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Abstract
The vocal ligament is known to have nonlinear variation in geometry, yet this is rarely considered
in empirical or computational studies. This paper investigates the effects of a nonlinear variation of
the anterior-to-posterior geometry and the corresponding spatial variation in elastic modulus on the
fundamental frequency of vibration for the vocal ligament. Uniaxial tensile tests were performed on
a vocal ligament specimen dissected from an excised 60-year-old male larynx. Digital image
correlation (DIC) was used to obtain the spatial deformation field for the entire ligament specimen.
DIC results revealed that the tensile deformation was very heterogeneous, with the least amount of
deformation occurring in the region of smallest cross sectional area. The elastic modulus was
calculated locally and was found to be approximately 10 times higher at the mid-point of the vocal
ligament than in the anterior and posterior macula flavae regions. Based on the spatially varying
material properties obtained, finite element models (isotropic and transversely isotropic) were created
to investigate how the effects of varying cross-section, heterogeneous stiffness, and anisotropy could
affect the fundamental frequency of vibration. It was found that the spatial cross-section variation
and the spatially varying anisotropy (i.e. modulus ratio) are significant to predictions of the vibration
characteristics. Fundamental frequencies predicted with a finite element model are discussed in view
of rotatory inertia and contribution of transverse shear deformation.
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1. Introduction
Phonation is critically determined by the biomechanical properties of the vocal folds. The vocal
fold cover and the vocal ligament may both be considered as the vibrating tissue components
in the airflow-driven vibration of the vocal folds. In a basic beam model of vibration, the
fundamental frequency of the vocal folds in an unstretched state is given as (Zhang et al.,
2009)
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where F0 is the natural frequency of the lowest mode (under no applied tension), E is the elastic
modulus, κ is the radius of gyration for the tissue cross-section, L is the length, ρ is the density
of the tissue, and α is a constant equal of the order of unity. In the past, we have considered
changes to the fundamental frequency as stretching of the vocal fold occurs (Zhang et al.
2007). Thus, the influence of length L and the current modulus E on F0 were considered. Here,
we hypothesize that spatial variations in cross-section properties, in the tissue modulus, and in
the tissue anisotropy could also influence F0. Such a study would provide more insight into
the biomechanical processes of vocal fold vibration and phonatory sound source generation.

Figure 1 shows the vocal ligament (i.e. intermediate and deep layers of the lamina propria) that
is the focus of this study. Figure 1a shows a ligament specimen, extending anteriorly from the
anterior commissure to the vocal process of the arytenoid cartilage posteriorly. For the purpose
of applying tensile deformation during biomechanical testing, sutures were attached to sections
of the thyroid cartilage and arytenoid cartilages naturally attached to the ligament specimen,
including the macula flavae. Figure 1b reproduces a horizontal (transverse) section through an
adult larynx at the glottal level (Hirano and Sato, 1993). An outline of the specimen in Fig. 1
(a) is superimposed onto the anatomical section in Fig. 1(b). It is evident from Fig. 1 that the
cross-section of the vocal ligament is not constant, but includes tapering at the macula flavae.
Past models for the predictions of fundamental frequencies have assumed the vocal fold cross-
section to be constant (Zhang et al. 2009,Zhang et al. 2007). How spatial variations in the cross-
sectional geometry could influence the fundamental frequency and vibration characteristics is
unknown.

For biological tissues it has been shown that biomechanical properties can exhibit spatial
variations within a single type of tissue. Bones remodel to adapt to mechanical loads, thus
causing gradients in the mechanical properties within a single bone (Frost, 1990; Lanyon,
1992; Kishen et al., 2000). Spatial variations in biomechanical properties have also been
documented for soft tissues. In the crystalline lens of the human eye, the stiffness was on
average 65 times greater in the center than at the periphery for older lenses (Weeber et al.,
2007). Additionally, several studies of articular cartilage reported that regional variations occur
at the microscopic level, e.g. in cell types, fiber orientation and structure, as well as at the
macroscopic level, e.g. the stress-stain response (Tanne et al., 1991; Klein et al., 2009).
Recently, a gradation of tissue properties was also reported for vocal fold tissue. Goodyer et
al. (2010) report changes in mucosa stiffness with respect to anatomical position for pig
larynges. Mucosa stiffness at locations along a line from the midpoint of the vocal fold toward
the trachea increased linearly with respect to position, increasing as the measurements are taken
further from the vocal fold.

In order to investigate if spatial variation in the biomechanical properties exists in the vocal
fold lamina propria, the digital image correlation approach together with a mechanical testing
paradigm was employed. Digital image correlation (DIC) is a non-contact, optical
measurement technique that tracks the gray scale value pattern in small neighborhoods of the
image (“subsets”) of a specimen during deformation, in order to determine displacement fields.
Strain fields can then be obtained by spatial differentiation of the displacement field. DIC has
demonstrated its usefulness at the macroscopic as well as the microscopic levels (Verhulp et
al., 2004), and both in synthetic (Sachtleber et al., 2002) and biological structures (Sachs et al.,
2006). Once strain data is combined with stress data any existing spatial distribution in a tissue
specimen’s elastic modulus would be revealed. Past models for the predictions of fundamental
frequencies have assumed the elastic modulus to be constant throughout the vocal ligament,
and it is unknown how spatial variation in the elastic modulus would affect the fundamental
frequency and vibration characteristics relevant for phonation.
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A macro-scale continuum mechanics approach for the characterization of vocal fold tissue
considers tissue biomechanical properties as measured data, but leaves the question of
underlying mechanisms leading to such properties unanswered. Alternatively, a micro-
mechanics continuum approach considers tissue biomechanical properties as the result of the
properties of tissue constituents and their interactions. In a most basic view, the vocal fold
lamina propria has shown to be consisting of a network of fibrous proteins (collagen and elastin
fibers) enmeshed in “ground substances”, or interstitial proteins such as glycosaminoglycans
and proteoglycans. Bundles of the fibrous proteins are aligned in the anterior-posterior (i.e.
longitudinal) direction, leading to anisotropy in tissue properties (Gray et al., 2000). Such a
microstructural alignment leads to transversely isotropic biomechanical properties (Gray et al.,
2000; Hirano et al., 1982). In their study of a vocal fold model in the form of a solid, rectangular
parallelepiped, Cook and Mongeau (2007) investigated the level of anisotropy and determined
only little impact of anisotropy on the eigenfrequency. We hypothesize that a spatial variation
of biomechanical properties – such as the tissue modulus – is related to the spatial variations
in the densities of proteins (e.g. collagen content) in the vocal fold lamina propria. If this is the
case, the anisotropy of the vocal ligament will also be spatially varying. How such anisotropy
in biomechanical properties and the spatial variation in anisotropy affect the fundamental
frequency and vibration characteristics has never been investigated.

In this study, the biomechanical properties of the vocal ligament were investigated with
mechanical testing and digital image correlation analysis during mechanical testing,
establishing the spatial variation in tissue properties. Subsequently, the vibration characteristics
of the vocal fold were studied by a computational model which allows us to account for both
variation in material properties and cross-section geometry with spatial location, as well as the
influence of tissue anisotropy.

2. Experiments
2.1 Experimental Methods

The specimen under consideration was a vocal ligament carefully dissected from an excised
60-year-old male larynx. The experimental protocol was approved by the Institutional Review
Board of UT Southwestern Medical Center. The specimen is depicted in Fig. 1(a). The in
situ vocal fold length (the distance from the vocal process to the anterior commissure) was
defined as L0. The vocal ligament specimen was assumed to possess circular cross sections. A
coordinate system was inscribed such that the z-axis coincides with the anterior-posterior
direction, the y-axis points in the medial-lateral direction, and the x-axis points into inferior-
superior direction, Fig. 1(b). The origin of the coordinate was inscribed as z = 0 at the vocal
process. Its local diameters in the undeformed configuration D(z) were measured from
calibrated digital images taken before the load was applied. The digital image area was
calibrated by determining a pixel/mm ratio from the dimensions of an object of known
dimension. Local cross-sectional areas A(z) = [D(z) 2]π / 4 and a mean cross-sectional area A̅
were calculated.

For applying tensile deformation, sutures were attached through a section of the arytenoid
cartilage and a section of the thyroid cartilage naturally attached to the vocal ligament during
dissection. The arytenoid cartilage section was then connected to the moving actuator of a
servo-controlled lever system,i while the thyroid cartilage section was connected to the support
by sutures. Figure 2 depicts the experimental apparatus. The servo-controlled lever system was
under displacement feedback control, and was connected to a function generator and an
oscilloscope to monitor the displacement input. The tensile force response of the specimen was

iAurora Scientific Model 300B-LR, Aurora, ON, Canada.
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detected by the lever system, digitized at 1000 samples/s and output for further analysis. The
specimen was kept in air during the experiment such that optical distortions related to a glass
container with physiological solution are avoided. However, the tissue was hydrated
periodically throughout the dissection, the test preparation, and the actual experiment with
phosphate buffered saline (PBS) to avoid changes in the mechanical properties due to
dehydration. The applied displacement and loading rate were applied to the ligament to mimic
physiologically relevant conditions. It has been documented that during speech and singing
the vocal folds can elongate up to 40% at a loading rate of 1–10 Hz (Hollien, 1960;Ohala et
al., 1973;Sundberg, 1979;Titze et al., 1997). The lever system was set to apply a displacement
of 1.0 mm at a rate of 70 mm/sec, and subsequently kept the displacement constant. The overall
elongation of the ligament was measured optically from digital images of the undeformed and
the deformed specimen as the change in distance between the vocal process (z = 0) and the
anterior commissure (z = L0). When conducting stretching experiments of the tissue it is not
possible to control the set-up such that the initial conditions are of exactly zero slack/tautness
of the suture. By using optical measurements instead of machine described displacements to
determine specimen deformation uncertainties in the measured magnitude of deformation are
avoided. The force was recorded until a relaxed state was reached after 30 seconds of hold
time. The force measured in the relaxed state can then be used to calculate the (long term)
equilibrium response of the tissue.

A 2D digital image correlation system was used to analyze the deformation state of the tissue
specimen as such a system is sufficient for the determination of the axial deformation of the
specimen. A speckle pattern on the tissue specimen was created by applying an enamel based
black spray paint, Fig. 1(a). During the tensile test, images of the specimen were taken with a
CCD camera,ii with a CCD pixel size of 6.7 × 6.7 µm for image acquisition. In particular, the
image at the initial configuration (ΔL =0 mm) and the deformed configuration after full
relaxation were considered. These images were analyzed by a digital image correlation
softwareiii. From the pair of images of the specimen in the undeformed and the deformed
configurations, the distribution of displacements uz(z) was obtained. Differentiation of the
displacement field provided the strain distribution, εz(z) = d [uz(z)] / dz. Consequently, the local
equilibrium modulus of elasticity E(z) may be calculated as:

(2)

2.1 Experimental Results
The vocal ligament specimen considered had an initial length of L0 = 12 mm. In the undeformed
state, the cross-sectional area was found to depend on the z-coordinate as A(z) = 0.0826z2 −
0.9339z + 4.0106 (mm2) with R2 = 0.9405. The average cross-sectional area for the undeformed
state was determined to be A̅ = 2.65 mm2. The variation of A(z) with spatial location is depicted
in Fig. 3(b).

From the image obtained for the deformed state, the elongation of the ligament between the
vocal process (z = 0) to the anterior commissure (z = L0) was 0.6 mm. The tensile force in the
fully relaxed state was found to be 0.0193 N. As shown in Fig. 3(a) the spatial strain distribution
resulting from the digital image correlation is depicted. Strain values for constant z locations
were determined and averaged. The averaged strains are given in Fig. 3(b) in dependence of
the distance from the vocal process. The longitudinal strain distribution was found to be highly

iiRetiga 1300, QImaging, Burnaby, BC, Canada.
iiiVIC2D, Correlated Solutions, Inc., Columbia, SC.
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heterogeneous. It revealed that the lowest strain value of the ligament specimen was found in
the area of smallest cross-section, while larger values of strain were found closer to the cartilage
attachments on both ends of the specimen, around the macula flavae.

Figure 4 clearly shows that the local elastic modulus varies greatly with location along the
vocal ligament. The elastic modulus of the smallest cross-section (around the midpoint region)
was approximately 10 times greater than those at the anterior and posterior regions of the
specimen.

3. Analysis
3.1 Model Definition and Analysis Method

Computational models of the tissue specimen were created and analyzed with the finite element
method. The finite element method was employed predominantly to determine the natural
frequencies of the specimen. When dealing with beam problems where rotatory inertia and
transverse shear deformation (Timoshenko, 1922) are present together with spatial property
variations, numerical methods are commonly required for solutions of vibration characteristics
(Zhou and Cheung, 2001; Suits, 2001) while closed form solutions have been provided for
standard beam problems (Huang, 1961). In order to allow for both a stress analysis of the
specimen and an eigenfrequency analysis accounting for bending modes, three-dimensional
models were considered. The first model (Fig. 5a) considered the actual specimen cross-section
measurements following from Fig. 3(b). The specimen was of circular cross-section geometry
with its outline equal to that of the tissue specimen and revolved about the z-axis. The second
model was of constant circular cross-section shape, cross-sectional area A̅, and with length
L0. The constant cross-section model was created in order to elicit the separate effects of the
spatially varying cross section geometry and the spatially varying elastic properties. In the
models we assumed that the cartilages (arytenoid and thyroid cartilages) were much stiffer than
the ligament. It has also been documented that the cartilages do not undergo vibration (Zemlin,
1997). Thus, the cartilages did not enter the computation and their presence was reflected only
in the displacement boundary conditions.

To simulate the tensile test, the nodes representing the interface between the thyroid cartilage
and the ligament were fixed in the x, y, and z-directions (ux = uy = uz = 0) and an applied
displacement (uz = U0 = ΔL = 0.6 mm) was prescribed at the nodes representing the interface
between the ligament and the vocal process. From the computation, the reaction force was
computed and the overall force-displacement response was obtained. In the computation of the
eigenmodes and eigenfrequencies boundary conditions were applied so that the cartilage-
ligament interface at z = 0 and z = L0 were fixed (ux = uy = uz = 0). Therefore, only the ligament
and portions of the anterior and posterior macula flavae contributed in the vibration analysis.
Also, all nodes were constrained to motion in the yz plane (ux = 0) in order to constrain bending
into one direction only.

From an initial macroscopic viewpoint we consider the tissue as a linear elastic, isotropic solid.
Then, two material parameters are needed to fully define the three-dimensional tissue response,
i.e., the Young’s modulus E, and Poisson’s ratio ν. The Young’s modulus is obtained from the
experiments, while a reasonable value the Poisson’s ratio is assumed as the present experiments
did not allow for its measurement. Hooke’s law in three dimensions relates stress and strain as

(3)

where the isotropic compliance tensor Sijkl depends on E and ν following the definition in
Appendix 1. For the current experiments, we consider that the modulus can potentially depend
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on the spatial location in the ligament as E = E(z) as following from Eq. (2). Nevertheless, no
spatial variation of the Poisson’s ratio is considered for the isotropic material model.

Once the anisotropic microstructure of the vocal fold lamina propria is considered,
microstrucural anisotropy needs to be reflected in the constitutive model. Considering a
transversely isotropic microstructure, four elastic constants, the moduli Ex = Ey, Ez, and the
Poisson’s ratios νzx, and νxy, define the biomechanical response, with the xy plane as the plane
of isotropy. The tensor Ŝijkl for the transverse isotropic case is also given in Appendix 1. A
consistent set of constants Ex = Ey, Ez, νzx, and νxy can be obtained from a micromechanical
model that considers the tissue to consist of two phases, fibrous proteins (collagen and elastin)
and ground substances (interstitial proteins), given by subscripts fp and gs, respectively. Then,
the elastic constants of the transverse isotropic model can be related to the elastic modulus of
the fibrous proteins Efp, elastic modulus of the ground substances Egs, Poisson’s ratio of the
fibrous proteins νfp, Poisson’s ratio of the ground substances νgs, and the volume fractions of
fibrous proteins Vfp and ground substance Vg = s1−fV p. An upper-bound micromechanical
model provides a reasonable first-order approximation for the elastic constants of transversely
isotropic two-phase solids (Clyne and Withers, 1993; Daniel and Ishai, 2006):

(4a),(4b)

(4c),(4d)

(4e),(4f),(4g)

where KT = (KfpKgs) / (VfpKgs + VgsKfp) is the bulk modulus of the tissue. The shear modulus
(G) and the bulk modulus (K) for both constituent phases are calculated by the standard
relationships of elasticity, i.e., G = E / [2(1 + ν)] and K = E / [3(1 − ν)]. Considering staining
intensities, the study (Chan et al., 2007) has considered that local variations in the collagen and
elastin concentrations would exist. Staining intensities were, however, not translatable into
actual volume fraction measurements. Therefore, values for E fp and E gs were established with
V fp varying such that the spatial variation of the longitudinal elastic modulus Ez matched the
experimental results in Fig. 4. Consequently, not only Ez but all other elastic constants vary
spatially.

Computations were conducted using a commercially available finite element software
packageiv. Tetrahedron-shaped quadratic elements with 10 nodes and modified formulation
(C3D10M) were used. Spatial variations of the elastic modulus were implemented into the
computational model via a user defined field subroutine (USDFLD). This subroutine defined
the elastic modulus as a function of the z coordinate.

ivABAQUS, © Dassault Syst mes, 2004, 2010.
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3.2 Model Results
3.2.1 Isotropic Tissue Response—The first part of the analysis considered an isotropic
tissue response only. Thereby, the measured longitudinal modulus is assumed to be present in
all spatial directions. A Poisson’s ratio of ν =0.4 was assumed in the calculations such that the
tissue retains some compressibility. This choice is made as Hooke’s law requires ν < 0.5, and
as experimental findings on deformation of soft human tissue at high rates (Saraf et al., 2006)
which indicate that the commonly assumed incompressible response of soft tissue may not
hold at high rates of deformation which also occur during vocal fold vibration. In order to
assess the influence of the spatial distribution of the elastic modulus on the ligament’s
biomechanical response it is useful to determine what equivalent tissue modulus such that the
force-elongation response for the case with spatial varying modulus is identical to that of a
case where the modulus is constant. The force-elongation response for the model with spatially
varying cross section and modulus following Fig. 3(b) was obtained. At an applied
displacement of U0 = 0.6 mm a reaction force of 0.02 N was computed, well approximating
the experimental value of 0.0193 N. Subsequently, the model was analyzed assuming a
homogeneous modulus. A range of modulus values were considered. The effective modulus
E̅ was obtained from the computation where the force-elongation response was identical to that
of the model with a spatially varying modulus. The effective modulus was found to be E̅ =195
kPa.

To see how the spatial variations in cross-section geometry and elastic modulus effected the
eigenfrequency and the eigenmodes, the model was analyzed further. Table 1 compares the
predicted fundamental frequency (frequency of the first mode of vibration, F0) for four
combinations of cross-section and modulus distribution. It was found that a gradient in the
elastic modulus had no effect on F0 for the case of A = const but decreased F0 for the varying
cross-section model (Fig. 5). When considering the spatially varying cross-section higher
values of F0 are predicted independent of whether a constant or spatially varying modulus was
considered.

Figure 6 shows the corresponding eigenmodes as normalized displacements in the transverse
direction, uy. In the model with a uniform modulus and spatial varying cross-section, the
deflection was most strongly concentrated towards the center of the ligament. This short
effective length of vibration reflected the highest predicted value of F0 for this case. Once the
spatially varying modulus was considered, the mode pattern broadened and the effective length
increased, leading to a reduced F0. In the case of the model with constant cross-section, the
modulus distribution was found to have the same effect, but the missing spatial variation in
the cross-section led to even broader mode patterns. The effective lengths of vibration again
correspond to lower values of F0 for the case of the constant cross-section model relative to
the cases considering the actual ligament geometry.

The present model assumes a Poisson’s ratio of 0.4. A sensitivity study on the effect of the
Poisson’s ratio on the predicted fundamental frequencies was conducted. It was found that a
Poisson’s ratio of 0.3 reduced the fundamental frequency by less than 3% while an increase of
the Poisson’s ratio to close to 0.5 increased the predicted fundamental frequency by 5%.

3.2.2 Transversely Isotropic Tissue Response—The effects of tissue anisotropy were
explored for both the spatially varying cross-section model and the constant cross-section
model. As the longitudinal elastic modulus varies spatially, it was assumed that such a variation
would emerge from a spatial variation of the underlying fraction of fibrous proteins. The
volume fraction of the fibrous proteins was assumed to be the highest in the center of the
ligament, while decreasing in the anterior and posterior directions. The volume fraction was
assumed to be the highest in the center of the ligament because the longitudinal elastic modulus
was determined from the DIC results to be the highest in the center. The elastic moduli for the
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fibrous proteins and for ground substances were chosen such that the longitudinal modulus
matched the experimental data (Fig. 4). It is important to realize that the definition of a volume
fraction and moduli values here are abstract, with no physical interpretation or correlation with
histological data. They were used simply to create a set of consistent elastic constants.

When creating these transversely isotropic models, it was found that the degree of anisotropy
(i.e. the modulus ratio Ez / Ey) had a great influence on the predicted eigenfrequencies. Figure
7 shows the fundamental frequency in dependence of the modulus ratio based on computations
with six different degrees of anisotropy in the transversely isotropic elastic description of the
tissue. All models considered a spatially varying longitudinal elastic modulus. Consequently,
the degree of anisotropy also varies within each model in dependence of the distance from the
vocal process. These levels of anisotropy were achieved by using six different (assumed) pairs
of E fp and E gs. However, the transverse modulus, Ex = Ey, also depended upon the values
chosen for E fp and E gs, and the volume fraction. As the difference between E fp and E gs
increased, so does the anisotropy (Ez / Ey). Simultaneously, the ratio between the longitudinal
modulus Ez and shear modulus Gxz also increases. The six cases considered in the computations
are characterized as:

1. Ez / Ex = 1.0, Ez / Gxz = 3.0, isotropic;

2. Ez / Ex = 1.0 to 7.5, Ez / Gxz = 3.0 to 21.9, avg(Ez / Ex) = 4.2;

3. Ez / Ex = 1.3 to 10.0, Ez / Gxz = 3.9 to 30.2, avg(Ez / Ex) = 5.7 ;

4. Ez / Ex = 2.0 to 15.0, Ez / Gxz = 7.1 to 48.0, avg(Ez / Ex) = 8.5 ;

5. Ez / Ex = 13.0 to 100.0, Ez / Exz = 38.5 to 302.1 avg(Ez / Ex) = 56.5 ;

6. Ez / Ex = 50.0 to 725.0, Ez / Gxz = 166.7 to 2416.7, avg(Ez / Ex) = 387.5.

The average anisotropy was defined as the mean value of maximum and minimum anisotropy.
As the degree of anisotropy – assessed the ratio Ez / Ex increases, so does the ratio between the
longitudinal modulus and the longitudinal-transverse shear modulus Ez / Gxz.

Figure 7 demonstrates that the predicted fundamental frequencies strongly depend on the
degree anisotropy. Again the fundamental frequencies for the case of spatially varying cross
section are predicted to be higher than those for the constant cross-section model. The predicted
fundamental frequencies for the transversely isotropic models excluding the isotropic case and
low degree of anisotropy could be described as F0 = C (Ez / Ex)m, with m = −0.38 independent
of the model cross-section geometry and C a constant depending on the cross-section geometry.
The eigenmodes were compared to those depicted in Fig. 6 for the isotropic material model. It
was found that the degree of anisotropy did not change the shape of the deflection. Figure 8
depicts these results.

4. Discussion
The results of a biomechanical stress-stretch experiment on a vocal ligament specimen
evaluated with the digital image correlation method revealed that the local deformation of the
vocal ligament specimen may vary greatly with spatial location, illustrating the importance of
optical measurements. Assuming a constant elastic modulus, the present results on the
measured strains were counterintuitive. Considering the hourglass-type specimen shape and
the initial assumption of constant elastic properties one would predict that the region of smallest
cross section would undergo the highest strain. However, the strain distribution determined
showed the lowest strain at location of smallest cross section. For the specimen tested, the
tensile elastic modulus in the specimen’s longitudinal direction was much greater
(approximately 10 times) in the mid-membranous vocal fold region than in the anterior and
posterior (macula flavae) regions. DIC is an effective method but it may have some limitations.
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If the experiment was conducted in a physiological fluid (e.g. Krebs-Ringer solution) in a glass
environmental chamber, as mechanical testing of tissue would normally, there may be optical
distortions interfering with the DIC results. Eliminating any potential optical distortion would
be crucial for determining the true deformation field.

The heterogeneous elastic modulus observed along the vocal ligament could be due to local
variations in the content of structural proteins in the extracellular matrix (ECM). Previous
studies have speculated that there may be local variations in the collagen and elastin
concentrations (Chan et al., 2007). This would affect the fiber volume fraction used in the
transverse isotropy relations. It is well known in the field of mechanobiology that mechanical
forces influence gene expression in cells. Numerous studies have shown that fibroblasts
upregulate the production of matrix proteins to strengthen the ECM when exposed to higher
forces (Leung et al., 1976; Yang et al., 2004; Hsieh et al., 2000). Gray (2000) suggested that
the variation in collagen content between the different layers of the vocal fold lamina propria
could be related to the magnitude of force experienced at each layer. As the mid-membranous
vocal fold region of the ligament has the smallest cross section, it may experience higher
stresses, leading to a higher density of fibrous proteins and hence higher elastic modulus.

Also, it was possible that there were age-related effects since the ligament specimen was
obtained from a 60-year-old male. Matrix proteins experience increased cross-linking as they
age, reducing the elasticity of elastin (Niewoehner et al., 1975) and increasing the stiffness of
collagen (Schneider and Kohn, 1982). It has also been observed that the histoarchitectural
arrangement of collagen fibers of geriatric vocal folds are less organized (Gray et al., 2000)
and curved irregularly (Ishii et al., 1996). Such age-related changes do indeed affect the
biomechanical properties of vocal fold tissue. Zhang et al. (2006) have determined the age
dependence of the biomechanical properties of male vocal fold tissue, and found that most age-
related changes occur below age 60, and that properties are much less age dependent above
that age. The situation found in the specimen of concern to the present study thus may be
representative of the age group above 60 years for which biomechanical changes in the tissue
can contribute to alterations in communication (Torre and Barlow, 2009).

The fundamental frequencies of the varying cross-section models were predicted to be higher
than those predicted for the constant cross-section models. Also, the spatial gradient in modulus
decreased the fundamental frequency for the varying cross-section case. Consequently, the
nonlinear variation in geometry and the heterogeneous modulus must be accounted for in
models of vocal fold mechanics and vibration. For the case of isotropic tissue mechanical
properties, the change in eigenfrequency is attributed to an emerging of an effective vibration
length. If the cross-section geometry is reduced in the mid-membranous vocal fold region then
deflection will predominantly occur towards this domain, thus effectively shortening the length
of the ligament. An increased modulus in the mid-membranous vocal fold region counters this
effect and increases the effective length. The degree of anisotropy also showed a great impact
on the predicted eigenfrequencies but altered the eigenmodes little. The findings of the specific
problem addressed here bears similar outcomes as a study on the vibration and sound
characteristics of musical instruments (Suits, 2001) where homogeneous elastic solids were
considered.

This finding is attributed to the changes in rotatory inertia along the ligament and to the increase
in the contribution from transverse shear deformation as the ratio of Ez / Gxz increases with
increasing anisotropy. A beam theory accounting for rotatory inertia and transverse shear
deformation (Timoshenko, 1922) predicts that the local influence of rotatory inertia scales as
r2 = I / (AL2), where I = D4π / 64, and that shear deformation scales with the non-dimensional
parameter s2 = [(EI) / (κL2AG)], where the Timoshenko shear coefficient κ is a non-dimensional
coefficient depending on cross-section geometry and Poisson’s ratio. In the case of the present
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problem and a circular cross section, one can write r2 = D2 / (16L2) and s2 = [(Ez / Gxz)(D2 /
16κL2)]. As the diameter and the degree of anisotropy vary within the ligament the contribution
of rotatory inertia and transverse shear deformation will vary along the distance from the vocal
process. Close to the cartilages the diameter is large but the anisotropy is small while towards
the mid-membranous vocal fold region the diameter is small but the anisotropy is large.
Rotatory inertia is large towards the cartilages and reduced in the mid-membranous section,
thus increasing the flexibility of the tissue and lowering its fundamental frequency.
Furthermore, as [max(D)]2 / [min(D)]2 = 5.06 / 1.9 = 2.6 the contribution of transverse shear
deformations are dominated by the ratio Ez / Gxz and increase the flexibility of the tissue and
lowering its fundamental frequency except for small values of anisotropy. Such arguments also
explain why the results for F0 for the isotropic case deviates from the power law found for
higher anisotropies as depicted in Fig. 7. For a low degree of anisotropy the vibration response
is dominated by the spatial dependence of the cross-section geometry, while above a critical
level of anisotropy, here (Ez / Ex) ≥ 10, the spatial dependence of the anisotropy dominates the
response.

5. Conclusion
Uniaxial tensile deformation testing was performed on an excised vocal ligament with a
spatially varying cross-section. Using digital image correlation, the spatial distribution of
tensile strain (i.e., deformation field) was obtained and was found to be heterogeneous, with
the smallest deformation observed at the mid-membranous vocal fold region. This
heterogeneous displacement field was used to calculate the elastic modulus locally, which was
found to vary greatly depending on the spatial location along the vocal ligament. The mid-
point region was estimated to be 10 times stiffer than the anterior and the posterior regions
(i.e., the macula flavae). These results were implemented into isotropic finite element models
to observe their effect on the fundamental frequency. Results showed that the nonlinear
variation in geometry of the vocal ligament impacted the frequency more than the spatially
varying elastic modulus but interactions between the two effects exist. Additionally, finite
element models with transversely isotropic material descriptions were created to study the
fundamental frequency, with a micromechanical model assuming locally varying volume
fraction of fibrous proteins to account for the spatially varying elastic modulus. It was found
that the degree of anisotropy (expressed as a modulus ratio) had a substantial impact on the
fundamental frequency. The transverse shear deformation was determined to be the critical
parameter in regulating the frequency for transversely isotropic models. The present results
suggest that the Euler-Bernoulli beam theory for the vibration analysis of vocal folds should
be augmented or substituted with Timoshenko’s beam theory. Such a theory would especially
be needed if overtones are to be predicted (Suits, 2001). Clearly, as enhanced constitutive
descriptions of the vocal tissue become relevant, the theories describing the function of the
tissue need to expand accordingly. While the present study focuses on rather small magnitudes
of deformation, it will also be necessary to investigate how spatial property changes interact
with the nonlinear deformation characteristics of the vocal fold tissue at large deformations. It
would be premature to derive definite clinical implications based on the results of the present
study. Nevertheless, our results indicate that phonation can be influenced by the spatially
varying geometry, the spatially varying elastic properties, and the degree of elastic anisotropy
of the vocal fold ligament. It is likely that the relative size of the contribution of each of these
influences differs among different subjects due to anatomical and biomechanical variability in
the vocal fold lamina propria. Such differences could contribute to dictate how fundamental
frequency control is achieved distinctly among different subjects.
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Appendix
The compliance tensor for an isotropic material:

The compliance tensor for a transversely isotropy material with the xy plane as the plane of
isotropy.

Additionally, the tensor must be symmetric, imposing that  , thus reducing the number
of elastic constants needed to only four (Ex = Ey, Ez, ν zx, and ν xy).
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Figure 1.
(a) The vocal ligament specimen used for this study. (b) Horizontal section of the larynx at the
glottis of an adult male (from HIRANO. Histological Color Atlas of the Human Larynx, 1E.
© 1993 Delmar Learning, a part of Cengage Learning, Inc. Reproduced by permission.
www.cengage.com/permissions). An outline of the specimen used in this experiment is
superimposed onto the anatomical section.
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Figure 2.
The experimental apparatus.
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Figure 3.
(a) Ligament specimen with longitudinal strain distribution obtained from digital image
correlation; (b) The spatial distributions of longitudinal strain and cross sectional area along
the vocal ligament specimen.
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Figure 4.
The longitudinal elastic modulus in dependence of spatial location in the vocal ligament
specimen.
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Figure 5.
(a) Model with varying (actual) cross-section, A = A(z); (b) constant cross-section model, A =
const.
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Figure 6.
Predicted eigenmodes for models considering isotropic tissue modulus.
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Figure 7.
The dependence of fundamental frequency on the degree of anisotropy (average value of
modulus ratio Ez / Ex) for six levels of anisotropy, all considering spatial variation of the
modulus and the cross-section area.
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Figure 8.
Predicted eigenmodes for models considering transversely isotropic material model. Results
for the spatially varying cross section model.
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Table 1

Predicted eigenfrequencies for models with isotropic elasticity.

Model Mode 1 Frequency [Hz]

Area = constant
E = constant 141

E ≠ constant 141

Area ≠ constant
E = constant 219

E ≠ constant 191
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