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Abstract

Heavy charged particle beam radiotherapy for cancer is of increasing interest because it delivers a
highly conformal radiation dose to the target volume. Accurate knowledge of the range of a heavy
charged particle beam after it penetrates a patient’s body or other materials in the beam line is very
important and is usually stated in terms of the water equivalent thickness (WET). However, methods
of calculating WET for heavy charged particle beams are lacking. Our objective was to test several
simple analytical formulas previously developed for proton beams for their ability to calculate WET
values for materials exposed to beams of protons, helium, carbon and iron ions. Experimentally
measured heavy charged particle beam ranges and WET values from an iterative numerical method
were compared with the WET values calculated by the analytical formulas. Inmost cases, the
deviations were within 1 mm. We conclude that the analytical formulas originally developed for
proton beams can also be used to calculate WET values for helium, carbon and iron ion beams with
good accuracy.

1. Introduction

Interest in heavy charged particle beam therapy has gradually increased since Wilson (1946)
first proposed using particle beams in radiation therapy; he pointed out that the properties of
specific ionization of heavy charged particles could be used for medical and biological
applications. Since then, heavy charged particle beams used in radiotherapy have included
protons and heavier ions such as carbon ions (Goitein et al 2002, Jakel et al 2003, Amaldi and
Kraft 2005, Schulz-Ertner et al 2006, Schulz-Ertner and Tsujii 2007). The most important
advantage of heavy charged particles is that they deposit most of their energy within a narrow
range represented by the Bragg peak; this predictable deposition of dose can be utilized to spare
normal tissues and Kill malignant cells. In addition, the energies of heavy charged particle
beams can be adjusted using modulating materials to treat any part of tumors within a patient.

During quality assurance testing with phantoms and radiotherapy treatment planning, liquid
or solid water is frequently used to represent patient tissue (either by itself or in combination
with other materials) for beam range and absorbed dose measurements, and water equivalent
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thickness (WET) or water equivalent ratio (WER) is often used to characterize the beam
penetration range. For highly conformal heavy charged particle beam therapy with millimeter
accuracy, it is very important to determine precise values of WET for each material in the beam
line. Methods for calculating WET in proton beams (IAEA 2000, Newhauser 2001a,
Newhauser et al 2007a) and heavy ion beams (IAEA 2000) were proposed previously, but
these calculations required either a time-consuming iterative numerical method (NM) or fast
but approximate methods of unknown accuracy. We recently derived several analytical
formulas for this purpose and showed that these formulas can be used to calculate WET values
for materials used in proton therapy of arbitrary density, elemental composition and thickness
with small errors (Zhang and Newhauser 2009).

The objectives of this study therefore were to calculate the WET of various materials exposed
to beams of protons, helium, carbon and iron ions using the formulas derived in our previous
work and to compare our calculations to measured data. The analytical formulas were
developed using theoretical range-energy relations, with the goal of achieving 1 mm
uncertainty in WET.

2. Methods and materials

2.1. Calculation methods

The general formula to calculate WET for heavy charged particle beams is

S
WET=1,, =1,/ 22"

Pw S, (1)

where t,, and t,, are the thicknesses of water and the target material, respectively; py, and pp,
are the mass densities of water and the material, respectively; and S, and Sy, are the mean
values of mass stopping power for water and the material, respectively (Newhauser 2001a). In
essence, WET is the thickness of water that causes an ion beam to lose the same amount of
energy as the beam would lose in some medium m. The unitless quantity WER is the ratio of
ty to ty. The methods for calculating the S value were extensively described in our previous
paper (Zhang and Newhauser 2009) and are explained briefly here for the convenience of the
reader.

The objective of each of the following three approaches was to calculate the mean mass
stopping power in the material of interest based on relationships between theoretical mass
stopping power and beam energy. The first relationship is based on the Bragg—Kleeman (BK)
rule (Bragg and Kleeman 1905):

dE El-p

e V.

)

pdx - pap (2)

where o and p are material-dependent constants and E is the initial energy of the heavy charged
particle beam. The values of o and p were obtained by fitting to either residual ranges or
stopping powers data (Ziegler et al 1985). A second range—energy relationship for heavy
charged particle beams is captured in the Bethe—Bloch (BB) equation (Bethe 1930, Bloch
1933):

dE Z 1| 2mec*y*p?
S=- T=47INAr(2,meCZ:2Z—2 lnw -,
pdx B (3)
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where N is Avogadro’s number, re is the classical electron radius, me is the mass of an electron,
z is the charge of projectile, Z is the atomic humber of the absorbing material, A is the atomic
weight of the absorbing material, ¢ is the speed of light, B = v/c, where v is the velocity of the
projectile, y = (1 — p2)~Y2 and | is the mean excitation energy of the absorbing material. For

compounds and mixture materials, the mass fractions of each constituent element are needed
to calculate the effective atomic number Ze¢;, the effective atomic weight A¢f and the effective
mean excitation energy, lgs, for the mixture as

Zeff:Z (liZj, (4)
Aeﬂ:Z (lej, (5)

Zu,—Z,- In(Z)
In (Ie)=—

Z(l,‘Zj |

i (6)

respectively, where a;j, Z;, and |; are the relative number of moles of element i per mole of
compound, the atomic number and the mean excitation energy of the ith element in the
compound, respectively (Leo 1987).

We previously proposed an empirical formula to calculate | in an empirical form of the BB
equation (EBB) (Zhang and Newhauser 2009), such that | = kZ, where K = 14.5 when Z <8,
K=13when8<Z<13and K =11 when Z > 13.

An iterative NM of WET calculation described by Newhauser et al (2007a) was used as one
of the standard of comparison for the other analytical formulas used here, because it is the most
exact one of the methods considered.

For ‘radiologically thick’ targets (following the definitions of ‘radiologically thick’ or ‘thin’
from Zhang and Newhauser (2009)), changes in the projectile energy and mass stopping power
must be considered. Therefore, we used S instead of point values S in such cases (the ‘thick-
target approach”). The S values were calculated by integrating equations (2) and (3) over
projectile energy, where the limits of integration were the projectile energy at the entrance and
exit of the slab. The Svalues were substituted into equation (1) to obtain WET values for thick
targets. For ‘radiologically thin’ targets, one may use point value stopping powers established
in equation (1) (the “thin-target approach’). However, in this report we included only the thick-
target approach for brevity and because it is more robust and accurate than the thin-target
approach.

2.2. Measuring the WET for various materials in heavy charged beams

Proton beam ranges were measured at the Midwest Proton Radiotherapy Institute (MPRI;
Bloomington, IN). The MPRI houses a fixed horizontal beam line with a double scattering
nozzle and two rotating gantries utilizing uniform scanning nozzles. It was built by the Indiana
University Cyclotron Facility which also provides a cyclotron for acceleration of protons to a
maximum energy of 208 MeV (Anferov et al 2006). All proton experiments described here
were performed in the fixed horizontal beam line (figure 1(a)). The double scattering system
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includes two scattering foils to spread and flatten the beam. The first foil is made of lead or a
combination of lead and polycarbonate, depending upon the beam energy selection. The second
foil is made of lead and lucite. Dose monitoring chambers are used to monitor and adjust the
proton beam. Downstream of the scattering foils and the second dose monitoring chamber the
beam passes through a range modulator and the snout with a final collimator.

A parallel-plate ionization chamber (Markus, model 23343, serial no 3997, PTW, Freiburg,
Germany) coupled with an electrometer (Wellhofer Dosimetrie, model WP5007, serial no
3245, Nirnberg, Germany) was used to measure the distribution of percentage of dose versus
depth using a one-dimensional scanning water phantom system (IBA, model 2001, serial no
4739, Scanditronix Wellhofer, Bartlett, TN, USA). The beam range was taken as the distal
depth along the beam central axis in water corresponding to 90% of the maximum dose
(Dmayx)- First we measured the range in water without the material of interest in the beam line
(R1); then, we measured the range in water with the material placed immediately upstream of
the water tank (R,). WET was the difference of these two ranges (i.e., Ry - Ry). Figure 1(b)
shows the experimental apparatus at the MPRI, including the water tank and a slab of interest.

Similar measurements were performed in passively scattered beams at the Northeast Proton
Therapy Center (NPTC, Boston, MA). That system was described elsewhere (Jongen et al
1996). The WET values were deduced from range measurements made with a parallel-plate
ionization chamber (Markus, model 23343, serial no 2397, PTW, Freiburg, Germany) that was
used with a commercial one-dimensional scanning dosimetry system (Computerized Radiation
Scanners, model 140, serial no 311, Vero Beach, FL, USA), which included an electrometer
that was modified for proton therapy applications (Newhauser 2001a, 2001b). The ionization
charge measurements and methods for determination of the proton range were described
previously (Newhauser et al 2002).

Table 1 lists the materials used in this study, including gold, lead, stainless steel, titanium,
aluminum, polycarbonate resin (Lexan, C1gH1403, GE Plastics Inc., Pittsfield, MA),
polymethylmethacrylate (PMMA) (Lucite, CsHgO,, GE Plastics Inc., Pittsfield, MA), lung
substitute plastic (LN300, Gammex RMI, Middleton, WI, USA), polystyrene, high-density
polyethylene (HDPE), polyvinylchloride (PVC) and bone substitute plastic (SB3, Gammex
RMI, Middleton, WI, USA). Also listed are their mass densities p, (Z/A)gss values (ratio of
Zes5 10 Agf) and mole fractions. The set of target materials included a wide variety of mass
densities and was representative of materials commonly encountered in charged particle
radiotherapy.

We tested whether the proton beam field size would affect the beam range results by using
different size collimating apertures (with diameters of 10, 8 and 5 cm) with a 200 MeV proton
beam and with a 10 by 10 cm? aluminum slab present. These measurements were carried out
at MPRI.

Moyers et al (2009) previously measured the WER of different materials used in heavier
charged particle beams of various energies at Loma Linda University and the National
Aeronautics and Space Administration (NASA) Space Radiation Laboratory at Brookhaven
National Laboratory (Upton, NY). These measurements, which were conceptually similar to
the range measurements described above, were used in this work to confirm the values
predicted using analytical formulas.

Table 2 lists o and p values for the BK rule for various materials and heavy charged particles.
The a values generally decreased with increasing material mass density and atomic number,
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regardless of the ion type, while the p values were weakly dependent on the ion type and target
material.

The upper portion of table 3 lists the measured WET values that were measured at the MPRI,
and the corresponding calculations based on the BK rule and the NM for various materials.
The differences between the values predicted by the BK rule and the NM calculations were
less than 0.1 mm, and the differences between results predicted by the BK rule and measured
data were less than 0.7 mm. Measurements with proton beams of various cross-sectional areas
confirmed that the proton beam range determinations were not influenced by lateral field-size
effects. The lower portion of table 3 lists the measured WET values from the NPTC and the
corresponding calculations. Differences between the values of WET from the NM calculations
and those predicted by the BK rule were less than 0.01 mm, and the differences between the
values predicted by the BK rule and the values from the measured data were less than 0.3 mm.

Tables 4-6 list WER predictions from the three analytical formulas and the NM for helium,
carbon and iron ions in a variety of materials. Compared to the NM as the standard, the BK
rule yielded more accurate estimates of WER than the other analytical formulas for most
materials and projectile types and energies. For iron ions, the calculated results from three
analytical formulas were comparable to one another. The EBB formula yielded WER
predictions that were in better agreement with the NM predictions for all ions and absorber
materials considered, except for aluminum, where the differences were negligible. This result
is consistent with previous comparisons for protons (Zhang and Newhauser 2009). The reason
for the superiority of the EBB approach compared to BB is attributable to the empirical
approach to estimate the | value as presented in section 2.1. The values from tables 4-6 also
show that helium and heavier projectiles behave in a qualitatively manner similar to those for
protons, i.e. the WER values depend on the target material and the beam energy, and the largest
deviations from NM occurred when the beam was at the lowest initial energy (Zhang and
Newhauser 2009).

It is important to quantify the worst-case errors in WET predictions that were caused by the
approximations inherent to the analytical formulas. Figure 2 plots the maximum WET
deviations (ARmax) for different targets and ion species. More precisely, for a given ion type
and target material, AR,y is the absolute value of the difference between the WET value from
an analytical prediction and that from the corresponding numerical prediction, or ARmax = |
WET - WETNmMjmax- The range deviations were all less than 1 mm regardless of the target
material and ion type, except for the lead target in the helium ion beam, which had range
deviations as large as 4.08 mm. In this case, restricting the comparison to 119 MeV/u (MeV
per nucleon) and above initial helium ion energy yielded AR« values below 1 mm using the
BK rule, while the BB and EBB equations still produced ARmax values larger than 1 mm.
However, with a slight modification (i.e. setting | = 13Z for Z > 13), the EBB equation also
yielded ARpax values of less than 0.55 mm. Overall, the predictions of WET based on analytical
formulas agreed well with the corresponding the NM calculations.

Table 7 lists calculated WER values using the BK rule for proton, carbon ion and iron ion
beams and the corresponding measured values from Moyers et al (2009). The data were listed
for combinations of different materials, beam types and beam energies. The table also lists the
difference between the measured and predicted WET values (WER values were converted to
WET values by multiplying the corresponding material thicknesses), denoted by ARgk exp-
Most of the ARg exp Values were within 1 mm and all were less than 2.4 mm, and the worst
agreement was found for thick targets (thicknesses of 96.5 mm PMMA, 102.9 mm HDPE,
60.07 and 90.14 mm bone substitute slabs, 60.37 mm aluminum).
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4. Discussion

In this study, WET values of various materials in heavy charged particle beams calculated by
one NM and three analytical formulas were validated against measurements. The good
agreement between all measured and predicted values (deviations within 1 mm in most cases)
provides strong evidence that the analytical methods developed in our previous studies predict
WET values with adequate accuracy for various clinically relevant ion species, ion energies,
and absorber materials.

The International Atomic Energy Agency (IAEA) has proposed techniques to predict the
approximate WET of plastic phantoms used for relative proton dosimetry using the ratio of the
continuous-slowing-down approximation (CSDA) range (in g cm™2) in water to that in the
material of interest and to predict the approximate WET of plastic phantoms used in heavy-
ion beam dosimetry (atomic numbers between 2 and 18) as the product of the phantom thickness
and the mass density of the phantom (IAEA 2000). Because the CSDA range represents
complete loss of ion energy, meaning that the target thickness must be larger than the beam
range, this approximation is not applicable in many clinical situations where WET values are
needed. Our finding suggests that the simple analytical WET formulas from Zhang and
Newhauser (2009), which were developed for protons passing through absorbers of arbitrary
thickness and composition, also provide more accurate predictions for helium, carbon and iron
ions than those that can be achieved using the IAEA method. The main differences are as
follows: the analytical formulas can be used for thick targets and the calculation uncertainties
and the interval of applicable energies are now known.

The results of this study have several applications. The analytical formulas used here may be
useful in configuring treatment planning systems rather than complex numerical methods; the
thicknesses of several radiologically thick components in the treatment head are specified in
the planning system in terms of WET (Newhauser et al 2007c, Kramer et al 2000). The
analytical formulas may also be particularly useful in calculating WET values for metal
implants in patients (Newhauser et al 2007a, 2007b, 2008). Our results can also be used in
heavy charged particle beam dosimetry because the absorbed dose measurements depend on
the geometric relationships between the particle beam and equipment in the treatment head,
and their geometric dimensions are often specified as WET (Newhauser 2001a, 2001b,
Newhauser et al 2002, IAEA 2000). While our methods are adequate for many clinical
calculations, the requirements on the accuracy of WET predictions depend on many factors,
including the treatment site, treatment technique and the proximity of nearby critical structures.

This study had several limitations. First, we neglected density and shell corrections in the BB
equation for heavy charged particles following the methods of the previous study on proton
WET calculations (Zhang and Newhauser 2009). The calculated results in this paper show that
this approximation still yields good accuracy in clinical environments and therefore it is not a
serious limitation. Second, the EBB equation required modification of the empirical equation
used to calculate I so that errors were less than 1 mm for the case of the lead target in the helium
ion beam. Because this was a rare occurrence, the analytical formula is still applicable in most
cases. Third, we did not verify the thin-target approach for heavy charged particle beams other
than proton beams (the thin-target approach was tested for the proton beam in our previous
study (Zhang and Newhauser 2009)).

In conclusion, we have confirmed that analytical formulas of thick-target approach can be used
to calculate WET values of various types of materials in beams of protons, helium, carbon and
iron ions with high accuracy. This finding is important because of the increasing use of heavy
charged particle beams for cancer treatment and the need for accurate predictions of WET
values for such therapies.
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Figure 1.

(a? Schematic diagram of the fixed horizontal proton beam line configuration at the MPRI
(Courtesy of Indiana University Cyclotron Facility). (b) Experimental apparatus at the end of
the proton beam line at the MPRI for measuring the WET of one material (a lung substitute
plastic slab).
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Figure 2.

Maximum deviations, ARmax, in WET values calculated by the analytical formulas relative to
that given by the NM for (a) lead, (b) aluminum and (c) PMMA. The thicknesses of materials
used were 1.5 cm lead, 2 cm aluminum and 10 cm PMMA for helium ions; 1.2 cm lead, 1.5

cm aluminum and 10 cm PMMA for carbon ions; 0.1 cm lead, 0.2 cm aluminum and 0.3 cm
PMMA for iron ions.
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Table 1
Common materials used in heavy charged particle beams, with their mass densities p, values of (Z/A)ef; and mole
fractions.
Material p(gcm™3) (ZIA)esr  Mole fraction (%)

Lung substitute

HDPE

Water
Polystyrene
PMMA

Lexan

PVC

Bone substitute
Aluminum
Titanium

Stainless steel

Lead
Gold

0.3

0.964
1.0
1.06
1.185
1.20
1.385
1.829
2.698
4.519
7.85

11.322
19.311

0.537

0.570
0.555
0.538
0.539
0.527
0.512
0.516
0.482
0.459
0.466

0.396
0.401

H 55.577, C 32.738, N 0.927, O 7.508,
C10.019, Si 0.184, Mg 3.048

H66.717, C 33.283

H 66.667, O 33.333

H 49.851, C 50.149

H 53.333, C 33.333, 0 13.333,

H 42.424, C 48.485, 0 9.091

H 50.218, C 33.202, Cl 16.580

H 35.215, C 29.592, N 0.803, O 26.695, Cl 0.16, Ca 7.679
Al 100

Ti 100

C 0.045, N 0.045, Si 0.450, Cr 18.150, Mn 1.250,
Fe 71.460, Ni 8.550, Mo 0.050

Pb 100
Au 100
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