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terior axis roughly parallel to the major laminae. Further-
more, the efferent projections from the primary visual telen-
cephalon form an extensive column-like continuum involv-
ing the dorsolateral pallium and the lateral basal ganglia. 
Such a column-like organization may exist not only for vi-
sion, but for other sensory modalities and even for a con-
tinuum that links sensory and limbic areas of the avian brain. 
Behavioral and neural studies must be integrated in order to 
understand how birds have developed their amazing visual 
systems through 150 million years of evolution. 

 Copyright © 2010 S. Karger AG, Basel 

 Introduction 

 The visual abilities of birds are exceptional [Hodos, 
1993; Frost and Sun, 1997; Shimizu et al., 2008; Güntür-
kün, 2000]. Their superb color perception, spatial and 
temporal resolving power, and visual learning and mem-
ory capabilities have been thoroughly investigated and 
documented. For example, birds have four types of cone 
photopigments with which they can see ultraviolet or 
near ultraviolet light in addition to the part of the spec-
trum that humans can see [Bowmaker et al., 1997]. In ad-
dition, many birds, and in particular predatory birds 
such as eagles and hawks, have high resolving power. 
Their globose-shaped eyes and high density of retinal 
cells enable them to see fine details much better than hu-
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 Abstract 
 Birds have excellent visual abilities that are comparable or 
superior to those of primates, but how the bird brain solves 
complex visual problems is poorly understood. More spe-
cifically, we lack knowledge about how such superb abilities 
are used in nature and how the brain, especially the telen-
cephalon, is organized to process visual information. Here 
we review the results of several studies that examine the or-
ganization of the avian telencephalon and the relevance of 
visual abilities to avian social and reproductive behavior. Vid-
eo playback and photographic stimuli show that birds can 
detect and evaluate subtle differences in local facial features 
of potential mates in a fashion similar to that of primates. 
These techniques have also revealed that birds do not attend 
well to global configural changes in the face, suggesting a 
fundamental difference between birds and primates in face 
perception. The telencephalon plays a major role in the vi-
sual and visuo-cognitive abilities of birds and primates, and 
anatomical data suggest that these animals may share simi-
lar organizational characteristics in the visual telencephalon. 
As is true in the primate cerebral cortex, different visual fea-
tures are processed separately in the avian telencephalon 
where separate channels are organized in the anterior-pos-
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mans [Hodos, 1993]. For example, humans can detect 
only 30 cycles/degree while American kestrels  (Falco 
sparverius)  can detect 46 cycles/degree [Gaffney and Ho-
dos, 2003]. Birds also have a superb temporal sensitivity 
for fast-changing images. In pigeons  (Columba livia) , the 
temporal resolution threshold reaches up to 100 Hz 
whereas human observers can detect just about 60 Hz 
[Hodos et al., 2003]. Finally, avian visuo-cognitive abili-
ties are impressive too [Waldvogel, 1990; Cook, 2001; 
Wasserman et al., 2006]. For instance, in their classic con-
cept formation study, Herrnstein and Loveland [1964] 
used operant-conditioning techniques to train pigeons to 
discriminate a number of stimulus photographs into two 
categories: photographs with people and those without 
people. Pigeons not only learned to discriminate them 
successfully, but they could also generalize this classifica-
tion rule to novel photographs they had not previously 
seen. The results were interpreted to demonstrate that 
birds can form a visual concept of people. Using similar 
methods, Watanabe et al. [1995] trained pigeons to dis-
criminate the stylistically different paintings of Monet 
(Impressionism) and Picasso (Cubism). When birds were 
then tested with additional paintings by these artists that 
had not been used during the training, they were also able 
to generalize the classification rule to successfully dis-
criminate the two styles of paintings.

  In this paper, three issues associated with the impres-
sive visual abilities of birds are presented. The first issue 
concerns the adaptational value of these visual capabili-
ties. Why do birds have such excellent visual abilities? 
How do they use such abilities in nature? Undoubtedly, 
the demand for fast and accurate aerial maneuvering 
during flight is one of the major reasons that birds have
a highly developed visual system. Visual cues are also 
abundant and important among conspecifics for com-
plex social maneuvering. They most likely use these cues 
to select mates, identify rivals, locate young, and differ-
entiate members of higher and lower ranks. These are not 
easy tasks, considering that such visual stimuli are con-
stantly viewed from different visual angles, under differ-
ent levels of luminance, and from different distances. A 
series of behavioral studies are discussed that reveal that 
birds use their visual abilities to detect and evaluate the 
faces of potential mates. 

  The second and third issues concern the neural sub-
strates underlying the outstanding visual performance of 
birds. There are two anatomical characteristics of the avi-
an visual telencephalon that have not been well recog-
nized and fully appreciated: (1) parallel processing and 
(2) columnar organization. As for the former, visual pro-

cessing in the avian brain is highly distributed, as in 
mammals. Different visual features are processed and 
analyzed in physically distinct regions in the avian fore-
brain. This parallel processing in the telencephalon is 
similar to the functional segregation found in the dorsal 
and ventral streams of the mammalian cortices, each 
component of which is associated with specific visual 
functions. Such similarities suggest the existence of basic 
neural principles for visual processing shared by highly 
visual birds and primates.

  Finally, a columnar organization in the visual telen-
cephalon is discussed. The avian telencephalon is known 
to consist of multiple nuclear cell groups. For the visual 
system, relevant nuclei are ostensibly anatomically sepa-
rate and spatially distant within the avian telencephalon. 
These nuclei are actually organized in a more systematic 
fashion than was previously understood. Thus, there is an 
extensive columnar continuum involving different telen-
cephalic structures separated by several laminae. Such a 
column-like organization may exist not only for vision, 
but other sensory modalities and even non-sensory sys-
tems, suggesting that a columnar organization is another 
neural principle shared by avian and mammalian telen-
cephalons. In particular, we suggest that there is a col-
umn-like continuum that links sensory and limbic areas 
of the avian brain. The expansion of this continuum may 
be relevant to the enlargement of the telencephalon in 
some species, such as corvids, that are known for their 
complex behavior. 

  Recognition of a Potential Mate 

 Video Playback Techniques 
 Pigeons are social animals. They often communicate 

with each other by exhibiting distinct behaviors, such as 
courtship displays in front of potential mates. Accord-
ingly, the occurrence of a courtship display indicates that 
a bird ‘recognizes’ the visual object as a potential mate 
[Shimizu, 1998; Partan et al., 2005; Patton et al., 2010]. In 
studies in our laboratory, as well as that of Barrie J. Frost  
and Nikolaus F. Troje [Frost et al., 1998], subject pigeons 
were exposed to live stimulus pigeons, videotaped pi-
geons, and photographs of pigeons to examine which vi-
sual features can trigger spontaneous courtship displays. 

  In order to compare the effects of various visual stim-
uli, a metric for measuring courtship responses needed to 
be developed. In our laboratory, subjects’ naturally oc-
curring behaviors toward a real live potential mate were 
investigated for this purpose. In a study by Shimizu 
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[1998], subject males were individually placed in an open-
field apparatus with opaque walls. In one wall there was 
an embedded Plexiglas window, through which males 
could view a caged live stimulus female. The top of the 
open-field apparatus and the stimulus cage were covered 
only by wire-mesh ceilings, and thus the subject and 
stimulus birds could see, hear, smell and interact with 
each other. All responses of male subjects were video- and 
audio-recorded and several robust behavioral categories 
were identified, including bowing, tail-dragging and vo-
calization. In bowing, a male lowers its head while turn-
ing in full or half circles. In tail-dragging, a bird runs a 
short distance while dragging its spread tail along the 
ground. In vocalization, a bird produces a ‘coo’ sound, 
usually while bowing. The majority of male subjects ex-
hibited these responses vigorously to a live stimulus. The 
frequency and duration of these responses were collected 
by analyzing video- and audio-recordings. The live fe-
male pigeon (LIV) condition in  figure 1  shows the dura-
tion of ‘coo’ vocalizations. The response patterns were 
very similar for bowing and tail-dragging. 

  Once the baseline responses to a live stimulus were es-
tablished, then video-playback stimuli were presented on 

a monitor screen in place of a live stimulus. One of these 
video stimuli was a life-sized, video-playback stimulus of 
a female pigeon (WHO in  fig. 1 ). No auditory cues were 
included. The results showed that male pigeons exhibited 
stereotyped responses quite vigorously in front of the vid-
eo playback. The results were consistent with many previ-
ous studies, in which taxidermic models of female birds 
effectively elicited courtship responses from males [Fish-
er and Hale, 1957; Carbaugh et al., 1962; Domjan et al., 
1989; Crawford and Akins, 1993]. Thus, the video-play-
back study confirmed two conclusions from these previ-
ous studies. First, because only visual cues were included 
in video-playbacks and taxidermic models, a visual sig-
nal alone is sufficient to trigger courtship responses even 
without any other sensory signals. Second, reactions 
from a female or interactions between males and females 
are not necessarily essential for eliciting males’ responses, 
although such an interaction plays a significant role in 
actual courtship in nature [Lehrman, 1964; Burley, 1977; 
Patricelli et al., 2006].

  The significant results of video-playback stimuli fur-
ther emphasize the potency of visual signals in courtship, 
considering the fact that the quality of a video-playback 
stimulus is much poorer compared to both real live stim-
ulus birds and taxidermic models [D’Eath, 1998]. The 
video-playbacks were presented on a 2-dimensional 
monitor screen that was designed for the eyes of human 
observers. Video stimuli cannot provide depth informa-
tion nor accurate color information for the avian visual 
system. However, the fact that video-playbacks can trig-
ger courtship responses does not imply that the stimulus 
deficiencies are irrelevant for the expression of courtship 
responses. In one of our studies [Shimizu, 1998], each tri-
al in the study lasted only a short period of time (2 min). 
Subsequently, we found that subject birds reacted longer 
to live stimuli than to video-playback stimuli as the dura-
tion of a trial was extended in similar experiments. 

  In addition to the whole dynamic female pigeon 
(WHO), other visual stimuli were presented on the mon-
itor screen [Shimizu, 1998]. These stimuli included only 
the head portion (HEA) or body portion (BOD) of a vid-
eo-taped female pigeon, motionless images of the whole 
female (STI), and a video-taped female cockatoo (COC). 
The results showed that two visual features of a female are 
particularly effective in triggering reactions from males. 
First, the head region of a female pigeon was important. 
In the head (HEA) and body (BOD) conditions, only 
parts of the female pigeon were visible since the rest was 
occluded. Male subjects exhibited courtship displays for 
a much longer period to the head (HEA) stimulus than to 
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  Fig. 1.  A histogram showing the duration of ‘coo’ vocalizations 
elicited in front of a live female pigeon (LIV) and six types of vid-
eo-playback stimuli. The visual stimuli included a whole dynam-
ic female pigeon (WHO), the head region (HEA), the body region 
(BOD), still images of a whole female pigeon (STI), a female cock-
atoo (COC), and the empty cage (EMP). Values are expressed as 
group means  8  SE log display durations. 
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the body (BOD) stimulus. Second, the stimulus was more 
effective when it was in motion. The motionless images 
(STI) resulted in shorter response durations compared to 
the dynamic view of the female (WHO). However, it was 
not solely the presence of movement that elicited respons-
es from male subjects. Males showed almost no respons-
es to a heterospecific stimulus (COC), even though it too 
was constantly in motion. Thus, species-specific patterns 
of movement may be more effective than other kinds of 
movement.

  Significance of the Face 
 The results showing the efficacy of the head region of 

pigeons in eliciting courtship responses were in accor-
dance with previous studies involving Japanese quail 
 (Coturnix coturnix japonica) . Domjan and Nash [1988] 
showed that males spent almost the same amount of time 
looking through a window at models of just the female 
head region compared to a full taxidermic model of a fe-
male quail. Domjan et al. [1989] further showed that fe-
male quail models of only the head region elicited as 
much copulatory behaviors from male subjects as a live 
female bird. Altogether, these studies suggest that the 
head region of potential mates is visually more salient, as 
well as socially important, compared to the body region. 
It is possible that males pay attention to the head region 
simply because it is situated in the upper part of a female 
body. In both pigeons and quails, males and females are 
about the same size and height. When males detect a po-
tential mate, the head of a female is salient because the 

upper part of the body happens to be at the eye level of 
males. However, a more likely reason that the female head 
region is important is because it includes the face, char-
acterized by a number of local elements – the eyes, beak, 
cere (the exposed skin at the base of the upper beak) and 
plumage. The manner in which these elements are spa-
tially arranged is likely also important as a global feature 
for defining the face. 

  In order to examine these two possibilities, Patton et 
al. [2010] conducted a preference test, in which male pi-
geons were exposed simultaneously to pairs of photo-
graphic images of females. These stimuli were presented 
on the screens of two monitors, each of which was seen 
through a window in the opposing wall of an open-field 
apparatus. On one monitor screen, images of a female pi-
geon with a normal head were presented, whereas images 
of the same female with digitally and systematically al-
tered facial features were shown on the opposite monitor. 
Males’ courtship responses displayed near each monitor 
were measured and compared to determine the signifi-
cance of specific facial features. Instead of video-playback 
stimuli, static photographs had to be used in this study in 
order to make precise alterations to the facial features. 
They facilitated males’ responses by presenting succes-
sively different photographs of a female every five sec-
onds. The results showed that male subjects reacted quite 
vigorously to these static stimuli.  Figure 2  shows some 
examples of the normal (NORM) and altered stimulus 
categories used in the study. These stimuli included the 
following alterations: (1) no eyes or beak condition (NEB; 

NEB NORM LE

LB NORM NE

NB NORM REB

  Fig. 2.  Photographic images of altered and 
unaltered facial features of a female pi-
geon. NORM = Normal unaltered image; 
NEB = no eyes or beak; LB = large beak; 
NB = no beak; LE = large eyes; NE = no 
eyes; REB = rearranged eyes and beak. Sig-
nificant preferences are represented by the 
symbols  1  and  ! , whereas no clear prefer-
ences are represented by the symbol  ; . 
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both eyes and beak were removed); (2) large beak condi-
tion (LB; beak size was enlarged); (3) no beak condition 
(NB; the beak was removed); (4) large eyes condition (LE; 
the eye size was enlarged); (5) no eyes condition (NE; the 
eyes were removed), and (6) rearranged eyes and beak 
condition (REB). 

  The results of the preference test between the intact 
original and these alterations are summarized in  fig-
ure 2 , in which the preferences based on ‘coo’ vocalization 
durations were depicted by three symbols,  ! ,  1 , and  ; . 
As seen in  figure 2 , males preferred (i.e. vocalized longer 
near) the intact female images compared to those missing 
the eyes and beak (NEB condition in  fig. 2 ). This means 
that male pigeons prefer the female with the facial fea-
tures, and that pigeons must naturally pay attention to 
the face of a potential mate. When the effects of the beak 
and eyes were compared, the results showed that enlarg-
ing or removing the beak had a significant impact on 
preference (LB and NB conditions), whereas manipulat-
ing the eyes had a much weaker effect (LE and NE condi-
tions). The morphology of the avian beak is associated 
with feeding [Weiner, 1995; Grant and Grant, 2002] and 
preening behavior to remove harmful ectoparasites 
[Clayton et al., 2005]. The presence and size of the beak 
of a female may be a useful visual feature to evaluate 
mates in terms of the efficacy of feeding and parasite con-
trol. The finding that the manipulation of the eyes did not 
have as strong an effect as the beak appears to be coun-
terintuitive because previous studies showed that avian 
eye models triggered robust reactions [Blest, 1957; Scaife, 
1976; Emery, 2000; Watve et al., 2002]. The main differ-
ence between these studies and the study by Patton et al. 
[2010] is whether stimulus eyes belong to dangerous 
predators or harmless conspecifics. Because the appear-
ance of eyes by themselves is not necessarily different be-
tween a predator and prey, the location of stimulus eyes 
in the head may convey important cues to trigger differ-
ent reactions. The eyes of predatory birds, like owls, are 
situated in the front of the head to widen the binocular 
vision for hunting, whereas the majority of birds, includ-
ing pigeons, have laterally situated eyes to increase mon-
ocular visual fields for vigilance. The study by Patton et 
al. [2010] also showed that male pigeons did not discrim-
inate between intact normal faces and globally altered 
faces in which local features were spatially rearranged in 
the REB condition. The results suggested that when birds 
see the face of another bird, they are predisposed to at-
tend to local facial features, rather than the configuration 
of these features. This does not mean that birds are inca-
pable of paying attention to global configuration. Many 

previous studies have shown that global aspects of visual 
stimuli can be used as discriminative stimuli [Wasser-
man et al., 1993; Kirkpatrick-Steger et al., 1996, 1998; Fre-
mouw et al., 1998, 2002; Cavoto and Cook, 2001; Aust and 
Huber, 2003]. Finally, Patton et al. [2010] used only the 
faces of female birds as stimuli. Even if they used the fac-
es of male pigeons as stimuli, the results would most like-
ly be similar because previous studies suggest that the 
static visual cues of pigeons are not greatly sexually di-
morphic. For example, Burley [1981] observed that when 
male pigeons encountered conspecific strangers, they
initially started courting indiscriminately both female 
and male pigeons. Nakamura et al. [2006] also showed 
that when they trained pigeons to discriminate between 
the photographs of males and females, only some of the 
subjects were able to do so. 

  In humans and other primates, the faces of conspecif-
ics are socially vital and visually salient stimuli. Numer-
ous primate studies show that there are certain brain re-
gions specifically associated with the processing of facial 
information (fusiform face area) [Grill-Spector et al., 
2004]. The observation that some bird species also pay 
special attention to subtle differences in facial features of 
conspecifics is intriguing since it suggests that the avian 
visual system may also be equipped with such a neural 
mechanism that processes facial features. At the same 
time, there are also significant differences between birds 
and primates in terms of face perception. For instance, 
humans and other primates naturally attend to the eyes 
of conspecifics [Kano and Tomonaga, 2009, 2010]. As 
seen above, this appears not to be true for pigeons. Simi-
larly, the global configuration of facial features is not im-
portant for pigeons whereas it provides an essential cue 
for individual recognition in humans. 

  Parallel Processing in the Avian Visual System 

 Functional Segregation in the Collothalamic Pathway  
 Underlying their superb visual abilities, birds have a 

highly developed and differentiated neural system [Zeig-
ler and Bischof, 1993; Güntürkün, 2000; Shimizu, 2001; 
Shimizu et al., 2008]. Especially in species with lateral 
eyes, the majority of retinal fibers terminate in the optic 
tectum of the midbrain, which in turn projects to the nu-
cleus rotundus, the largest nucleus of the dorsal thala-
mus. Neurons of the nucleus rotundus further send 
prominent projections to the entopallium in the telen-
cephalon [Karten and Hodos, 1970; Benowitz and Karten, 
1976; Husband and Shimizu, 1999; Laverghetta and Shi-
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mizu, 2003; Krützfeldt and Wild, 2004, 2005]. This col-
lothalamic visual pathway plays a pivotal role in visual 
information processing in birds. Damage to different 
centers of this pathway causes devastating effects on per-
formance in various visual tasks, including color, bright-
ness and pattern discriminations [Hodos, 1993]. 

  The avian optic tectum is a large, highly laminated 
structure, where the visual input projects retinotopically 
to the superficial layers. The retinotopic organization dis-
appears as neurons of the deeper layers of the tectum send 
projections to the nucleus rotundus in a non-topograph-
ic fashion. Instead, different attributes of visual informa-
tion are processed in separate and parallel channels in the 
nucleus rotundus and entopallium. The nucleus rotun-
dus consists of anatomically distinct subdivisions, such 
as the anterior, central and posterior parts [Benowitz and 
Karten, 1976; Mpodozis et al., 1996]. They can be differ-
entiated on the basis of cell type, density and neurochem-
ical contents [Martinez-de-la-Torre et al., 1990; Laver-
ghetta and Shimizu, 2003]. For instance, the rotundal 
subdivisions can be visualized using the distribution pat-
tern of a calcium-binding-protein (calbindin)-like im-
munoreactivity [Husband and Shimizu, 1999]. These 
 different parts receive projections from different classes 
of neurons in the deeper layers of the optic tectum [Hell-
man and Güntürkün, 2001; Marín et al., 2003]. 

  Using electrophysiological techniques, Frost and his 
colleagues showed that neurons in the anatomically dif-
ferent regions in the nucleus rotundus have physiologi-
cally different response characteristics [Wang et al., 
1993]. Their results showed that changes in color and lu-
minance features of visual stimuli increased responses in 
neurons of the anterior rotundus whereas moving stim-
uli increased responses in the central and posterior ro-
tundus. The results suggest that static and dynamic at-
tributes of visual stimuli are processed in parallel chan-
nels within the nucleus rotundus. When selective lesion 
studies were conducted, the results were consistent with 
the physiological data. Lesions in the anterior part, but 
not in the central and posterior parts of the rotundus,
resulted in deficits in color discrimination tasks [Laver-
ghetta and Shimizu, 1999]. Together, these data suggest 
that the nucleus rotundus can be divided into anatomi-
cally, physiologically and functionally segregated divi-
sions. 

  Parallel Processing in the Telencephalon 
 The parallel channels of the collothalamic pathway 

extend from the thalamic level to higher visual structures 
in the telencephalon. Previous connection studies [Be-

nowitz and Karten, 1976; Husband and Shimizu, 1999] 
suggested that there are some topographical relationships 
between subdivisions of the nucleus rotundus and differ-
ent parts of the entopallium. Anterograde tracers have 
been injected into different subdivisions of the nucleus 
rotundus in zebra finches  (Taeniopygia guttata)  [Laver-
ghetta and Shimizu, 2003]. The results showed that the 
projection sites of the anterior, central and posterior ro-
tundus appeared to be topographically organized in the 
entopallium along the anterior-posterior axis. Thus, as 
the source of the ascending projection moved caudally in 
the nucleus rotundus, the target of the projection in the 
entopallium also shifted caudally. This projection pat-
tern was later confirmed in finches and pigeons [Krütz-
feldt and Wild, 2004, 2005]. These results suggested that 
the primary visual area in the telencephalon maintains 
separate and parallel channels ( fig. 3 ).

  Several studies have shown that the functional segre-
gation of the parallel channels extends from the thalamus 
to the telencephalon. For instance, in collaboration with 
Robert Cook, we made lesions selectively in different por-

  Fig. 3.  Schematic diagram showing the parallel system within the 
collothalamic visual pathway in a sagittal section of a bird brain. 
Different subdivisions of nucleus rotundus send projections to 
different subdivisions of the entopallium. Areas defined by dotted 
lines represent the higher visual areas receiving projections from 
the entopallium. Line A represents the axis according to the stan-
dard coordinate system for bird brains, whereas line B represents 
the axis roughly parallel to the major laminae in the telencepha-
lon. LPS = Pallium-subpallium lamina.        
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tions of the entopallium to study the behavioral effects on 
various visual tasks [Patton et al., 2004]. All birds were 
tested simultaneously with two different tasks: (1) dis-
crimination of different textures of color and form (i.e. 
static-feature analysis), and (2) discrimination of differ-
ent types of motion (dynamic-feature analysis). The re-
sults suggest the possibility of a double dissociation in 
structure and function. Birds with anterior entopallium 
lesions showed significant deficits in the color/form task 
and very little decline in the motion task. In contrast, 
birds with posterior entopallial lesions showed greater 
deficits in the motion task than in the color/form task. 
Nguyen et al. [2004] also carried out a similar, but more 
systematic, lesion study using different visual discrimi-
nation tasks and reached basically the same conclusion 
regarding this functional segregation in the telencepha-
lon. Finally, physiological data suggest that the response 
characteristics of neurons in the posterior entopallium 
are similar to those of the posterior rotundus [Xiao et al., 
2006; Xiao and Frost, 2009]. 

  The parallel visual channels extend into even higher 
areas than the entopallium of the telencephalon. Small 
injections of tracers were made to clarify the efferent con-
nections of different portions of the entopallium [Hus-
band and Shimizu, 1999]. The results showed that differ-
ent parts of the entopallium send projections to different 
telencephalic regions, which are also organized roughly 
along the anterior-posterior axis. These telencephalic
regions include part of the lateral portion of the frontal 
nidopallium (NFL), the temporo-parieto-occipital area 
(TPO), the lateral portion of the intermediate nidopalli-
um (NIL) as well as the lateral portion of the caudal ni-
dopallium (NCL). These results suggest that different fea-
tures of visual stimuli (e.g. static and dynamic features) 
are processed separately in anatomically different paral-
lel channels in the thalamic nucleus (rotundus), primary 
telencephalic area (entopallium) and higher telencephal-
ic areas (e.g. NFL, TPO, NIL and NCL). 

  Still, comparatively little is known about anatomical, 
physiological and functional segregation among these 
secondary visual areas. Among these higher visual areas, 
NIL receives major projections from the posterior ento-
pallium. The NIL is difficult to distinguish from the sur-
rounding region in terms of cytoarchitecture and neuro-
chemical contents. We found out that this region can be 
visualized by analyzing the expression of an immediate 
early gene  zenk . This immediate early gene (also known 
as  zif-268 ,  Egr-1 ,  NGFI-A  and  Krox-24 ) encodes transcrip-
tional regulators and is believed to be a crucial step in the 
cellular process underlying long-term memory forma-

tion. It has been used extensively in birds to specify vari-
ous cell groups characterized by gene expression follow-
ing an exposure to specific stimuli or behaviors. These 
studies include the analysis of the song control system in 
songbirds [Mello et al., 1992; Jarvis et al., 1995; Mello and 
Ribeiro, 1998; Jarvis et al., 2000], sexual behavior in quail 
and starlings  (Sturnus vulgaris)  [Ball and Balthazart, 
2001; Can et al., 2007], sexual imprinting in finches 
[Lieshoff et al., 2004; Huchzermeyer et al., 2006] and 
homing behavior in pigeons [Shimizu et al., 2004]. In 
general, high levels of ZENK protein have been observed 
especially in the avian telencephalon compared to the 
lower brain regions, and, within the telencephalon, high-
er sensory and/or association regions compared to the 
primary sensory regions. Studies in our laboratory have 
shown that the NIL region contained more ZENK-posi-
tive cells when pigeons were exposed to a potential mate 
than an empty chamber [Patton et al., 2009]. Similar 
findings have been reported in the finch brain area LNH, 
which likely corresponds to part of the NIL region in pi-
geons. After their ‘first courtship’ experience, neurons of 
LNH showed increased levels of ZENK [Lieshoff et al., 
2004] and another immediate early gene protein (FOS) 
[Sadananda and Bischof, 2002, 2006]. 

  Comparison with the Primate Visual System  
 In primates, the primary visual route from the retina 

to the telencephalon is the lemnothalamic pathway via 
the lateral geniculate nucleus [Livingstone and Hubel, 
1988]. Lesions in the lemnothalmic pathway cause severe 
effects on vision, including deteriorated color perception, 
acuity, and blindness, which are comparable to lesion ef-
fects in the avian collothalamic pathway. For primates, 
the collothalamic visual pathway (retina-superior collic-
ulus-extrastriate cortex) is mainly involved in visuomo-
tor behavior, such as orienting and attending to a visual 
stimulus. The avian lemnothlamic pathway runs from 
the retina to the dorsal thalamus to the visual Wulst in 
the telencephalon. This pathway is relatively minor for 
many birds (especially those with lateral eyes), and le-
sions here cause relatively minor deficits in many visual 
discrimination tasks [Hodos, 1993, but see Shimizu and 
Hodos, 1989; Güntürkün and Hahmann, 1999; Budzyn-
ski et al., 2002; Mouritsen et al., 2005]. Therefore, the avi-
an collothalamic pathway and the primate lemnothalam-
ic pathway are functionally comparable in that both play 
essential and comparable roles in visual processing 
[Bischof and Watanabe, 1997; Shimizu and Bowers, 1999]. 

  Despite the aforementioned similarities, caution is 
clearly warranted when comparing the avian collotha-
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lamic pathway and the primate lemnothalamic pathway, 
which are anatomically different and evolutionarily
distinct [Nguyen et al., 2004]. Nevertheless, the parallel 
processing found in the avian collothalamic pathway is 
reminiscent of the functional segregation found in the 
separate channels of the primate lemnothalamic visual 
pathway. In the primate retina, parvocellular neurons are 
responsive to fine details and color of stimuli whereas 
magnocellular neurons respond strongly to moving stim-
uli. The functional segregation found at the retinal level 
is maintained at the lateral geniculate and the primary 
visual cortex as well. Within the cerebral cortex, visual 
information from the primary visual cortex travels fur-
ther to multiple higher visual areas, where there are at 
least two distinct pathways: the dorsal and ventral streams 
[Ungerleider and Mishkin, 1982]. With mostly parvocel-
lular input, neurons in the ventral stream are sensitive to 
details of shape and color. In contrast, neurons in the dor-
sal stream received mostly magnocellular input, sensitive 
to movements. These observations of the avian and pri-
mate visual pathways suggest the possibility that these 
similar principles of functional segregation are the neural 
foundation for the exceptional visual and vision-associ-
ated cognitive abilities for each animal group. At the 
same time, there are several significant differences be-
tween the pathways of birds and primates. For example, 
there are extensive interactions between the two visual 
channels and among the primary and higher visual areas 
in primates [DeYoe and Van Essen, 1988; Merigan and 
Maunsell, 1993; Nassi and Callaway, 2009], whereas re-
ciprocal connections between the visual areas in the avi-
an forebrain appear to be limited [Husband and Shimizu, 
1999]. These anatomical differences may be related to vi-
sual behavioral differences between birds and primates. 
As described above, one clear difference revealed by etho-
logical studies is that birds are predisposed to attend to 
local facial features, but not to global features. The per-
ception of a global configuration may require the pres-
ence of such interactive circuitries within higher visual 
areas. 

  Columnar Organization in the Avian Telencephalon 

 Organization in the Visual Telencephalon  
 The majority of areas in the avian telencephalon con-

sist of a voluminous nuclear mass called the dorsal ven-
tricular ridge (DVR). It is comprised of several pallial re-
gions, including the mesopallium, nidopallium and arco-
pallium [Reiner et al., 2004; Jarvis et al., 2005]. While the 

exact mammalian counterpart of the avian DVR is still 
debated [Karten, 1969, 1991; Karten and Shimizu, 1989; 
Bruce and Neary, 1995; Northcutt and Kaas, 1995; Puelles 
et al., 2000; Butler and Molnár, 2002; Striedter, 2004; 
Reiner et al., 2005], the avian DVR clearly plays a major 
role in various sensory, motor, and cognitive functions, 
as is the case with the mammalian neocortex. However, 
neurons of DVR are aggregated as multiple nuclear clus-
ters and nuclei in a non-laminar fashion, instead of a cor-
tex-like laminar fashion. For different functions, a spe-
cific neural circuitry is formed by a group of nuclei that 
are closely interconnected, but spatially dispersed in 
DVR. The apparent lack of a familiar laminar arrange-
ment often prevents us from recognizing a coherent or-
ganization or architecture in these neural circuitries, giv-
ing the erroneous impression that neural computation in 
the avian telencephalon is carried out not as efficiently as 
we assume a more orderly, laminar system would. 

  A close examination of these circuitries in DVR sug-
gests that a more systematic organization exists in the 
avian telencephalon than previously considered. In par-
ticular, many of these circuits appear to form an orderly 
columnar organization, although it is sometimes severely 
distorted. One main reason that such an organization is 
difficult to identify in standard brain sections is due to 
the ‘rotated’ nature of commonly available coordinate 
systems for bird brains. For many systems, the beak (i.e. 
the anterior fixation point) is placed 45 degrees below the 
horizontal plane defined by the ear bar (i.e. the posterior 
fixation point) of the stereotaxic instrument. This rota-
tion is useful especially when the brainstem structures 
are compared to the mammalian equivalents in trans-
verse sections [e.g. Karten and Hodos, 1967; Bischof, 
1981], but, at the same time, it can cause confuse exami-
nations of telencephalic organization. 

  In the case of the visual system, sensory information 
through the collothalamic pathway reaches the entopal-
lium, which is a part of the DVR. While, as described 
above, this rotundus-entopallium connection is orga-
nized along the antero-posterior axis, the axis is actually 
rotated relative to the axis of a standard coordinate sys-
tem. On transverse sections based on a standard coordi-
nate system, injections of anterograde tracers into the an-
terior rotundus produced terminal fields in the anterior 
and also ventral portions of the entopallium, whereas in-
jections into the caudal rotundus showed terminals in 
caudal and dorsal portions of the entopallium. These re-
sults could mistakenly imply that the rotundus-entopal-
lial correspondence is more complicated and convoluted 
than it really is. However, as seen in  figure 3 , the antero-
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posterior axis of the entopallium is not matched to the 
horizontal plane of a coordinate system, but parallel to 
major telencephalic laminae, such as the pallial-subpalli-
al lamina (LPS). Accordingly, each subdivision of the en-
topallium forms a column-like organization almost per-
pendicular to these laminae. 

  In addition to their afferents, the main efferent pro-
jections of different parts of the entopallium are also 
 arranged in a column-like fashion. The anterior, inter-
mediate and posterior entopallium all send dorsolateral 
projections which eventually reach anterior (NFL), inter-
mediate (TPO) and posterior regions (NIL and NCL), re-
spectively near the edge of the telencephalon. Veenman 
et al. [1995] designated these regions, as well as other so-
matic regions associated with different modalities, as the 
pallium externum. The pallium externum further gives 
rise to a projection to the lateral striatum [Veenman et al., 
1995]. The entopallium also has reciprocal connections 
with a nucleus in the lateral mesopallium. This nucleus 
resides dorsal to the entopallium [Husband and Shimizu, 
1999; Krütz feldt and Wild, 2004, 2005]. These findings 
suggest that the visual columns extend from the entopal-
lium to higher pallial areas in the dorsolateral telenceph-
alon, which in turn have close connections with the lat-
eral portion of the basal ganglia ( fig. 4 ). Thus, these vi-
sual columns form extensive dorsolateral continuums 
across DVR and basal ganglia. Studies using  zenk  expres-
sion show that such a columnar organization is not 
unique to vision, but is also present in other sensory mo-
dalities and movement-associated areas [Feenders et al., 
2008].

  Organization of the Limbic-Associated Telencephalon 
 A columnar organization may not be unique to the 

somatic telencephalon. It may also exist in the limbic-
associated regions, the medial DVR and basal ganglia in 
particular. In birds, the medial basal ganglia are located 
just lateral to the ventral portion of the lateral ventricle. 
The rostral and intermediate portions of the medial bas-
al ganglia in particular are considered to be part of the 
limbic system, including the nucleus accumbens and ven-
tral pallidum. When Husband and Shimizu [submitted] 
injected anterograde and retrograde tracers into the me-
dial basal ganglia at rostral and intermediate levels, the 
results showed that there are prominent reciprocal con-
nections between the medial basal ganglia and the dor-
sally located medial DVR regions (i.e. medial nidopalli-
um and mesopallium). The injections into the medial 
basal ganglia also revealed connections with the medial 
hyperpallium and hippocampus, forming an extensive 
medial continuum almost parallel to the lateral ventricle. 
The results are consistent with a previous study in chicks, 
in which tracer injections in the intermediate medial 
DVR resulted in extensive anterograde labeling in the 
medial basal ganglia [Metzger et al., 1998]. The results are 
also consistent with the many retrogradely labeled cells 
in the medial DVR after injections in the medial basal 
ganglia in chicks [Székely et al., 1994] and pigeons [Veen-
man et al., 1995; Kröner and Güntürkün, 1999] and the 
connections with the hippocampus [Veenman et al., 
1995; Székely and Krebs, 1996; Atoji et al., 2002]. 

  The exact functional roles of the medial pallium, and 
its potential mammalian equivalent, are not clear. In gal-
liforms, this area is involved in learning and memory 
processes, rather than sensory processing or motor con-
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  Fig. 4.  Schematic diagrams showing trans-
verse sections of the telencephalon of the 
pigeon (left) and the crow (right). The vi-
sion-related continuum is situated in the 
lateral region, whereas the limbic-associ-
ated continuum is located in the medial re-
gion.       
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trol. More specifically, it has been associated with visual, 
acoustic, and sexual imprinting, whereby preference is 
developed for a certain stimulus in the formation of filial 
behavior [Maier and Scheich, 1987; Gruss and Braun, 
1996; Horn, 1998; Bolhuis, 1999; Thode et al., 2005] or 
mate choice [Bischof and Herrmann, 1986; Scheich et al., 
1992]. Metzger et al. [1998] proposed that part of the avi-
an medial pallium corresponds to the prefrontal cortex 
of mammals. As the possible avian equivalent of the pre-
frontal cortex, the NCL in particular is more commonly 
suggested in terms of chemical, hodological and func-
tional evidence [Mogensen and Divac, 1982; Waldmann 
and Güntürkün, 1993; Kröner and Güntürkün, 1999; 
Güntürkün and Durstewitz, 2001]. However, part of the 
medial pallium also has several characteristics similar to 
the mammalian prefrontal cortex. In terms of connec-
tions, the close association with the limbic regions, such 
as hippocampus and medial basal ganglia is similar to the 
prefrontal neocortex [Heimer et al., 1985, 1997]. Like the 
prefrontal cortex, the medial pallium receives input from 
higher sensory areas, such as NCL, which in turn receives 
secondary and tertiary input from the visual, auditory, 
and trigeminal systems [Bonke et al., 1979; Wild et al., 
1993; Leutgeb et al., 1996; Metzger et al., 1996; Kröner 
and Güntürkün, 1999]. Furthermore, the mammalian 
mediodorsal nucleus sends a major projection to the pre-
frontal cortex [Divac et al., 1978; Ray and Price, 1993; 
Kuroda et al., 1998]. The possible avian counterpart of 
these nuclei (part of the dorsomedial thalamic nuclei) 
also sends a projection to the medial pallium, but not to 
NCL [Kitt and Brauth, 1982; Wild, 1987; Metzger et al., 
1996; Kröner and Güntürkün, 1999; Montagnese et al., 
2003]. Regardless of the functions and mammalian cor-
respondence, this DVR region is a part of the extensive 
medial column, in which highly processed sensory input 
is linked with the pallial and subpallial limbic regions. 

  Enlargement of a Column 
 According to volumetric measurements, the size of the 

avian telencephalon is proportionally larger in some spe-
cies (e.g. parrots, passerines) than others (e.g. pigeons, 
galliforms) [Burish et al., 2004; Lefebvre et al., 2004; Iwa-
niuk and Hurd, 2005]. These studies further show that 
the size increase is not necessarily due to the overall tel-
encephalic expansion, but because specific regions with-
in it are comparatively enlarged in some species. For ex-
ample, the expansion of the Wulst is associated with more 
frontally oriented eyes [Iwaniuk et al., 2008]. If a neural 
circuit associated with a certain function is indeed orga-
nized in a columnar fashion, as described above, it is rea-

sonable to assume that development and sophistication of 
the function may be reflected in the complexity and ex-
pansion of the relevant column [Jerison, 1973]. Some pre-
liminary evidence suggests that this may be the case at 
least for the medial limbic-associated column. 

  Jungle crows  (Corvus macrorhynchos)  are corvids 
commonly found in cities in Japan, where their ‘intelli-
gence’ is well known [Izawa and Watanabe, 2008a], as is 
suggested to be true for other corvids as well [Hunt, 1996; 
Clayton et al., 2003; Emery, 2006; Prior et al., 2008]. Izawa 
and Watanabe [2008b] have created an atlas of the jungle 
crow brain, in which it is clear that the crow’s telenceph-
alon is much larger than that of a pigeon, despite their 
similar total body weight. Within the telencephalon, sev-
eral regions are proportionally larger in the crow than 
those same regions in the pigeon, such as the anterior 
Wulst and caudal nidopallium. Among these obvious ex-
pansions, of particular note in the crow is that the inter-
mediate telencephalon has expanded extensively in the 
lateral direction. This lateral expansion appears not to be 
due to enlargement of the dorsolateral column (including 
the entopallium), but likely due to the enlarged medial 
continuum discussed above, as seen in  figure 4 . Further 
examination of the significance of this enlarged medial 
continuum is warranted and suggests the fascinating 
possibility that, given its likely association with learning 
and memory in corvids, this medial continuum may, at 
least in part, correspond to the prefrontal cortex. 

  Conclusion 

 Pioneering neuroscientists like Barrie J. Frost used
behavioral, physiological and anatomical techniques to 
study the avian visual system decades ago. Since then, re-
search has demonstrated the exceptional behavioral abil-
ities of this comparatively miniscule neural system and 
the complex and sophisticated circuitries in the avian 
brain underlying such abilities. However, more studies 
are clearly necessary to paint a more comprehensive pic-
ture of avian vision and its neural substrates.

  In terms of visual behavior, extensive studies have 
been conducted, especially those using operant condi-
tioning techniques to clarify the capabilities and limits of 
the visual abilities of birds. The traditional learning re-
search with pigeons has produced an enormous amount 
of literature about their visual and visuo-cognitive abili-
ties. However, the interdisciplinary exchange of such cru-
cial information between researchers performing these 
studies and those who are interested in vision and bird 
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behaviors has not been widespread. It is a shame that the 
voluminous basic behavioral data are not as often or 
broadly shared by investigators outside the field of learn-
ing as they should be. Studies from an ecological and 
ethological point of view on the avian visual system are 
also limited compared to traditional learning research. 
These studies should be encouraged to investigate exact-
ly how the avian visual system solves complicated bio-
logical problems in the real world. For instance, Partan et 
al. [2005] modified the ethological methods described 
above [Shimizu, 1998] to investigate how visual and audi-
tory channels interact and are integrated. While birds in 
nature often combine visual and auditory (e.g. vocal) sig-
nals to communicate with each other, little is known 
about multisensory interactions and effects.

  For the neural aspects of the avian visual system, stud-
ies on the telencephalon have just begun. While ample 
investigations have focused on the retina and well devel-
oped midbrain of the avian visual system, more physio-
logical and anatomical data on the visual telencephalon 
are imperative, as it clearly plays an essential role in vari-
ous visual tasks. Response characteristics of different
visual areas need to be documented; in addition, the ex-
pression of immediate early genes in these areas fol-
lowing different visual experiences needs to be collected. 

Studies on more diverse birds are also necessary in order 
to understand the effects of various selective pressures on 
the visual telencephalon over the course of avian evolu-
tion. While only a limited number of avian species (e.g. 
chickens and pigeons) have been used for the majority of 
vision research, there are about 10,000 living species of 
birds in various environments. Ultimately, these behav-
ioral and neuroethological studies must be and will be 
integrated in order to understand how birds have devel-
oped their amazing visual systems through 150 million 
years of evolution. 
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