubMed]
  4. Fan, J., Slebodnick, C., Angel, R. & Hanson, B. E. (2005). Inorg. Chem 44, 552–558. [DOI] [PubMed]
  5. Hennigar, T. L., MacQuarrie, D. C., Losier, P., Rogers, R. D. & Zaworotko, M. J. (1997). Angew. Chem. Int. Ed. Engl.36, 972–973.
  6. Liu, Y. Y., Ma, J. F., Yang, J. & Su, Z. M. (2007). Inorg. Chem.46, 3027–3037. [DOI] [PubMed]
  7. Moulton, B. & Zaworotko, M. J. (2001). Chem. Rev.101, 1629–1658. [DOI] [PubMed]
  8. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  9. Tan, H. Y., Zhang, H. X., Ou, H. D. & Kang, B. S. (2004). Inorg. Chim. Acta, 357, 869–874.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809027044/ng2598sup1.cif

e-65-0m970-sup1.cif (16.3KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809027044/ng2598Isup2.hkl

e-65-0m970-Isup2.hkl (153.5KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES